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Abstract 

iWarp is a parallel architecture developed jointly by Car- 
negie Mellon University and Intel Corporation. The iWarp 
communication system supports two widely used interproces- 
sor communication styles: memory comnaunication and 
systolic communication. This paper describes the rationale, 
architecture, and implementation for the iWarp communica- 
tion system. 

The sending or receiving processor of a message can per- 
form either memory or systolic communication. In memory 
communication, the entire message is buffered in the local 
memory of the processor before it is transmitted or after it is 
received. Therefore communication begins or terminates at 
the local memory. For conventional message passing 
methods, both sending and receiving processors use memory 
communication. In systolic communication, individual data 
items are transferred as they are produced, or are used as they 
are received, by the program running at the processor. 
Memory communication is flexible and well suited for 
general computing; whereas systolic cortummication is ef- 
ficient and well suited for speed critical applications. 

A major achievement of the iWarp effort is the derivation 
of a common design to satisfy the requirements of both sys- 
tolic and memory uxnmunication styles. This is made pos- 
sible by two important innovations in communication: (1) 
program access to communication and (2) logical channels. 
The former allows programs to access data as they are trans- 
mitted and to redirect portions of messages to different des- 
tinations efficiently. The latter increases the connectivity 
between the processors and guarantees communication 
bandwidth for classes of messages. These innovations have 
provided a focus for the iWarp architecture. The result is a 
communication system that provides a total bandwidth of 320 
MBytes/xc and that is integrated on a single VLSI com- 
ponent with a 20 MFLOPS plus 20 MIPS long instruction 
word computation engine. 

‘llte research was supported in part by Defense Advanced Research 
Projects Agency (DOD) monitored by the Space and Naval Warfare 
Systems Command under Contrad NOOO39-87-C-0251. 

Authors’ affiliations: R. Cohn, T. Gross, H. T. Kung, and J. Webb 
are with Carnegie Mellon University; S. Borkar, G. Cox, M. Levine, 
B. Moore, W. Moore. C. Petersen, I. Susman, J. Sutton, and 
J. Urbanski are. with Intel; M. Lam, who was a Ph.D. student at 
Carnegie Mellon University, is now with Computer Systems 
Laboratory. Stanford University, Stanford, CA 94305 

1. Introduction 
iWarp [5] is a distributed parallel computing system under 

joint development by Carnegie Mellon University and Intel 
Corporation since 1986. The architecture is derived from the 
original Warp architecture developed by Carnegie Mellon [2]. 
The building block of an iWarp system is the iwarp ceN, 
made out of a single-chip iWurp processor (or iWarp 
component) connected to a local mcxnory. Parallel systems of 
different scales and topologies can be built cost-effectively by 
simply Iinking together iWarp cells. Figure 1 illustrates one 
possible configuration. 

Parallel System 

iWarp Component 

Figure 1. iWarp cell: a building block for parallel systems 

The iWarp processor integrates both a high-speed computa- 
tion and communication capability in a single component. 
The processor is a powerful computation engine that employs 
instruction-level parallelism to allow simultaneous operation 
of multiple functional units. What makes iWarp unique, 
however, is its interprocessor communication capability. An 
iWarp processor can simultaneously communicate with a 
number of other iWarp processors at very high speeds. More 
importantly, the iWarp processor Ihas a highly flexible com- 
munication mechanism that can support different program- 
ming models, including the tightly coupled computing found 
in systolic arrays and the message passing style of computa- 
tion found in distributed memory machines. These com- 
munication capabilities allow the effective use of iWarp for a 
wide range of applications. 
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The iWarp component consists of three autonomous subsys- 
tems, as depicted in Figure 1. The computation agent, which 
executes programs, can deliver 20 (or 10) MFLOPS for single 
(or double) precision calculations plus 20 MIPS for 
integer/logic operations. The corrmuuI ication agent, which 
implements the iwarp’s communication system, can sustain 
an aggregate intercell communication bandwidth of 320 
MBytes/set by using four input and four outPut busses. The 
memory agent, which provides a high-bandwidth interface to 
the local memory, can transfer streams of data into or out of 
the communication agent at a rate of 160 MBytes/set. 

The first silicon of the iWarp component was fabricated in 
December 1989. It consists of approximately 650,OOCl transis- 
tors and measures about 1.4cm (551mil) on a side. Figure 2 
shows a photo of the component, together with a floor plan 
that highlights the major units. The iWarp component 
operates at a frequency of 20 MHz, with the exception that the 
data is transferred between processors at twice that frequency 
(40 MHz). Three iWarp demonstration systems will be 
delivered to Carnegie Mellon by the Fall of 1990. Each of 
these systems consists of an 8x8 torus of iWarp cells, deliver- 
ing more than 1.2 GFLOPS. The system can be readily 
expanded to include up to 1,024 cells for an aggregate com- 
puting power of over 20 GFLOPS and communication 
bandwidth of 160 GBytes/sec. 

The software for the initial iWarp systems includes optimiz- 
ing compilers for C and FORTRAN as well as parallel 
program generators such as Apply [ 1 l] for image processing. 
A resident run-time system on each cell supports systolic and 
memory communication. Included in this run-time system are 
the message-passing services of the Nectar communication 
system, originally developed for Carnegie Mellon’s Nectar 
network [3]. 

This paper describes in depth the rationale, concepts, and 
realization of the iWarp communication agent. In particular, 
we describe the common design to support both systolic and 
memory communications, and the innovative architectural 
features needed to efficiently support these different types of 
communication. 

This paper complements earlier iWarp papers on other 
topics: iWarp overview [5], architecture and compiler 
tradeoffs for the computation agent [6]. and networks that can 
be formed on an iWarp array [9]. General discussions on 
interprocessor communication methods can be found in [14]. 
which describes a taxonomy of communication methods and 
uses iWarp communication methods as part of the examples. 
Further discussions on systolic communication can be found 
in [12]. 

The organization of the paper is as follows. We first 
describe the fundamental differences between systolic and 
memory communication and point out that these two styles of 
communication each has its own merit. We then discuss the 
two unique architectural concepts in the iWarp communica- 
tion system: (1) program access to communication and (2) 
logical channels. These innovations were motivated 
originally by systolic communication needs, but as described 
in Section 3, they are also useful in improving the perfor- 
mance of memory communication. We discuss the details of 
the iWarp communication system in Sections 4 through 7. 
starting with the physical intercell connections, the implemen- 
tation of logical channels, routing and bandwidth reservation, 
and finally, communication agent interaction with the com- 
putation and the memory agents. We close the paper with 
some performance figures on the latency of communication, 
and some concluding remarks. 

Fi igure 2. Photo and floor plan of iWarp component 
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2. Systolic vs. memory communication 
An iWarp cell is said to perform systolic communication if 

the program has direct access to the input or output port of a 
message queue as the message is being sent or received, it is 
said to perform mem01y communication otherwise. The send- 
ing and receiving cells of the same message do not necessarily 
use the same communication style; that is, one cell may 
perform systolic communication while the other performs 
memory communication. In the following we motivate and 
elaborate on these two styles of intercell communication. 

2.1. Memory communication 
In conventional message passing, messages are delivered 

from the local memory of the sending cell to the local 
memory of the receiving cell. That is, a message is first built 
in the local memory of the sending cell and then delivered (as 
a unit) to that of the receiving cell. Only when the full 
message is available in the local memory of the receiving cell 
is it ready to be operated upon by its program. Thus, in 

71 



conventional message passing, both the sending and receiving 
cells perform memory communication. 

In memory communication. the program running on the cell 
is insulated from communication. In the case of a sending 
cell, the program just needs to build the message in its local 
memory. After the complete message has been built, deliver- 
ing it over the network is handled independently by some 
network software. Similarly, in the case of a receiving cell, 
the program is not involved in receiving the message, and will 
operate on the data in the message only after the entire mes- 
sage has been delivered to the local memory by the network 
software. 

Memory communication has the advantage that communica- 
tion is decoupled from computation. While the message is 
being delivered and buffered through memory, the program at 
the sending or receiving cell can operate autonomously on its 
local data. Moreover. communication protocols can be 
developed independently from the program to handle 
communication-specific issues such as deadlock avoidance 
and recovery from transmission failures. This makes memory 
communication the method of choice for applications which 
do not assume detailed knowledge about intercell com- 
munication. For these applications, message passing which 
uses memory communication at both sending and receiving 
cells is widely used. 

2.2. Systolic communication 
Systolic communication was motivated by systolic al- 

gorithms. In a systolic algorithm, an array of cells perform 
computations on long data streams flowing through the array. 
To achieve high efficiency, each cell processes the data im- 
mediately as each item arrives. We can view all data sent 
along each directed connection in a systolic array as belong- 
ing to one message. However, instead of waiting until all the 
data in the message have arrived, each cell operates on the 
data items within a message as they arrive individually. It 
then sends the results of the computation to other cells on-the- 
fly as data of out-going messages. Therefore, each cell per- 
forms systolic communication as defined in the beginning of 
this section. 

Systolic communication has the following advantages over 
memory communication: 

l Fine-grain cummun icatiun. The program at the 
sending cell can send out data items individually 
as soon as they are produced; similarly the 
program at the receiving cell can use data items 
individually as soon as they are received. This 
allows pros- t.0 communicate and 
synchronize with each other at word-level rather 
than message-level granularity. The message 
routing and header information overheads are not 
paid with each unit of synchronization. This low 
communication cost makes it possible for the 
cells to cooperate in fine-grain parallel process- 
ing. 

l Reduced access to local memory. Incoming and 
outgoing data need not be buffered in the cell’s 
local memory unless it is required by the com- 
putation. Since memory access is typically a 
bottleneck in the cell’s performance, the reduced 
access to local memory may translate into in- 
creased computation performance. 

l Increased instruction-level parallelism. At each 

cell, systolic inputs and outputs provide ad- 
ditional parallel sources of operands for instruc- 
tions. These operands can hellp keep the multiple 
functional units busy and increase insmtction- 
level parallelism. Optimizing compilers for 
wide-word instruction set architectures, such as 
the compilers for Warp and iWarp [6, 151. have 
been developed to take advantage of this 
instruction-level parallelism. 

l Reduced size for local memory. Avoiding buffer- 
ing data in the local memory also reduces the. 
memory size requirement for s.ome applications. 

However, systolic communication is harder to use than 
memory communication with respect to the flexibility of data 
access by a cell’s program. The local memory of a cell can be 
accessed furufomly. while message queues in the communica- 
tion agent can only be accessed sequentially. Consequently, 
in systolic communication, one must make sure that the reads 
and writes of message queues are properly sequenced. That 
is, whenever the cell’s program reads from an input queue, the 
right data item will appear at the front of the queue. 
Similarly, whenever the program writes a data item to an 
output queue, one must make sure that when the data item 
emerges from the front of an input queue of the receiving cell, 
that cell’s program will be ready to read it. 

Furthermore, in systolic communication after an item has 
been sent, it will no longer be available on the sending cell 
and cannot be re-transmitted. Therefore the communication 
system must guarantee reliable transmission. 

3. Two iWarp architectural innovations in 
communication 

iWarp has two important architectural innovations: program 
access to c-nicatiun, and logical channels. These in- 
novations were motivated by the desire to support systolic 
communication. 

In addition, iWarp has many of the more “traditional” 
architectural features [5] found in previous distributed 
memory machines [4. 171. such as support for non- 
neighborhood communication, message routing hardware, 
word-level flow control between neighboring cells and spool- 
ing (a DMA-like mechsnism). Tol;ether, the traditional fea- 
tures and our two innovations make iWarp an effective 
processor for both systolic and memory communications. 

3.1. Program access to communication 
iwarp’s communication is unique in that its low level com- 

munication mechanisms are exposed and accessible by 
programs. First, the communication agent supports word- 
level flow control between connecting cells and transfers mes- 
sages word by word to implement wormhole routing [7.8]. 
Exposing this mechanism to the computation agents allows 
programs to communicate systolically. Second, a com- 
munication agent can automatically route messages to the 
appropriate destination without the intervention of the com- 
putation agent. By allowing the computation agent to modify 
the routing of messages in midstream, the program can imple- 
ment some common message operations such as message 
concatenation or distribution efficiently. 
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3.1.1. Program access to communication data 
To implement systolic communication, iWarp allows 

pros- running on the computation agent to have direct 
access to the inputs and outputs of message queues in the 
communication agent. These locations csn be bound to spe- 
cial registers, called gates. in the register space of the instruc- 
tion set architecture. Reading from the gate corresponds to 
receiving data from the queue; similarly, writing to the gate 
corresponds to sending data to the queue. Data me transferred 
in FIFO order and reading from an empty queue or sending to 
a full queue will block the operation. 

Applications typically use message queues to smooth the 
flow of data between cells and to delay one stream of data 
with respect to others. The size of such queues is application- 
specific and can be larger than the message queues that the 
communication agent can provide in hardware. iWarp over- 
comes this problem by providing the option of extending the 
queue into the local memory of the cell. Although using this 
mechanism increases the demand for memory bandwidth, it is 
a software transparent method for providing queues that are 
too long to implement with dedicated buffer space. 

Besides supporting systolic communication. the ability for 
the program to access message queues directly can also speed 
up memory communication. In conventional message passing 
for distributed memory machines, messages are usually 
copied from the user space to system space at the sending cell. 
transmitted, and then copied from system space to user space 
at the receiving cell. Reliable and safe service routines are 
used to transfer messages between the system spaces. We call 
this station-to-St&on delivery [S]. Making copies of data 
back and forth between the application and the system spaces 
incurs considerable overhead. 

Direct access to message queues can be used to optimize the 
communication protocol. That is, the application can transmit 
the data itself using an application-specific protocol; the data 
are sent directly between the user spaces of the sending and 
receiving cells. We call this door-to-door delivery. 

To implement door-todoor delivery. the application 
program at the receiving cell needs to read the message 
header before the entire message is buffered in the local 
memory. Using the information in the header, the program 
will explicitly control the memory allocation and tell the 
communication system where to deposit messages. 

These details can be readily handled by parallel program 
generators such as Apply [lo] and AL [ 181. The extra protec- 
tion provided by service routines for station-to-station com- 
munication is not needed by such tools, since the programs 
generated by the tools can be trusted to be correct in their 
interactions with the run-time system. Furthermore, parallel 
program generators can achieve additional efficiency by com- 
puting and communicating concurrently. with the use of 
instruction-level parallelism in iWarp. 

3.1.2. Program access to data routing 
Under normal operation, the communication agent es- 

tablishes a route between the sender and the receiver, and all 
the data in the message follow the same route. In iWarp, the 
program may alter this route in the middle of a message so 
that the rest of the data can be forwarded to another cell, 
along another route. Program access to data routing reduces 
the need to buffer data in memory. 

The importance of this mechanism can be illustrated by the 
“GetRow” and “PutRow” l/O methods [l], which have 
been extensively used on Warp for image processing applica- 

tions. GetRow is an input method of distributing data (e.g., a 
row of an image) to a group of cells. All the cells participat- 
ing in the GetRow operation are linked together by pathways, 
The first cell, the left-most cell in Figure 3 (a), sends out the 
data as a single outgoing message to cells to the right. Each 
receiving cell in tum takes its potion of the message, and 
then forwards the remainder, if any, to cells to the right. To 
avoid buffering through the local memory of the receiving 
cell, the destination for the remaining message is altered, 
More precisely, after having read its portion of the incoming 
message, the program at the cell will instruct the communica- 
tion agent to redirect the remaining portion of the message to 
the next cell. This redirection eliminates the need for the cell 
to buffer up the remaining portion of the message before 
forwarding it to the next cell. Note that the first cell does not 
have to know how many cells will receive the data that it 
sends out, nor how the data will be distributed among them. 

(b) 
Figure 3. (a) GetRow and (b) PutRow on iWarp 

Corresponding to GetRow is the”PutRow” output method 
of concatenating multiple messages from a group of celIs to 
form one long message. All the cells participating in the 
PutRow operation are linked by a set of pathways. In 
PutRow, the last cell, the right-most cell in Figure 3 (b), 
receives the data from all the other cells. Each of the other 
cells sends out its data as a separate outgoing message to the 
next cell. After having sent out its message, the program at 
the cell. without closing the message, will peel off the header 
of the incoming message and instruct the communication 
agent to redirect the incoming message as the remaider of the 
original outgoing message. 

3.2. Logical channels 
iwarp’s second innovation in communication is logical 

channels. They have two important functions. First, in map- 
ping computations onto iWarp arrays, logical channels 
provide a higher degree of connectivity than that achievable 
by physical means. Second. they provide a mechanism for 
delivering guaranteed communication bandwidth for classes 
of messages. 

3.2.1. Increasing connectivity 
When mapping computations onto iWarp arrays, it is 

desirable for the cells to be highly interconnected. However, 
the number of physical connections is limited by hard con- 
straints such as the number of available pins and pads on the 

73 



iWarp component. Logical channels overcome this problem 
by providing multiple “logical” connections over the same 
physical connection. In iWarp, multiple logical channels can 
time-multiplex a physical bus at word-level granularity (see 
Section 5). Up to forty logical channels can be multiplexed 
over the eight external and five internal physical busses in 
each cell. 

A high degree of connectivity is useful for systolic com- 
munication. In systolic communication, a cell may need to 
have simultaneous connections to several cells. Without logi- 
cal channels, algorithms that require more physical connec- 
tions than those provided in hardware cannot be implemented. 
Consider, for example, mapping a hexagonal systolic array 
onto a 2dimensional grid of iWarp processors. Whereas the 
X and Y connections of the hexagonal array map directly onto 
those of the iWarp array, each of the diagonal connections of 
the hexagonal array can be implemented on the iWarp array 
with one horizontal and one vertical channel. 

In general, a high degree of connectivity is required when 
mapping computations onto a physical array which has quite a 
different intercell communication topology. Even when the 
computation and the physical array have exactly the same 
communication topology, extra connections may still be 
needed to route around congested or faulty cells. Extensive 
simulation has shown that a moderate number of logical chan- 
nels (on the order of 10) can be highly effective in avoiding 
faulty cells [ 161. 

3.23. Delivering guaranteed communication bandwidth 
Logical channels can be used to guarantee communication 

bandwidth for special classes of messages between a set of 
selected cells. The time-multiplexing of logical channels onto 
physical busses uses a fair schedule. Therefore some min- 
imum bandwidth is guaranteed to be available to each logical 
channel, and thus to the messages carried by the channel, 
since the total number of logical channels sharing the same 
physical bus is bounded. Moreover, the multiplexing of logi- 
cal channels to physical busses is designed such that idle 
logical channels do not consume any physical bandwidth. 
That is, when a logical channel is inactive, the physical 
bandwidth reserved for it is not wasted and can be used by 
other logical channels. 

The ability to deliver guaranteed communication bandwidth 
is important for both systolic and memory communication. 
The need in the case of systolic communication is obvious. 
The connection for systolic communication requires some 
guaranteed minimum performance to ensure effective low 
cost fine-grain communication. A systolic connection may 
exist for an indefinitely long period of time, possibly for the 
duration of an entire application program. If connections 
exclude other communication on the same bus, then cells 
engaged in systolic communication can potentially lock out 
all other messages by monopolizing the connections. It is 
important that some bandwidth be made available for memory 
communication to support system-related functions such as 
monitoring. 

Guaranteeing communication bandwidth in the case of 
memory communication is less clear but nonetheless impor- 
tant. Messages received and sent using memory communica- 
tion will compIete in a bounded amount of time for a given 
available communication bandwidth. Provided that at least 
one connection from any cell to any cell can be made at any 
one time, all messages will eventually arrive at their destina- 
tions. However, there is little guarantee as to when a par- 

ticular message will be delivered. Reserving a set of logical 
channels for a class of messages guarantees that some min- 
imum bandwidth is reserved for them. For example, it is 
useful to guarantee that special system messages can be 
delivered in a timely fashion. TMs is especially useful for 
debugging and diagnostic purposes. 

Reserving communication resources in iWarp is modleled by 
the notion of pathwuys. each being a chain of linearly con- 
nected logical channels (see Section 6). Logical channels in a 
given set of pathways can be reserved to transport a class of 
messages between the cells connected by the pathways. Con- 
versely, all these messages are cctimed to use only those 
logical channels within the pathways, guaranteeing the 
availability of the rest of the resources for other usages. 
Figure 4 shows some examples of networks of pathways 
within a 2dimensional system, where each arrow denotes a 
reserved logical channel. 

t Net2 

non 
Net3 

0 0 CI 0 

fL!JQum.m 
Figure 4. Examples of networks of pathways reserved 

in a 2dimensional iWarp array 

4. Physical busses 
In the next few sections, we describe the architecture and 

implementation of the iWarp communication system and, in 
particular, show how they implement the two communication 
concepts described in Section 3. We describe the system in a 
bottom-up fashion, We start with the physical co~ections 

and the logical channels, then proceed to describe how logical 
channels guarantee minimum communication bandwidth for 
classes of messages. Lastly, we describe how the low level 
communication mechanisms are made accessible to the com- 
putation and memory agents. 

Each processor is connected via eight external busses to the 
outside world, each delivering a bandwidth of 40 MBytes/set. 
The busses are unidirectional, four are input busses and the 
other four are output busses. We refer to these external 
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busses as XRight, YUp. XLeft, and YDown as shown in 
Figure 5. The subscripts “in” and ‘*out” are attached when 
necessary to distinguish between input and output busses. 

The design of the physical busses is a tradeoff between 
performance goals and implementation constraints. The com- 
ponent is limited by the number of pins in the package and the 
switching speed of the signals. Each of the eight external 
busses consists of eight data lines and five control lines. The 
data busses are unidirectional because they can operate at 
higher frequencies than bidirectional busses. The unit of 
transfer over a bus is a 32-bit data woTd; it takes four phases 
of 25 ns each to complete a transfer. That is, the external 
interface of the communication agent operates at a frequency 
of 40 MHz. yielding a bandwidth of 40 MByte&ec for each 
bus. 

The partitioning of the total 64 data lines into byte parallel 
busses is motivated by the desire to provide a high peak 
bandwidth per bus. Dividing the data lines into more, yet 
narrower, busses would increase the connectivity of the sys- 
tem. However, narrower busses reduce the available 
bandwidth for an individual message, and penalize programs 
that need only a low dimension of connectivity. Instead of 
taking this approach, we achieve both high individual bus 
bandwidth and high connectivity by the use of logical chan- 
nels, as described below. 

Internal to each processor, the communication agent inter- 
faces with the computation agent through four unidirectional 
busses, two in and two out, each with a bandwidth of 40 
MBytes per second. It interfaces with the memory agent via a 
bidirectional bus that can deliver 160 MBytes per second. 

Each bus is complete in the sense that it contains all the 
necessary control lines to transfer data between two adjacent 
cells. This includes the ability of the receiver to provide 
status information to the transmitter, and vice versa. Thus the 
busses are completely independent. For example, there is no 
need to connect XRight, to the same neighbor cell as 
XRightout. This feature is necessary to create, for example, a 
special-purpose hexagonal anay in which each cell is con- 
nected to six neighboring cells, as seen in Figure 6. 

5. Implementation of logical channels 
A logical channel is a unidirectional connection: it can be an 

external connection between neighboring cells, or an internal 
connection between a communication agent and either the 
computation or the memory agent in the same cell. Multiple 
logical channels are time-multiplexed onto a single physical 
bus at word-level granularity. A logical channel is referred to 
as a logical output channel for the transmitter and as a logical 
input channel for the receiver. Each logical input channel has 
a dedicated queue implemented in hardware (see Figure 7 
(b)). The communication agent supports up to twenty logical 
input channels and twenty logical output channels simul- 
tanmusly. 

5.1. Management of logical channels 
Channels are jointly managed by the two end cells. There 

are two phases in managing logical channels-static channel 
allocation and dynamic channel assignment.‘ First, logical 
channels on each cell are statically allocated among the dif- 
ferent physical busses. Before execution begins, the set of 
logical input channels for one cell is divided up among the 
different input directions, thereby creating disjoint groups of 
logical channels for each physical bus. That is. each logical 

I wp 

XL& : 
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.:._ XRight 

II YDown 

Figure 5. Physical busses 

Figure 6. Hexagonal array 

input channel on a cell is allocated either to one of the neigh- 
bor cells or left unallocated so that this cell can use it to 
initiate a message. When a logical input channel is allocated 
to a neighbor cell, that neighbor cell allocates a matching, 
logical output channel. 

Figure 7 shows a possible allocation of logical input chan- 
nels in a 2dimensional array of iWarp cells: the cell shown 
has allocated four logical input channels to its right, left, and 
lower neighbors and two logical input channels to its upper 
neighbor. It has allocated six channels to generate messages. 
Two of those currently directed at the computation agent, for 
systolic communication, two are used for memory com- 
munication, and the remaining two are unused at this point in 
time. Also, this cell has four logical output channels to each 
of its right and upper neighbors, and six logical output chan- 
nels to its left and lower neighbors. It can use these channels 
in any way that it sees fit, as described above. Each cell can 
use up to 20 logical input channels and 20 logical output 
channels at any given point in time. 

For the second phase of dynamic channel assignment, the 
transmitter of each physical bus is responsible for managing 
the logical channels allocated to the bus. The transmitter can 
initiate communication using any of its pre-ahocated free 
logical channels without fist consulting the receiver. This 
design minimizes the time needed to initiate communication. 
More specifically, when a cell wants to connect one of its 
logical input channels with a logical output channel in a 
specific direction, it assigns a free logical output channel from 
the set of channels allocated to it. This assignment is im- 
plemented by linking the logical input channel to the logical 
output channel, via a 20 x 20 logical crossbar in the com- 
munication agent. 
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Figure 7. Logical channels 

5.2. Multiplexing onto a physical bus 
The multiplexing of logical channels over a physical bus is 

designed to maximize utilization, when only one logical chan- 
nel is active. it must be able to take advantage of the full 
bandwidth of the physical bus. For example, the bandwidth 
should not be wasted on trying to send data to a full queue. It 
is undesirable to use schemes which require the receiver to 
supply an ack/nack (acknowledge or not acknowledge) signal 
to the transmitter to indicate whether the transfer is success- 
ful. 

On iWarp. the tmnsmitter keeps a count of the free slots in 
each of the receiver’s queues. With every word it sends along 
a logical channel, the transmitter decrements the f&e space 
counter for the logical channel. Every time the receiver 
removes data from one of its input queues, it informs the 
transmitter with a dequeue signal that contains the index of 
the logical output channel from which a word was read. The 
transmitter then increments the free space counter for its cor- 
responding logical input channel. The queue size of eight 
32-bit words is designed to tolerate the feedback delay so that 
the maximum bandwidth can be used for a single logical 
channel. 

The logical channel manager includes a round robin 
scheduler that multiplexes data from the logical channels over 
the physical bus. To preserve bandwidth, only those logical 
channels that have a non-empty input queue and non-full 
output queue participate in the scheduling decision. That is, 
logical channels that are currently idle do not waste any 
physical bus bandwidth. Consequently, if only one of the 
logical channels allocated to the same bus is active, it can 
utilize the full bandwidth of 40 MBytes/set. of the underlying 
physical bus. 

6. Routing and bandwidth reservation 
The logical channels in the communication agent of an 

iWarp cell are statically divided into two pools. The first 

pool called the resefvution pod. is to implement “path- 
ways” which can be reserved over a long period of time for 
transporting classes of messages with some guaranteed 
bandwidth. The second pool, called the open pool, is to 
implement traditional message passing. For this pool, there is 
no reservation of pathways; the logi.cal channels are dynami- 
cally acquired and released for transporting each message. As 
described in Section 3.2.2. these messages do not hold onto 
resources indefinitely. It is well known that by dedicating a 
pool for such messages. it is possible to guarantee that there is 
no deadlock to Prevent these messages from being delivered. 

Although the usages between the two pools are different, 
they use the same basic hardware mechanism. For example, 
the same hardware is used to mute pathways for the reser- 
vation pool and messages for the open pool. In the following 
we first describe the support for the reservation pool, then 
show briefly how the same mechanism implements the open 
pool. 

6.1. The reservation pool 
Intercell communication using the reservation pool consists 

of two phases: (1) reserving the logical channels for com- 
munication, and (2) sending the data as messages on those 
reserved channels. The reservation is done dynamically by 
setting up “pathways”. This can be likened to a railway 
transportation system: first connect the track segments (logi- 
cal channels) to form a pathway from a source to a destina- 
tion, and then run trains (messages) over the pathway. 

6.1.1. Setting up a pathway 
A puthwuy is a unidirectional connection, built out of logi- 

cal channels, that leads from a source cell to a destination cell. 
Pathways are created using wormhole routing [7,8]. The 
source cell generates a header containing a destination address 
and additional routing information As the header is passed 
along from the source to the destination according to the route 
specified, the logical channels are linked up to build the 
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pathway. It is not necessary for the pathway to be completely 
established before messages over the pathway are sent; the 
sending cell can start sending a message as soon as the path- 
way header leaves the cell. 

6.1%. Pathway markers 
Each data word that is transmitted between cells can carry 

with it a tag. If a tag is present, we call the date word plus tag 
a marker; the absence of a tag indicates a normal data item. 
Markers are recognized by the communication system. There 
are two markers for pathways, the pathway begin marker, 
which includes a data field that carries pathway routing, and 
the pathway end marker. 

6.13. Specifying pathway route 
iWarp uses “street-sign” routing. Pathway begin markers 

have a default cOurse of travel. For example, markers arriving 
on a logical input channel allocated to the XEeft bus default 
to continuing onto a logical output channel leaving via the 
XRight bus, and vice versa Similarly, markers arriving on 
the YUp bus default to continuing onto the YDown bus, and 
vice versa. 

The source cell can change this default course of travel by 
including in the header the addresses of all the cells at which a 
different action is to be taken. There are two possible actions: 
the pathway has either reached the destination, or it has to 
“turn a comer” and head in the specified direction. This is 
analogous to city street navigation where each cell is a street 
intersection. The scheme is to follow the road in the same 
direction until you reach the destination, or make a turn when 
you come to a particular comer. For each comer turned. the 
pathway must include a word in the header containing the cell 
address and the direction to turn in the order in which the 
cells are reached. 

Street-sign routing takes advantage of the underlying topol- 
ogy of the system. By incorporating the concept of a default 
direction, headers can be kept short. A header contains only 
the addresses of those cells where a specific action is to take 
place (i.e., comer turning points and destination). Therefore 
the header takes less time to generate, and fewer routing 
decisions have to be made during the routing. In addition, a 
shorter header means a smaller overhead to the load of the 
communication system. 

6.1.4. Pathway routing by communication agent 
All begin markers arriving at the communication agent are 

matched against a small content-addressable memory, called 
the match CAM. The computation agent can “program” the 
communication agent by loading different values into this 
match CAM. 

One of the uses of the match CAM is pathway routing. At 
initialization time, the run-time system on each cell preloads 
the match CAM with the address of this cell. Upon receiving 
a pathway begin marker, the communication agent presents 
the data field of the marker to the match CAM. If the marker 
does not match. the pathway continues in the default diiec- 
tion. If the marker matches, the current cell is either the 
destination, or the pathway must turn a comer. The infor- 
mation on the action taken is encoded in the marker. If the 
destination is reached, the computation agent is notified of the 
arrival of a new pathway. If a comer turning operation is 
specified, part of the matching marker indicates the new 
direction. The communication agent discards this marker and 
converts the next word (i.e.. the destination or the next comer 
at which to turn) into a new pathway begin marker and directs 
the pathway to follow the specified direction. 

The pathway header also indicates the reservation pool from 
which the f%e logical channel should be drawn. Therefore, to 
continue a pathway in a certain direction, the communication 
agent must assign a free logical output channel among those 
belonging to the reservation pool and allocated to the 
specified direction. If such an outgoing logical channel is not 
availabIe, then this request is blocked and repeated until a 
logical channel becomes available. 

If a pathway header reaches the last cell of the array without 
reaching its destination, then the communication system on 
this cell can notice the situation and take appropriate action, 
for example, report an error or discard the data. However, if 
the topology of the system is a ring or a torus, there is no 
“last” cell. One way to avoid the “Flying Dutchman” 
problem (i.e., the pathway header circulating around without 
ever reaching a destination) is to set up the match CAM of 
each cell to detect pathways originated by the cell itself. 

6.1.5. Dismantling a pathway 
Pathways are long-lived in the sense that they exist until 

explicitly taken down. To dismantle a pathway, i.e., to free 
up the resources reserved by this pathway, the source cell 
sends a pathway end marker over the pathway. As this 
marker is seen by each cell along the pathway, the logical 
channels used in each cell are returned to the set of free 
channels. 

6.1.6. Joint cells and bandwidth reservation via pathways 
A cell that is both a source and destination cell of two or 

more pathways is called a joint cell for the pathways. In 
Figure 8, Cells 1,3 and 6 are joint cells. 

At a joint cell, the computation agent can configure the 
communication agent to fink together a pair of incoming and 
outgoing pathways. The output pathway is called the default 
output pathway for the input pathway. Any message arriving 
on the input pathway which is not intended for the cell is 
automatically forwarded by the communication agent to the 
default outgoing pathway. However, when a message des- 
tined for the joint cell arrives, the communication agent will 
notify the computation agent to process or route the message. 
Therefore messages can be sent over a single pathway, or 
multiple pathways via joint cells. 

As stated earlier, pathways are built to reserve bandwidth 
for classes of messages which are to be sent over the path- 
ways. In Figure 8, there is one pathway connecting Cell 0 to 
Cell 1. and another one connecting Cell 1 to Cell 5. Over 
these two pathways two classes of messages can be sent 
simultaneously, one from .Cell 0 to Cell 1 and one from Cell 1 
to Cell 5. Via the joint cell (i.e., Cell 1) messages from Cell 0 
to Cell 5 can be sent over the two pathways. These two 
pathways reserve a set of logical channels solely for com- 
munication between cells 0, 1 and 5. Conversely. messages 
designated to use these pathways will not use other resources. 
end as a result will not block out other messages which 
critically depend on the other resources. For example, if a 
message from Cell 0 to Cell 5 passes through Cell 1 in Figure 
8. then Cell 1 cannot send messages over the pathway from 
Cell 1 to Cell 5 until the ongoing message is complete. 

Figure 8 also illustrates the use of the FIFO buffers in the 
communication agent to implement message queues. These 
FIFO buffers are associated with logical channels, and reserv- 
ing the channels links the buffers together. So if Cell 4 wanta 
to send a message to Cell 7. the buffers in all intermediate 
cells implement a single message queue for this communica- 
tion. 
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Figure 8. Pathways and joint cells examples 

6.1.7. Message routing over pathways 
A message header contains the address of the destination 

cell and information needed to route the message over a given 
set of pathways. For each joint cell at which the message’s 
route is to depart from the default, the header must include the 
cell address and information to identify the intended output 
pathway. 

In the simple case of sending a message over a single 
pathway. the destination of a message is the destination of the 
pathway. The message simply follows the twists and turns of 
the pathway route until the destination is reached 

Routing messages over multiple pathways requires special 
attention at joint cells. When the header of a message arrives 
at a joint cell, the cell performs one of the following three 
actions: 

1. Forwarding the message by hardware. If the 
destination in the header does not match in the 
match CAM, the communication agent forwards 
the message onto the default output pathway. 

2. Receiving the message. If the destination in the 
header matches in the match CAM. the com- 
munication agent splits the incoming pathway 
from the default outgoing pathway, and notifies 
the computation agent. After receiving the 
notification, the computation agent reads the 
message header, recognizes that the message is 
intended for the cell, and starts processing the 
message. After the message is consumed, the 
computation agent restores the link between the 
incoming pathway and the default outgoing 
pathway. 

3.Routing the message by sojlware. Continuing 
onto a pathway other than the default requires 
software intervention. As above, the com- 
munication agent notifies the computation agent 
that the address on the header matches the 

cell’s, the computation agent then interprets the 
header and instructs the communication agent to 
direct the message onto a specific outgoing 
pathway. 

In summary, routing of messages over reserved pathways is 
not completely supported in hardware, unless the pathways 
form a chain so that the default outgoing pathway can be take 
at every joint cell. If another outgoing pathway other than the 
default one is desired, the computalbn agent at the joint cell 
must serve as a smart router. The computation agent can, in 
fact, perform arbitrarily complex computation on the begin- 
ning of the message before forwarding the rest of the message 
onto another cell. The usefulness of this scheme is illustrated 
by the GetRow and PutRow examples in Section 3.1.2. 

6.2. The open pool 
The open pool is reserved for message passing. Data sent 

using the open pool of logical channels are encapsulated as 
routing messages. Each of these messages has its own rout- 
ing information in the header. These messages are routed in a 
similar manner as pathways; therefore the routing is com- 
pletely supported in hardware. To tie routing hardware, these 
messages are identical to pathways, except that the logical 
channels are assigned from among the open pool instead of 
the reservation pool. 

7. Communication agent interaction with 
computation and memory agents 

There are two types of interaction between the communica- 
tion agent and the rest of the system: data and control. Data 
in a message can be accessed directly by the computation 
agent or it can be spooled through memory by the memory 
agent. On the control side, the computation agent informs the 
communication agent of the events it is interested in and the 
communication agent notifies the computation agent when an 
event occurs. In addition, the computation agent can redirect 
messages by changing the connection of the pathways in the 
communication agent’s logical crossbar. 
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7.1. Data interface to computation agent 
In the computation agent’s register address space there are 

special locations called systoric @es. There are two input 
gates and two output gates. Under program control, these 
gates can be bound to different logical channels in the com- 
munication agent. Reading from an input gate corresponds to 
receiving data from the message queue associated with the 
logical channel bound to the gate. Similarly, writing to an 
output gate corresponds to sending data to the queue. 

Since these gates are in the processor’s register space, an 
input gate can be used as a source operand of an instruction, 
and an output gate can be used as a result register of an 
instruction Any read of an input gate implies an input opera- 
tion, and any write to sn output gate implies an output opera- 
tion Specifying input and output instructions implicitly 
through the use of these special registers greatly reduces the 
instruction word width. For example, a three-address arith- 
metic operation using input and output gates as operands will 
imply two input operations. the arithmetic operation itself and 
one output operation. If any of the input queues is empty or if 
the output queue is full, the instruction execution is stalled 
until the condition of the queues changes. In the long instruc- 
tion word of iWarp, all four systolic gates may be used in one 
instruction. The iWarp hardware can execute all four 
input/output operations in two 50 ns clock cycles. 

Through the systolic gates, data can be transferred between 
the computation and communication agents at the rate of 160 
MBytes per second. As computation can be specified in the 
same (long) instruction word of the machine. this high com- 
munication rate can be accompanied by an equally impressive 
computation rate. The additional data operands supplied by 
the input and output gates help reduce the memory bottleneck 
and increase the utilization of the functional units. Using 
systolic communication requires more programming effort to 
ensure that cells do not stall frequently on empty or full 
message queues; however, a well-designed systolic algorithm 
can be extremely efficient. 

7.2. Data interface to the memory agent 
The memory agent transfers, or spools, data directly from 

the message queues in the communication agent into consecu- 
tive locations in the memory, and vice versa. It is like a DMA 
device, with special hardware to keep the state and to se- 
quence the spooling operation. The memory agent steals 
memory and computation cycles when spooling data in or out 
of memory. The memory agent is useful for memory com- 
munication transfers as well as for simulating large queues for 
systolic communication by buffering data in memory. 

There are eight 64-bit spooling gates that can be dynami- 
cally reconfigured for either input or output and can he hound 
to the logical channels in the communication agent. The 
bandwidth of the memory bus is 160 MBytes/second. while 
each physical bus within the communication agent has a 
bandwidth of only 40 MBytes/second. Spooling one message 
queue at peak rate consumes one quarter of the total memory 
and computation bandwidth. The memory agent can spool 
eight different message queues “concurrently” by interleav- 
ing the transfers at double word granularity over the 64-bit 
memory bus. The ability of the spooling unit to dynamically 
select the next logical channel on a word by word basis is 
especially useful when multiple messages are being spooled 
into (or out of) memory. It is likely that the data words of the 
messages will arrive at varying rates, either because of con- 
tention on the physical busses or because systolic messages 

come directly from the computation agent. Dynamically 
selecting the next spool ensures that cell memory bus 
bandwidth is never wasted. 

Besides using a counter based termination condition, as in 
the case of DMA, spooling to memory can also terminate on 
receiving a message end marker. This is important for spool- 
ing data that was generated by systolic communication, be- 
cause the number of words in a message may not be known in 
advance. Since spooled messages can be of arbitrary size. a 
mechanism is needed to ensure that a spooled message does 
not overflow its buffer. The current spool address is checked 
against an address limit register to prevent this from happen- 
ing. 

Once spooled to memory, the computation agent can access 
the data randomly using regular memory operations. 
Similarly, it can fist prepare the message in memory before 
requesting the memory agent to spool out the message. This 
implements memory communication. 

The computation agent can also access data spooled in 
memory in a FIFO manner as if the data just arrived over a 
logical channel systolically. This is achieved by connecting a 
systolic input gate to a logical input channel that is bound to 
an output spooling gate. As the computation agent reads data 
from the systolic input gate, data are spooled from memory 
and buffered in the queue associated with the logical channel. 
This allows the computation agent to use implicit input opera- 
tions to consume the data that were buffered in memory. 
Simibuly, the data generated by the program can first be 
spooled into memory from an outgoing message queue by 
connecting an outgoing systolic gate to an input spooling gate. 

It is not necessary to wait for the entire message to be 
received before it can be spooled out as described above. 
Thus, as the tail buffer of the message is spooled in, the head 
buffer can be spooled out to the computation agent. Thii 
mechanism of buffering through memory extends the length 
of the message queues in the comrnunicafion agent, at a cost 
of one clock cycle per word. This extension in memory is 
necessary for those programs that will deadlock if the queues 
at the receiving cell are too short [13]. Also. a long queue 
reduces stalling. Since a spooled message can be read from 
the systolic gates in the same manner as a message received 
directly from another cell, the decision to buffer a message in 
memory can be delayed until run time. 

7.3. Control interface to the computation agent 
The computation agent can inform the comtuunication agent 

of events that are of interest by storing the appropriate infor- 
mation into the communication agent’s match CAM. The 
communication agent notifies the computation agent of these 
events when they take place by storing the information in 
status registers. 

Sample events that are of interest to the computation agent 
are: 

l Arrival of a pathway begin marker 

l Arrival of a pathway end marker 

l Arrival of a message begin marker 

l Arrival of a message end marker 

l Arrival of an application marker 
Some of these events can be registered on a per-logical 

channel basis; for others, they are either registered for all 
logical channels or not at all. An application marker is a 
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tagged data word that can be found anywhere within a mes- 
sage. It is used by the application program to mark those 
points within a message that demand special attention by the 
computation agent. 

When an event occurs for which the computation agent 
wishes to be notified, the communication agent Posts this 
event by setting the appropriate status register. These 
registers are monitored by the master sequencer of the com- 
putation agent and result in a control transfer to an appropriate 
service routine. 

The computation agent can also instruct the communication 
agent to modify the connections of existing pathways. One 
example is the joining of two pathways, as discussed in Sec- 
tion 6.1.6, or to route around a faulty cell. 

8. Communication latency summary 
When a program creates a pathway, the originating cell’s 

computation agent asks the local communication agent for a 
logical channel in the direction of the destination. If a logical 
channel is available, this request takes 150 ns to complete. 
Next, the computation agent must generate and send a path- 
way begin marker, which takes 100 11s. The creation of 
additional addresses for corner turning (if required) takes 50 
ns per address. At this Point, the computation agent can send 
messages on the pathway. Tearing down a pathway requires 
that a pathway end marker be generated and sent; this takes 
100 ns. Note, however, that the above numbers assume that 
the relevant data (i.e., data field of begin marker, additional 
addresses for corner turning, etc.) are already in registers. In 
practice, the run-time system imposes additional overheads 
such as retrieving values from a configuration table, checking 
for valid cell addresses, and updating various tables. 

The communication agent of every intermediate cell in the 
pathway must decide if the incoming pathway begin marker 
matches on this cell or must be forwarded. If the marker does 
not match, it will take 200 11s to forward to the next cell. If 
the marker matches for comer turning, it will take 250 ns to 
discard the current marker, convert the next data word into a 
new marker and forward the new marker to the next cell. 
Joining two pathways is inexpensive; after the join instruction 
is issued, it will take 100 ns for the first data word to leave the 
joint cell for the next cell. Once the pathways are joined 
together, there is no additional latency involved for data pass- 
ing through a joint cell. 

Generating a message begin marker is fast because all the 
necessary resources are reserved at the time when the under- 
lying pathway was created. The message begin marker and 
the message end marker are generated in 100 ns each, This 
time does not include any run-time system overhead to look 
up the destination address in the message header, or to main- 
tain bookkeeping tables. The latency of a message header is 
the same as the latency of a pathway header (200 ns, plus 50 
ns for comer turning) if the message is routed by the com- 
munication agent. 

9. Conclusions 
An iWarp system is a distributed memory machine, support- 

ing two very different styles of communication, systolic and 
memory communication, fully and efficiently. Housed in one 
system, the two styles of communication can be easily inter- 
mixed to adapt to the application needs. 

The iWarp communication architecture Provides a wealth of 

communication services. As a systolic array, iWarp allows 
data to stream through the cells at high data rates, with each 
cell cooperating at word-level granularity. This basic systolic 
functionality is emiched by a set of features that simplify 
programming without reducing efficiency. Processors can 
communicate with non-neighboring cells directly without in- 
volving Programs at intervening cells. An iWarp system can 
efficiently implement intercell communication topologies 
which are quite different from that of the hardware inter- 
connect in the system. This capability is also useful in routing 
data around faults and congestion. The size of input. queues 
can be extended indefiitely by sPooling through memory, a 
decision that can be made dynamically and is totally trans- 
parent to the Program. By redirecting data messages, a cell 
can have messages or portions of them forwarded to an ap 
propriate destination automatically. This is especially useful 
for overlapping the input/output phase of a systolic algorithm 
with computation. 

As a message passing machine, iWarp routes mess.ages be- 
tween cells efficiently using wormhole routing. Its *‘street- 
sign” routing minimizes routing overhead by imposing a 
default direction at each hop of the routing. On iWarp, it is 
possible to reserve communication bandwidth for specific 
classes of messages. This management of the bandwidth is 
important to implement system functions such as monitoring. 
iWarp can implement “door-to-door” delivery by allowing 
data to be stored into the user’s data space directly without 
buffering through system space. 

This myriad of communication functionalities is provided 
using only a few communication mechanisms in iWarp. The 
two unique iWarp architectural features are logical channels 
and Program access to the communication system. Having 
only a small number of basic new ideas keeps the design 
simple and easily optimized, and more itnPortantiy. makes it 
Possible to integrate the communication agent with the com- 
putation and memory agents in a single VLSI component. 

The iWarp hardware supports a high communication 
bandwidth, and more importantly, the iWarp architecture can 
translate this raw data rate into a high communication rate 
between programs through the various layers of communica- 
tion abstraction. Fist, iWarp has a Peak communication 
bandwidth of 320 MBytes Per second; the bandwidth for each 
bus is 40 MBytes per second This bandwidth can be fully 
utilized by one logical channel if it is the only active channel. 
That is, reserving a logical channel only guarantees that the 
bandwidth is available when needed. Dedicated communica- 
tion hardware routes the messages through the system with a 
minimum latency. To realize the efficiency at the program 
level, iWarp has a unique, high bandwidth interface between 
communication and computation. Data can be spooled into 
memory at a rate of 160 MBytes Per second, or four messages 
can be accessed directly via long instructions at a rate of 40 
Mbytes per second. This high bandwidth is made Possible by 
the integration of the communication and computation units 
into a single component. 

The complete iWarp communication architecture is 
designed to deliver a high effective Program communication 
rate to both systolic and memory communication models. 
Integrating this communication capability with a computation 
engine that delivers 20 MFLGPS and 20 MIPS into a single 
component, iWarp is a Powerful building block for large-scale 
distributed memory machines. 
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