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Abstract 

This paper studies the relationship between parallel 
computation cost and communication cost for  perform- 
ing divide-and-conquer (D&C) computations on a par- 
allel system of p processors. The parallel computation 
cost is the maximal number of the D&C nodes that any 
processor in  the parallel system may expand, whereas 
the communication cost is the total number of cross 
nodes. A cross node is a node which is generated b y  
one processor but expanded b y  another processor. A 
new scheduling algorithm is proposed, whose parallel 
computation cost and communication cost are at most 
[N/p1  and pdh, respectively, for any D&C computa- 
tion tree with N nodes, height h,  and degree d .  Also, 
lower bounds on the communication cost are derived. 
In  particular, it is shown that for each scheduling al- 
gorithm and for each positive EC < l, which can be 
arbitrarily close to  0, there are values of N ,  h, d ,  p ,  
and q(> O), for which i f  the parallel computation cost 
is between N l p  (the minimum) and (1 + q ) N / p ,  then 
the communication cost must be at least (1 - E C )  .pdh .  
Therefore, the proposed scheduling algorithm is opti- 
mal with respect to  the communication cost, since the 
parallel computation cost of the algorithm is near op- 
timal. 

1 Introduction 

Divide and conquer (D&C) is a common compu- 
tation paradigm, in which the solution to a problem 
is obtained by solving subproblems recursively. Ex- 
amples of D&C computations include various sorting 
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methods such as quick sort [6], computational geome- 
try procedures such as convex hull calculation [12], AI 
search heuristics such as constraint satisfaction tech- 
niques [5], adaptive data classification procedures such 
as generation and maintenance of quadtrees [13], and 
numerical methods such as multigrid algorithms [lo] 
for solving partial differential equations. 

A D&C computation can be viewed as a process 
of expanding and shrinking a tree. Each node in the 
tree corresponds to a problem instance, and children 
of the node correspond to its subproblems. During 
the computation, each internal (non-leaf) node goes 
through two phases. The first phase is the divide phase 
during which the problem instance associated with the 
node is divided into subproblems. The second phase 
is the combine phase during which the solution of the 
problem instance associated with the node is derived 
by combining solutions of the subproblems associated 
with the node's children. After its creation each leaf 
will perform some computation and return the results 
to its parent. At a given time, nodes on a wavefront 
that cuts across all paths from the root to leaves can 
be active in performing divide, combine, or compute 
operations. Along each path the wavefront first moves 
down from the root to its leaf and then up from the 
leaf to the root. 

At first glance, one might think that it should be 
straightforward to perform D&C in parallel, because 
nodes on the wavefront can all be processed indepen- 
dently. However, if one wants to achieve good load 
balancing between the processors, then parallelizing 
D&C becomes nontrivial. In fact, doing efficient D&C 
on any real parallel machine has been a major chal- 
lenge to researchers [3, 4, 9, 141 for many years. 

The difficulties are due to the fact that many D&C 
computations are highly dynamic in the sense that 
these computations are data-dependent. During com- 
putation, a problem instance can be expanded into 
any number of subproblems depending on the data 
that have been computed so far. In fact, the trees of 
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many D&C computations can be expected to be sparse 
and irregular, and as a result, load balancing must be 
adaptive to the tree structure and must be done dy- 
namically at run time. This implies that coinputation 
loads need to  be moved around between processors 
during computation. The challenge is then to devise 
efficient scheduling algorithms which can achieve good 
load balancing while minimizing the communication 
cost for moving computations around. 

In general there is a tradeoff between balancing 
computation loads and minimizing communication 
costs. The results of this paper quantify this tradeoff. 
In particular, the paper establishes lower bounds on 
the communication cost for any scheduling algorithm 
based on how well it performs 1oa.d ba,la.ncing. 

2 Summary of Results of This Paper 

2.1 Definitions and Notation 

The tree of a D&C computation is ca.lled a ( N ,  h,, d ) -  
tree, if 

0 N is the number of nodes in the tree, 

h is the height of the tree, and 

0 d is the maximal number of children of a node. 
(We assume that d is at least 2,  to allow pa.ra.lle1 
processing of the tree.) 

A node is said to be at  tree level i if it is the i-th node 
on the path from the root to the node. Therefore, 
the root is a t  level 1,  and the height of the tree is the 
maximal level number. 

For the parallel system which will ca.rry out the 
D&C computation, we a.ssume that 

0 p is the number of processors in the system, a,nd 

0 it takes one time step for a processor to expand 
a node, i.e., to perform the divide operation for 
an internal node, or to perform the compute op- 
eration for a leaf node. For simplicity, we a.ssume 
that a processor takes no time to perform a. com- 
bine operation. 

When a node is expanded, zero or more children 
may be generated. More precisely, if a. node does not 
generate any children, the node is a. leaf; if a node 
generates one or more (up to d )  children, the node is 
an  internal node. Each newly genera.t,ed node will i n  
turn be expa.nded by some processor i n  t,he fut.ure. A 

frontier node is a node which has been generated but 
has not been expanded. 

A scheduling algorithm for a D&C computation 
schedules nodes (i.e., frontier nodes) on processors for 
expansion. We assume that scheduling algorithms 
cannot "lookahead" . This non-lookahead assump- 
tion is reasonable when dealing with irregular D&C 
trees. In this type of tree, the number of children a 
parent may have (if any) is typically data-dependent 
and is therefore not known a priori. 

The parallel computation cost T A ( H )  of a schedul- 
ing algorithm A for a D&C computation tree H is 
the maximum number of the nodes that any processor 
may expand. Since there are N nodes and p proces- 
sors, a lower bound on T A ( H )  is Tmin = [ N / p ] .  The 
parallel computation cost TA of algorithm A is defined 
as the maximum T A ( H )  for all ( N ,  h ,  d)-trees H .  

The communication cost CA(H)  of a scheduling al- 
gorithm A for a D&C computation tree H is the total 
number of cross nodes. A cross node is a node which 
is generated by one processor but expanded by an- 
other processor. Note that the processor expanding 
a cross node needs to receive information from the 
processor generating the node. Therefore, CA(H)  is 
a reasonable measure for capturing the interprocessor 
communication cost in performing the divide phase of 
all the internal nodes. (A similar definition of commu- 
nication cost is used by Papadimitriou and Ullman in 
[ll].) The communication cost CA of algorithm A is 
defined as the maximum CA(H)  for all ( N ,  h ,  d)-trees 
H .  

2.2 Main Results 

Theorem 1 For each scheduling algorithm A f o r  a 
parallel system of p processors, for  each integerp', 0 < 
p' 5 p ,  and for each N I  h ,  and d with the following 
two restrictions, 

S1. N > 3pd2h, and 

S2. h > [logd NI + [logdpdhl + 1, 

there exists some ( N ,  h ,  d)-tree H for  which at least 
one of the following two properties is true: 

PI.  the parallel computation cost of the algorithm is 
TA(H) 2 N'/p';  

P2. the communication cost of the algorithm is 
Cd(H) 2 c', 

where N' = N - 3pd2h, C' = p ' ~ ,  K = ( d  - l )h ' ,  and 
h' = h - [logd NI - [logdpdh] - 1. 
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Many DScC computations are expected to satisfy 
restrictions Sl  and S2. Since N is usually an expo- 
nential function of h ,  restriction S1 is easily satisfied 
in these cases. Restriction S2 roughly requires that 
N < dh-2/ph .  If a tree is perfectly balanced and 
each node has exactly d children, then N would be 
C3(dh-') instead. A perfectly balanced tree is easy 
for load balancing because the subtrees of each node 
have the same computation load. Restrictions S1 and 
S2 basically capture those interesting D&C computa- 
tions with irregular trees. This class of D&C com- 
putations are exactly those for which one finds it dif- 
ficult to achieve good load balancing without paying 
much in communication overheads. The lower bound 
on C A ( H ) ,  stated in P2 of the theorem, provides an 
explanation of why this must be the case. 

The two properties P1 and P2 in  Theorem 1 can be 
expressed in terms of the quantities N ,  h ,  d (associated 
with the DScC tree) and p (associated with the parallel 
system) as follows. One can check that N' > ( 1 - t ~ ) N  
and h' 2 ( l - € h ) h  for each positive E N  5 1 and Eh 5 1 ,  
provided that h 2 log, Ph+logd 3+6-10gd E N  a.nd 2 

then $& 2 e; if $& 2 N ,  then chh 2 logdN + 

h' 2 (1 - 6h)h; if N 2 e, then N' 2 (1 - C N ) N . )  
From this and the fact that N' < N and h' < h ,  
we note that N' and h' approach N and h respec- 
tively, when both E N  and Eh approa.ch 0. Therefore, 
P1 and P2 in Theorem 1 become T . ( H )  = Q ( N / p )  
and C A ( H )  = R(pdh)  for large h,, when p' is close to 
p .  Furthermore, we ca.n slightly change the theorem 
as Corollary 1.  

Eh 

3pdzh (Note: if h 2 210gd ph+Iogd 3+6-10gd (N 
N L  C N .  c h  1 

logdpdh + 3 2 NI + rlogdpdh] + 1 = h - h', i.e., 

Corollary 1 For each scheduling algorithm for a par- 
allel system of p processors, f o r  each positive EC < 1, 
which can be arbitrarily close to 0, there are values 
of N ,  h,  d ,  p ,  and q(> 0 ) ,  f o r  which if the parallel 
computation cost is between and (1 + ET): ,  then 
t h e  communication cost must be at least (1 - E C ) C ~ ,  
where C, = pdh. 

Proof. Let p 2 $ and d 2 e. Then, let ET = 1. 
2P And, let N and h be in the ra.nge as shown above with 

6 h  = and E N  = $. One can check that  ET)! 5 

the communication cost must be a.t 1ea.st ( 1  - tc)Cu. 
0 

Theorem 1 also implies an important tradeoff re- 
sult: if a scheduling algorithm wants to achieve a good 
load balancing by parallel processing, then it must pay 
a high price in communication cost. We can express 
the tradeoff between TA and CA explicitly by show- 
ing a lower bound on their product: TA . (CA + .). 
If (p* - 1). 5 CA < p*., where 0 < p* 5 p ,  then 
by Theorem 1, TA must be at  least NI/,*. There- 

that because of TA 2 N l p  > N ' / p  this tradeoff is 
also satisfied when CA 2 p ~ .  This tradeoff result is 
summarized in the following corollary. 

Corollary 2 For any scheduling algorithm A for a 
parallel system of p processors, for all N ,  h ,  and d 
with restrictions S1 and S2 as defined in Theorem 1, 

fore, T A  . (CA + .) > ( N ' / p * )  . p * %  = N' . .. Note 

TA . (CA + .) 2 N ' .  n, 

where N' and K: are defined in Theorem 1. 

Theorem 2 A scheduling algorithm A can be devised 
to have the property that the parallel computation cost 
as TA = Tmin and the communication cost as CA 5 
Cu(= pdh)  for any ( N ,  h ,  d)-tree. 

The algorithm satisfying Theorem 2 has the mini- 
mum parallel computation cost. By Corollary 1, the 
algorithm is optimal with respect to the communiw 
tion cost, since the parallel computation cost of the 
algorithm is near optimal. These results also imply 
that the lower bound on TA . (CA + K )  in Corollary 2 
is tight when both E N  and Eh are arbitrarily close to 
0. 

Note that Theorems 1 and 2 are so formulated 
that their results are system-independent. That is, 
the results are independent from the interconnection 
topology of the processors and various control over- 
heads such as data structure maintenance and read- 
ing/writing messages. Therefore, our upper and lower 
bounds on CA are intrinsic to any parallel system. 
These bounds give insights into actual communication 
cost in a real implementation, but exactly how they 
are related to the actual cost is a separate matter de- 
pending on the implementation (see [15]). 

Section 3 describes the algorithm of Theorem 2. 
Section 4 presents a simplified version of Theorem 1 
and its proof to help the reading of this paper. A 
complete proof of Theorem 1 is given in Section 5 .  

2.3 Relation to Past Work 

There have been several approaches in performing 
parallel D&C. A simple approach (e.g., in [2]) is to 
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expand all the nodes above a fixed level on one pro- 
cessor and then distribute nodes at  this level to other 
processors. Load balancing would be done poorly in 
this approach when the tree is irregular. Another ap- 
proach [14] is to distribute generated nodes, and to 
have each processor perform load balancing based on 
load status information from its neighbor processors. 
For this scheme, the communication cost ca.n be very 
high in tlie worst case. 

Recently, some researchers have ma.de efforts to re- 
duce communication overhead. A popular approach 
[4, 9, 161 is based on the “donate-highest-subtree” 
strategy, in  which an idle processor will be given fron- 
tier nodes as near to the root as possible. Since a 
subtree rooted near the top usually has many nodes 
and these nodes can all be expanded locally, this strat- 
egy tends to reduce the amount of interprocessor com- 
munication. Ferguson and Korf [3] presented a D&C 
scheme with several processors scheduled first to a 
node and then to their children. The idea behind their 
scheme is also that of distributing front,ier nodes near 
the root to idle processors. 

Although the methods described in the previous 
pa.ragraph all attempt to reduce communica.tion over- 
head, they do not use global informa.tion to ba.lance 
the 1oa.d. It turns out that the communication cost 
for these methods can still be high in the worst case. 
For example, we estimate that the communication cost 
is O(dh’”gdP) for Ferguson and Kerf's scheme, and is 
O(min(p2h, pdh’)) for the scheme in [4] with round- 
robin scheduling. 

In contrast, the communica,tioii cost for the 
scheduling algorithm of this paper (Section 3) is as 
low as O(pdh) (Theorem 2). This is partly due to tlie 
fact that our algorithm is able to ma.ke effective use of 
global information (i.e., “global pool” in Section 3). 

Most importantly, we note that none of the previous 
work has any lower bound results on the communica- 
tion cost for parallel D&C computations. It appears 
that our lower bounds in Theorem 1 and Corollaries 1 
and 2 are the first lower bound results for those DStC 
computations whose tree structures are dynamic in the 
sense that the tree structure is determined only at run 
time. Previous results on computation and coinmuni- 
cation cost tradeoffs such as those in  [7, 8, 111 deal with 
only static computation graphs, whose topologies are 
known before the computation st.arts. 

3 A Scheduling Algorithm and Upper 
Bounds 

This section describes a new scheduling algorithm 
which can achieve the upper bounds in Theorem 2 
for both parallel computation cost and communication 
cost. The bounds hold for any D&C computation, i.e., 
for any ( N ,  h, d)-tree no matter how irregular it is. 

Proposed Scheduling Algorithm 

The scheduling algorithm uses a data structure, 
called a Global Pool (abbr. GP),  to keep track of 
frontier nodes at  a particular tree level which have 
not been taken by any processor for expansion. This 
level, identified by a variable gl,  has the property that 
nodes at  higher levels have all been taken by proces- 
sors. Every processor will try to take a node from 
the G P  to work on whenever it becomes idle. For the 
proof of Theorem 2, it suffices to assume that the GP  
is maintained by some single processor. (See [15] for 
a distributed scheme where the G P  is maintained by 
multiple processors.) 

Initially, the G P  contains only the root and the 
value of gl is one. The G P  becomes empty when all of 
its nodes at  level gl have been taken by the processors. 
At this moment, all the processors are requested to 
send in their frontier nodes at level gl + 1 in the next 
time step when all the nodes a t  level g1+ 1 have been 
generated. Then the G P  is filled with this set of new 
nodes, and gl is increased by one. This process is 
repeated until all the nodes have been expanded. 

The key idea of this algorithm is what each pro- 
cessor will do after it has taken a node from the GP. 
The processor will do a depth-first traversal. Conse- 
quently] the processor can exhaust all possible work 
locally before asking for a new node from the GP. As 
a result, we can prove (below) that the communica- 
tion cost can be as low as C,. While not related to 
parallel computation cost and communication cost, an 
important advantage of this local depth-first strategy 
is that it uses the minimum amount of memory. 

In essence the scheduling algorithm described here 
uses a breadth-first scheme to distribute big chunks 
of computations to processors, and has each processor 
after receiving a computation follow the depth-first 
strategy locally. Therefore, the algorithm is a hybrid 
method, which interestingly will do a purely depth- 
first traversal of the tree in the case that only one 
processor is used. 

Suppose that we define the parallel computaiion 
time to be the time (in terms of number of time steps) 
when the last node is expanded by a processor. Then 
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the parallel computation time of the algorithm de- 
scribed here is at  most [ N / p  + h l .  To see this, we 
note that some processors may become idle only when 
the number of nodes in the GP is smaller than the 
number of idle processors. In the worst case all the p 
processors may become idle at the end of some time 
step, but at  this time there is only one node in the GP. 
Thus, in the next time step, as many as p - 1 proces- 
sors may be idle. This situation can happen a t  most 
h times. Therefore, in the entire D&C computation, 
additional h(p  - 1 )  nodes could have been expanded 
if there were no idle processors a t  any time step. This 
implies that the parallel computation time is at  most 

Note that parallel computation time defined in the 
previous paragraph is different from parallel compu- 
tation cost defined in Section 2.1. Being able to take 
into account processor waiting time induced by inter- 
node dependency, parallel computation time may be 
of more practical interest than parallel computation 
cost. 

However, to prove Theorem 2, we need to establish 
an upper bound on the parallel computation cost of 
the algorithm. We will do this and also establish an 
upper bound on the communication cost of the algo- 
rithm. 
Proof of Theorem 2. To achieve the [ N / p l  up- 
per bound on parallel computation cost, we will need 
to add some fair scheduling feature to the algorithm 
described above. Whenever the number of nodes in 
the GP is smaller than the number of idle processors, 
we will select the active processors for the next time 
step from all the p processors in a. fair way. That is, 
processors take turn to become active using a round- 
robin scheme. This ensures at  the end of any time 
step that the total number of nodes expanded by a 
processor so far will not exceed that expanded by any 
other processor by more than one. Thus when all the 
N nodes are expanded, each processor will have ex- 
panded at  most [ N / p 1 .  This proves that the parallel 
computation cost of the scheduling algorithm with the 
fair scheduling feature is at most [ N / p 1 .  

The communication cost of the algorithm is at  most 
the number of frontier nodes entering the GP, as this 
represents the only interprocessor communication ac- 
tivity for the entire algorithm. Since by using depth- 
first search each processor has at most d local nodes at  
each level (as illustrated in Figure l), the GP can col- 
lect at  most p d  nodes each time that g l  increases. This 
will happen a t  most h times, so the total number of 
nodes entering the GP is bounded above by C, = pdh.  
0 

[ ( N  + h(P - W P 1  I TNlP + h1. 

:frontier node r/ 

Figure 1: At most d frontier nodes at each level on a 
processor ( d  = 3) .  

Note that in a practical implementation, the fair 
scheduling feature may not be used since minimiz- 
ing parallel computation cost may not be important. 
Without the fair scheduling feature, the parallel com- 
putation cost would become [ N / p +  h1. However, the 
communication cost can be reduced to p(d  - l ) h ,  if a 
processor right after expanding a node will schedule 
one child, if any, of the node for expansion at the next 
time step. 

The scheduling algorithm described in this section 
is being used as a basis for developing a parallel pro- 
gramming model for D&C computations. To obtain 
practical insights, we plan to implement a program- 
ming system based on the model on the 26-host Nec- 
tar network system [l] developed at Carnegie Mellon 
University. 

4 A Simplified Version of Theorem 1 

This section presents Theorem 3 (see below), which 
is a simplified version of Theorem 1 dealing with only 
two processors. A relatively simple proof of Theorem 
3 is given. This simple proof captures the essence of a 
more complicated proof of Theorem 1 given in Section 
5. It is advised that the reader read this simple proof 
first to understand the ideas. 

Theorem 3 For each scheduling algorithm A for a 
parallel system of two processors, f o r  each N ,  h ,  and 
d with the followang three restrictions, 

si. N > 3dh, 

s2. h > [log, NI + 2, and 
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S 3 .  h - [lo& NI - 2 is an even integer, 

there exists some (N, h ,  d)-tree H for  which at least 
one of the following two properties is true: 

Q1. the parallel computation cost of Ihe algorithm is 
T d ( H )  2 N - 3dh,; 

Q2. the communication cost of the algorithm is 
C d ( H )  >_ h’(d - I ) ,  

where h’ = ( h  - [lo& N ]  - 2)/2. 

Note that restrictions S1 and S2 correspond to 
those in Theorem 1 .  Restriction S3 is for a minor 
technical convenience, namely, ensuring that h’ an in- 
teger. 

Theorem 3 implies, for example, that if the com- 
munication cost is small (in the sense t1ia.t Q2 does 
not hold), then the parallel computation cost must be 
large (in the sense that Q1 holds). In pr t icular ,  if 
C a ( H )  < h’(d - 1) and if 3dh << N ,  then the parallel 
computa.tion cost will be close to N .  

Proof of Theorem 3. Suppose that we a.re given a 
scheduling algorithm A for performing a D&C compu- 
tation on processors PI and P2. For algorithm A,  we 
will prove the existence of a (IV, h ,  d)-tree H for which 
at least one of Q1 and Q2 must hold. 

By playing an adversary game with algorithm A,  
we will construct the tree by growing it from the root 
one step at a time. A time step consists of two phases, 
node scheduling phase and node expansion phase. In 
the node scheduling phase, algorithm A schedules a 
node or no node for each processor to execute. Then, 
in the node expansion phase, these scheduled nodes 
are expanded. In this phase we will determine the 
number of children each scheduled node will generate. 

We will first define a special class of subtrees which 
will be used to describe some sufficient conditions un- 
der which a tree can grow to a (N, h,d)-tree. We will 
then give the main part of the proof including a de- 
scription of the tree construction procedure. 

HF D- S u b t ree 

Definition 1 At any given time during the tree 
construction, a High.-an,d-FuIl-Degree subtree (abbv. 
HFD-subtree) is a subtree, which. is rooted at a node 
at or above level h - N I ,  and which has been 
constructed using the following rules: 

A l .  nodes above level h. generate d children; and 

A2. nodes at level h, geaercrie 11.0 ch.ildren 

f 
h 

I 
nodes 

at most h nodes bn the path 
(a) 

(b) 

Figure 2: Growing the current tree to  a ( N ,  h, d)-tree. 

Note that rules A1 and A2 imply that a node which is 
above level h and has no children must be a frontier 
node. 

Lemma 1 A t  any given time during the tree con- 
struction, if the current free satisfies the following four 
properties: 

11. the total number of generated nodes is at most N - 
h - d (generated nodes include the root); 

12. the height is at most h; 

13. the degree of any node is at most d; and 

14. the tree contains an HFD-subtree, 

then a construction procedure can be devised to grow 
the tree to a (N,h,d)- tree:  

Proof. We first note that in the HFD-subtree of I4 
there exist nodes which are above level h and have 
no children. Otherwise, the subtree would have been 
“fully grown” to level h ,  according to rules A1 and 
A2. Since its root is a t  and above level h - [lo& N I ,  
this fully grown HFD-subtree would have at least 
dflogdN1(> N )  nodes. This contradicts 11. As noted 
above, those nodes in the current HFD-subtree which 
a.re above level h and have no children must all be 
frontier nodes. 
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Let H I  be the current tree. We will identify a set of 
“padding nodes” which can be added to H1 to make 
it a ( N ,  h ,  d)-tree. 

If H1 has height less than h or degree less than d, 
we will grow it by extending the current HFD-subtree 
from one of its frontier nodes which a.re a,bove level 
h. Let v be this frontier node, as shown in Figure 2. 
We generate d children for w and crea.te a pa.th from 
v to a node at  level h, as shown in Figure 2 (a). The 
resulting tree, called H2, has height h, degree d, and 
no more than ( N  - h - d) + d + h = N nodes. 

If H2 has less than N nodes, we will pa,d it with 
nodes in the fully grown HFD-subtree which a.re reach- 
able from the current frontier nodes and other padding 
nodes, as illustrated in Figure 2 (b). Since the fully 
grown HFD-subtree has at least N nodes, it has suf- 
ficient nodes which can be added to H2 to ma.ke it a 
( N ,  h ,  d)-tree. 

After having identified all these padding nodes, we 
now have a “blueprint” for a construction procedure 
to follow. More precisely, the construction procedure 
will just generate all those padding nodes in the da.rk 
region in Figure 2 (b). 0 

Main Part of Proof of Theorem 3 

The tree construction procedure consists of three 
stages. Each stage uses a.n independent set of rules in 
constructing the tree. 

Figure 3: Two a r e a  in the constructed tree. 

In stage 1, we expand each node with exactly d 
children. Stage 1 terminates at  time TI when a total 
of 2h’ or 2h’+ 1 nodes have just been expanded. (Note 
that at  this time the tree is completely inside area 
1 of Figure 3.) Since the number of frontier nodes 
increases by d - 1 each time when a node is expanded, 
there are exactly 2h’(d - 1) + 1 or (2h’ + I ) ( d  - 1) + 1 
frontier nodes at  time TI. Without loss of generality, 
we assume that processor P I  has generated at  least 
h‘(d - 1 )  frontier nodes. 

Stage 2 starts right after TI. In this stage every 
node above level h expanded by processor PI will have 

d children, while every node at level h or expanded by 
processor P2 will have no children. Stage 2 terminates 
at  time T2 when one of the following two conditions 
becomes true: 

C1 At least h’(d- 1) cross nodes have been scheduled. 

C2 At least N - h - 2d nodes have been generated. 

The following shows that C1 or C2 must become 
true sometime, i.e., T2 exists. Recall that by the end 
of stage 1 processor PI has generated at  least h’(d- 1) 
frontier nodes. In stage 2 processor PI will generate 
nodes in the subtrees rooted at  those frontier nodes 
which are still in PI .  For each of these subtrees, since 
its root is in area 1 of Figure 3, the subtree can have 
a t  least N - h - 2d nodes unless some of these nodes 
are moved to processor P 2  from processor 9. If C1 
does not hold, then fewer than h’(d - 1) nodes can 
be moved from PI to P2. Consequently, some subtree 
will have at  least N - h - 2d nodes, and thus C2 will 
be true. 

Stage 3 starts right after time T2. Lemma 2 below 
shows that properties 11-14 of Lemma 1 hold for the 
tree at  time T2. In stage 3, we follow the procedure 
described in the proof of Lemma 1 to grow the tree to 
a ( N ,  h ,  d)-tree. 

Lemma 2 At any time in stage 1 or 2, including time 
T2, the tree satisfies properties Il-Id of Lemma 1. 

Proof. It is obvious from the descriptions of stages 
1 and 2 that I2 and I3 are satisfied. For 11, we note 
that the total number of nodes generated in stage 1 is 
at  most (2h’+ l ) d +  1, and thus at  most N - h - d by 
restriction S1 of Theorem 3. In stage 2, I1 obviously 
holds when C2 is not true. Suppose that C2 becomes 
true at  time T2. Since the tree has no more than 
N - h - 2d nodes in the previous time step and since 
at  most d nodes can be generated (in processor P I )  in 
one time step, there are at  most N - h - d nodes at  
time T2. 

Property I4 clearly holds for stage 1 by examining 
its description. It remains to prove that I4 holds for 
stage 2. The proof is similar to the earlier proof of the 
fact that C1 or C2 must become true in stage 2. Re- 
call that in stage 1 processor PI has generated at  least 
h’(d- 1) frontier nodes. We note that any of these sub- 
trees rooted at  these nodes is an HFD-subtree if the 
subtree does not contain any expanded cross node. 
Since the number of cross nodes expanded (not just 
scheduled) through time T2 is less than h’(d - l),  one 
of these subtrees must be an HFD-subtree. Note that 
if C2 becomes true at  time Tz (in the node scheduling 

157 



phase), the node scheduled has not been expanded. 
0 

To complete the proof of Theorem 3, we observe 
that if C1 becomes true a t  some time in stage 2 or 3, 
it will remain true for the rest of the tree construction 
process. Therefore property Q2 of Theorem 3 will hold 
for the final ( N ,  h,  d)-tree. 

Now assuming that C1 never holds at  any time in 
stage 2 or 3, we want to show that property Q1 of 
Theorem 3 will hold for the final ( N I  h ,  d)-tree. We 
derive an upper bound on the total number of nodes 
expanded by processor P2. The upper bound is the 
sum of four terms U1, U2, U3 and U4. In stage 1 ,  
processor Pz has expanded at  most U1 = 2h’+l nodes. 
At time T I ,  processor P2 can have generated up to 
(h’+ l ) (d-  1) + 1 frontier nodes, each of which can be 
expanded at most once by processor P2 in stage 2 or 
3. It is also possible for processor Pz to expand nodes 
which are generated by PI but subsequently moved 
to P2. The total number of these nodes is at most 
Cd(H) 5 U3 = h’(d - 1). Moreover, to ta.ke ca.re of 
the nodes generated after T2 in sta.ge 3, processor PZ 
may expand up to U4 5 h + 2d nodes. Therefore the 
total number of nodes expanded by processor P2 is at  
most U = U1 + U2 + U3 + U4 5 3dh. This implies that 
processor PI has expanded at least N - U = N - 3dh; 
that is, property Q1 holds. 0 

5 Proof of Theorem 1 

Suppose that we are given a scheduling algorithm A 
for performing a D&C computation on a parallel sys- 
tem of p processors. For algorithm A, we will prove 
the existence of a ( N ,  h ,  d)-tree H for which either only 
p’ processors are active for expanding most of nodes 
(at least N’ nodes) or at least C’ nodes are moved be- 
tween processors to balance their computation loads. 
For the former, the parallel computation cost will be 
high, i.e., Td(H) 2 N‘/p’ (property P l ) .  For the 
latter, the number of cross nodes will be large, i.e., 
CA(H)  2 C’ (property P2).  

By playing an adversary game with algorithm d, 
we will construct the tree by growing it from the root 
one step at a time. The definition of time step is the 
same as that in the proof of Theorem 3. 

We will give some more definitions in Section 5.1 
and then give the main part of t,liis proof in Section 
5.2. All the related lemmas are in Section 5.3. 

5.1 Definitions 

To help derive a lower bound on the number of 
cross nodes, we introduce the following relation be- 
tween subtrees. 

Definition 2 A set of subtrees is processor-or- 
ancestry independent (abbr. PA-independent) ij for  
each pair of subtrees in the set at least one of the fol- 
lowing two properties is satisfied: 

1. Processor Independence: the roots of these two 
subtrees are generated on different processors; 

2. Ancestry Independence: neither is a subtree of the 
That is, there is no ancestor-descendant other. 

relationship between the two roots. 

Note that for two PA-independent subtrees rooted 
at  nodes r1 and r2, if node PI is an ancestor of node 
rz ,  then both nodes must be generated on different 
processors. This implies that there must exist at  least 
one cross node on the path from node r1 (inclusive) 
to the parent (inclusive) of node r2. Therefore, from 
this property, if there are k PA-independent subtrees 
each of which has at  least one expanded cross node, 
then there are at  least k expanded cross nodes in the 
tree. This is shown in Lemma 3 (in Section 5.3). 

Definition 3 A n  HFDC-subtree is an HFD-subtree 
(as defined in Definition 1) or a subtree with at least 
one cross node already expanded. If the root of an 
HFDC-subtree is generated on processor P ,  the sub- 
tree is called an HFDC-subtree on processor P .  

By Lemma 3 and Definition 3, if there are k PA- 
independent HFDC-subtrees and fewer than k ex- 
panded cross nodes, then there exists an HFD-subtree, 
as shown in Lemma 4. We will use this lemma to show 
the existence of an HFD-subtree during some periods 
of the tree construction procedure. 

5.2 Main Part of Proof of Theorem 1 

The tree construction procedure, like that in Sec- 
tion 4, consists of three stages. Basically, this proce- 
dure, summarized in Figure 4, is similar to that in Sec- 
tion 4, except that in stage 1 we use more sophisticated 
rules to prove a better lower bound of the number of 
cross nodes. (Note that if h >> logd N and p = 2 the 
lower bound of communication cost in this theorem is 
approximately twice as large as that in Theorem 3.) 

In stage 1 ,  we will repeatedly apply rules Rl-R4 
(in Figure 4) until time TI when one of the conditions 
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Stage 1 
Apply the following four rules: 

R1. Nodes in area 1 (shown in Figure 5 )  will generate d children. 
R2. Cross nodes in areas 2 and 3 (shown in Figure 5 )  will not generate any children. 
83. Non-cross nodes in areas 2 and 3 (excluding level h) will generate d children. 
R4. Nodes at level h will not generate any children. 

C1. For some p' processors, at least h' non-cross nodes have been expanded on each processor. 
C2. At least C' cross nodes have been scheduled. 
C3. At least N - ( p d  + d + h) nodes have been generated. 

Repeat rules Rl-R4 until time 7'1 when any of the following three conditions holds: 

Stage 2 (continued from time 2'1 when C1 holds) a 
Find a set r of p' processors with the following two properties: 

B1. There are at least C' PA-independent HFDC-subtrees in r. 
B2. There are at most h' non-cross nodes expanded on each of the other p - p' processors in the set F. 
R5. Nodes (excluding those at level h) in r will generate d children. 
R6. Nodes in r will not generate any children. 
R7. Nodes at level h will not generate any children. 

C4. At least C' cross nodes have been scheduled. 
C5. At least N - (pd + d + h) nodes have been generated. 

Apply the following three rules: 

Repeat  rules R5-R7 until time 2'2 when either of the following two conditions holds: 

Stage 3 (continued from time TI when C2 or C3 holds or from time Tz when C4 or C5 holds.) 
Use the construction procedure described in the proof of Lemma 1 to grow the tree to a (N, h, d)-tree. 

~ 

Figure 4: Tree construction procedure. 

T- t' 
t 
1 

Figure 5: Three areas in the constructed tree. 

Cl-C3 holds. Rules Rl-R4 ensure that each subtree 
rooted in area 1 or 2 is always an HFDC-subtree be- 
cause in constructing the subtree either rules A1 and 
A2 are followed (using R1, R3, and R4) or some cross 
nodes are expanded (using R2). Basically, the pro- 
cedure in  stage 1 attempts to produce at least C' 
PA-independent HFDC-subtrees on some p' proces- 
sors (property B1) while preventing ea.ch of the other 
p - p' processors froin expanding more tha,n h.' non- 
cross nodes (property B2). (Recall t1ia.t in the proof of 
Theorem 3 subtrees rooted a t  frontier nodes at. time 
TI are PA-independen t H F DC-su btrees. ) 

If condition C1 holds at  time 7'1 , then from Figure 
G we can find a set I' of p' processors for which condi- 
tion C1 and property B2 hold. According to Lemma. 

t--- p processors- 
Time 

4 B 2 a n d C l  hold. 
. \  

Each processor expands exactly h' non-cross nodes. 

=:Each processor expands at least h' non-cross nodes. 
:Each processor expands fewer than K non-cross nodes. 

Figure 6: Around the time when condition C1 be- 
comes true. 

5, there are at  least K(= (d - 1)h') PA-independent 
HFDC-subtrees on each processor which has expanded 
h' non-cross nodes. So there are at  least e'(= p ' ~ )  PA- 
independent HFDC-subtrees in I' at this time. There- 
fore, property B1 holds, and we are ready for stage 
2. 

In stage 2, we will repeatedly apply rules R5-R7 
until time Tz when condition C4 or C5 holds. (Note 
that these rules are exactly the same as those of stage 
2 in Section 4.) According to property B1, initially, 
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there are at least C’ PA-independent HFDC-subtrees 
in r. In stage 2, these subtrees continue to be HFDC- 
subtrees, because either rules A1 and A2 are followed 
(using R5 and R7) or some cross nodes are expanded 
(using R6). In addition, by rule RG, the set 1; of 
tlie other p - p’ processors will not genera.te a.ny new 
nodes. 

Now, we want to show that one of the conditions 
C2-C5 must become true at  time TI or T2. According 
to Lemma 6 (in Section 5.3), at any time in sta.ge 1 or 
2 properties 11-14 of Lemma 1 hold; so, at any time in 
stage 1 or 2 the tree will be able to grow to a ( N ,  h,  d)- 
tree by Lemma 1. Hence, if C2 or C4 never hold, C3 
or C5 becomes true. 

Stage 3 starts right after one of the conditions C2- 
C5 becomes true. (If C2 or C3 holds at TI, this implies 
that stage 2 is empty.) Since Lemma G also shows 
that properties 11-14 of Lemma 1 hold for the tree at 
time TI or Tz, in  stage 3 we will follow the procedure 
described in the proof of Lemma. 1 to grow the tree to 
a ( N ,  h ,  d)-tree H. 

To complete the proof, we observe t1ia.t if Cd(H)  2 
C’ it will remain true for the rest of tlie tree construc- 
tion process. Therefore property P2 of Theorem 3 will 
hold for H. 

Now, assuming that Cd(Hj  < c’, we want to prove 
that property P1 holds for H. Since C2 and C4 never 
hold, either C3 will become true at  time 7’1 or C5 will 
become true at time T2. First, suppose that condition 
C5 becomes true at  time T2. To prove that property 
P1 holds in this case, we will derive a.n upper bound on 
tlie total number of nodes expanded in r. The upper 
bound consists of five terms U1, U2,  U3, Uq, a.nd US.  
Assume tha,t there are C1 < U1 = C’ cross nodes 
expanded in r in stage 1. In sta.ge 1, the processors 
in r have expanded at most U2 = ( p  - p’)h’ non-cross 
nodes due to  property B2. These nodes expanded in 
stage 1 will generate a t  most U3 = ((11 - p’jhd + C1)d 
frontier nodes in a t  time TI, of which can be 
expanded at most once in r. After time 7’1, it is also 
possible for the processors in  to expand nodes moved 
from the processors in  r .  The tota.1 number of these 
nodes is 5 Cd(H) - c1. Moreover, t,o ta.ke ca.re 
of tlie nodes generated after T2, processors in  T may 
expand up to U5 5 pd + d + h nodes. Therefore, the 
tota.1 number of nodes expaaded in r is at, most, U = 
U1 + Uz +U, +U, + Us 5 3pd2h. This implies t,lia.t tlie 
processors in r have expa.iided a.t least N - U = N - 
3pd2h nodes; therefore, Td(H)  2 ( N  - 3pd2h)/p‘ 2 
N’/p‘  , i.e., . property P1 holds. 

Suppose that condition C3 becomes true a.t time 
TI. Since condition C1 does not hold in sta.ge 1, we 

can find a set r of p’ processors with property B2 (see 
Figure 6 also). Since stage 2 is empty for this case, we 
ca.n let time T2 be the same as T I .  Thus, we can use 
the same technique as above to prove that property 
P1 holds. 0 

5.3 Relevant Lemmas 

Lemma 3 Suppose that there are k PA-independent 
subtrees a2 some tame during the computation. If each 
of these subtrees has at least one expanded cross node, 
then the total number of expanded cross nodes in the 
whole tree constructed so far  as at least I C .  

Proof. This proof is not trivial because among these 
subtrees those with ancestry relationship may contain 
a same expanded cross node. 

expanded cross node 

%, %,$. 5 :PA-independent subtrees. 

Figure 7: Expanded cross nodes corresponding to PA- 
independent subtrees. 

In this proof, we will prune the k PA-independent 
subtrees one by one under the restriction that the sub- 
tree being pruned contains no other subtrees which 
have not been pruned yet. (For the example illus- 
trated in Figure 7, we can prune the subtrees in the 
order: &, 73,  ;rZ, and 71.)  For this proof, it suffices 
to prove that each pruned subtree has a t  least one 
expanded cross node. 

Initially, the first pruned subtree obviously has at 
least one expanded cross node by the assumption of 
the lemma. As mentioned in Section 5.1, for any two 
PA-independent subtrees 7 and 7’ rooted at  nodes 
r and r’ respectively, if r is an ancestor of T ‘ ,  there 
must exist a t  least one expanded cross node on the 
path from r (inclusive) to the parent (inclusive) of T’ 

due to processor independence. Therefore, if we prune 
7’ at r’, 7 still has at least one expanded cross node. 
Hence, after we prune each subtree under the above 
restriction, each of the remaining subtrees will still 
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have at  least one expanded cross node. This implies 
that the next pruned subtree also has at  least one ex- 
panded cross node. So, each pruned subtree has at  
least one expanded cross node. 0 

Leinina 4 At some time, if there are k PA- 
independent HFDC-subtrees and fewer than k ex- 
panded cross nodes, there exists an HFD-subtree. 0 

Proof. Assume that there exists no HFD-subtree. 
Thus, each of these PA-independent HFDC-subtrees 
has a.t least one expanded cross node according to the 
definition of HFDC-subtree. By Lemma 3, there are 
at  least 6 expanded cross nodes. This is contradictory 
to the assumption of the lemma.. 0 

Area 1 n 

: Non-cross node 

Area 2 

1 a single Processor 

Area 3 

Figure 8: In stage 1, any non-cross node’s ancestors 
in  area 2 must lime been genera.ted on the same pro- 
cessor. 

Leinina 5 In  stage 1, if a processor h,as expanded 
h’ non-cross nodes, th.en th.ere are a t  least K PA- 
independent HFDC-subtrees on t h e  processor. 

Proof. As mentioned in Sectmion 5.2, each subtree 
rooted in area 1 or 2 is always an HFDC-subtree in  
stage 1. Thus it suffices to prove that at  least K: nodes 
with ancestry independence in areas 1 and 2 will be 
generated on the processor after h‘ non-cross nodes 
have been expanded. By rules Rl-R3, for any non- 
cross node, all of its ancestors in  area 2 (with h’ + 1 
levels) must be non-cross nodes as shown in Figure 8. 
So, all the nodes generated by the first h’ non-cross 
nodes must be in areas 1 and 2. Since each of the h’ 
non-cross nodes will generate d children and can re- 
move at  most one ancestor, these non-cross nodes will, 

in total, generate at least ( d  - l)h’(= K )  nodes with 
ancestry independence. 0 

Lemma 6 At any time in stage 1 o r  2, including time 
TI or Tz, the tree satisfies properties 11-14 of Lemma 
1. 

Proof. It is obvious from rules Rl-R7 that I2 and 
I3 are satisfied. In addition, it is also obvious that I1 
holds before condition C3 or C5 becomes true. Con- 
sider the first time step when at  least N - (pd + h + d )  
nodes have been generated (i.e., condition C3 or C5 
holds). Since the tree has no more than N-(pd+h+d)  
nodes in the previous time step and since a t  most pd 
nodes will be generated in each time step, there are 
at  most N - h - d nodes in the current time step. 
In the rest of this proof, we will show that I4 always 
holds (i.e., there always exists an HFD subtree) in each 
stage. 

In stage 1, all the nodes in area 1 will generate d 
nodes by rule R1. So, before all the nodes in area 
1 have been expanded, there must exist one frontier 
node in area 1, of which the subtree (with only one 
node) is an HFD-subtree. After all the nodes in area 1 
are expanded, there are at  least d r l o g d p d h 1  > - pdh 2 C’ 
subtrees rooted at  the top level of area 2. Obviously, 
these subtrees are PA-independent. They are also 
HFDC-subtrees because each subtree rooted in area 
1 or 2 in stage 1 is always an HFDC-subtree as de- 
scribed in Section 5.2. Since the number of expanded 
cross nodes is always less than C’ (due to condition 
C2), there has always been an HFD-subtree up to time 
TI by Lemma 4. Thus, we can conclude that there al- 
ways exists an HFD-subtree in stage l. 

In stage 2, initially, there are at  least C’ PA- 
independent HFDC-subtrees in I’ (property Bl). 
These subtrees will continue to be HFDC-subtrees in 
this stage as described in Section 5.2. In stage 2, due 
to condition C4 the number of expanded cross nodes 
is always less than C’; so, there always exists an HFD- 
subtree by Lemma4. 0 
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