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Abstract

Several large applications have been paralleli,zed
on Nectar, a network-based multicomputer recently
developed by Carnegie Mellon. These applications
were previously either too large or too complex to be
easily implemented on distributed memory parallel
systems. Parallelizing these applications was made
possible by the cooperative use of many existing
general-purpose computers over high-speed
networks, and by an implementation methodology
based on a clean separation between applicatiion-
specific and system-specific code. We illustrate
these points using our experience with parallelizing
three real-world applications. The success in these
applications clearly points out a new direction in
parallel processing.

1. Introduction

Parallelizing large applications is a key concern for

researchers in parallel processing. These applications

typically involve large bodies of code, have substantial

computation and memory requirements, and are of

practical importance. If parallel architectures are to

become widely used, porting such applications to

parallel systems ought to be a routine activity.

There are numerous individual efforts in porting

large applications onto various parallel systems. In

most cases, the application is either develcped

specifically for the parallel machine, or it is almost

completely rewritten to exploit the features of a specific
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parallel architecture. In both cases, the efforts require

that the persons responsible for the porting are

intimately familiar with the applications. Since large

applications tend to involve substantial application-

spccific knowledge, this implies that often only

application scientists themselves can do the porting.

This definitely is not the best way of using their time,

and as a result, many large applications have never been

implemented on parallel machines.

What we need are parallel architectures and

programming tools to provide direct and general

support for parallelizing large applications. These tools

should be at a higher level than send and receive

primitives, or synchronization or shared data primitives.

The objective is to be able to port large applications

onto parallel machines without having to re-create the

application code that captures the application

knowledge.

Various research efforts have attempted to provide

help in this area. Parallelizing compilers have some

success in avoiding the rewrite of application code, but

they deal mainly with inner-most loops rather than

entire applications. Some projects have started to

address parallel processing for large applications, but

the solutions are either very ad hoc [8], or the

application area is restricted. The work on LINDA

[6, 11], for example, has provided tools capable of

using existing application code, but their usage is

restricted to applications satisfying a special

computation model. Some programming environments

such as //ELLPACK [13] support high-level

descriptions for specifying applications in certain

specialized areas, and allow new applications to use

software and algorithms that were developed earlier for

similar applications. Other work has concentrated on

specific application areas such as vision [12, 16] or

computations using triangular meshes [17].
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The Nectar system [1] developed by Carnegie Mellon

is intended to provide general support for parallelizing

large applications. The system is a multicomputer built

around a high-speed network. The use of existing

general-purpose computers as its nodes and the high-

bandwidth and low-latency network makes the system

inherently suited for large applications. The system has

allowed us to parallelize applications that were

previously either tm complex or too communication-

intensive to be suited for parallel processing.

This paper describes the Nectar implementation of

three applications: (1) COSMOS [4], a switch-level

circuit simulator developed by Randy Bryant and his

associates at Carnegie Mellon; (2) NOODLES [7], a

solid modeling package developed by Professor Fritz

Prinz’ group in the NSF Engineering Design Research

Center at Carnegie Mellon; and (3) a simulation of air

pollution in the Los Angeles area, with Professor Greg

McRae of the Chemical Engineering department.

These three applications differ both in the application

domain and in the programming model. Being able to

port all these applications onto Nectar is an indication

of the versatility of our approach. In fac~ using similar

methodologies several other large applications, not

reported in this paper, have been successfully ported to

Nectar by researchers at Carnegie Mellon. These

include a parallel solid modeller from University of

Leeds (called Mistral-3), distributed algorithms of

finding exact solutions of traveling salesman problems,

and a chemical flowsheeting simulation.

The strategy used to parallelize these applications is

to maintain the serial code as much as possible, and to

isolate communication and synchronization in a few

routines. This approach simplifies the porting effort.

We are in progress of developing libraries that provide

the communication and synchronization support for

several programming models. For applications that can

use such a package, the porting effort will be limited to

partitioning the sequential code and data at a high level,

which a user can do quite easily. This methodology is

illustrated using the three application examples.

In Section 2 we give an overview of the Nectar

system. Our methodology for parallelizing these

applications for Nectar-like systems is described in

Section 3. Sections 4 to 6 describe the three

applications and show how our methodology is used in

porting them onto Nectar. Summary and concluding

remarks are given in Section 7.

2. Nectar System Overview

The Nectar system developed by Carnegie Mellon is

a multicomputer formed by linking together a number

of existing machines by a high-speed network. Hosts

are attached using powerful network coprocessor

(CABs) that accelerate communication protocols.

Therefore for Nectar a node is a CAB-host pair. The

Nectar network (Nectar-Net) consists of 100 megabits

per second fiber-optic links and 16x16 crossbar

switches (HUBS). The network supports circuit

switching, packet switching, multi-hop routing, and

multicast communication. Figure 2-1 gives an

overview of the Nectar system.

m

[

dM]H+3

m HOST

Figure 2-1: Nectar system at Carnegie Mellon

Currently the Nectiw system has 26 hosts, mostly

Sun 4 workstations. The network contains a 26 km

Nectar connection to a Westinghouse facility, which

hosts the CRAY Y-MP of the Pittsburgh

Supercomputing Center. The systems software

includes a CAB run-time system that supports

multiprogramming using light-weight threads [10] and

manages message buffers using a mailbox mechanism.

Besides high-bandwidth communication (100

megabits/second per link), Nectar features low-latency

communication. The existing Nectar has the following

measured performance: the latency to establish a

connection through a single HUB is under one

microsecon~ excluding the transmission delays of the

optical fibers, the latency for a message sent reliably

between processes on two CABS is under 100

microseconds; and the corresponding Iatenc y for

processes residing in host nodes is under 200
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microseconds. This high-bandwidth and low-latency

network can sustain the communication bandwidth

required by nodes operating at high speeds and alllow

concurrent processing of small-grain computations at

multiple nodes [15].

In the area of protocol software, the CAB currently

supports several transport protocols with different

reliability/overhead trade-offs [9]. In particular, we

have implemented a number of Nectar-specific

protocols, plus a CAB-resident version of the Intelmet

standard protocol TCP/IP.

The Nectar system is used on a daily basis by both

applications programmers and computer science

researchers. To further develop the Nectar technology,

Carnegie Mellon is working with Network Systems

Corporation to develop a gigabit Nectar system capable

of sustaining 1 gigabit per second or higher speed end-

to-end communication.

3. A Methodology for Parallelizing Large

Applications

Implementing large applications on Nectar-like

architectures involves considerations along many

dimensions. These include partitioning the application

to exploit parallelism, mapping and distributing global

data, ensuring data consistency, enforcing required

synchronization, performing load balancing, and

possibly providing fault tolerance for applications with

long execution times. Here we describe an

implementation methodology that can simplify this

task. This methodology has been successfully used in

the Nectar implementation of the three applications

described in the subsequent sections.

The basic principle is the separation of application

code and system code. The application code has all, the

application-specific knowledge, but does not include

any code related to parallel processing. The system

code provides communication and synchmniza,tion

operations required for the parallelization on a specific

architecture.

When parallelizing an application starting with a

serial implementation, the first step is to partition the

application in units of work, called task$ this collection

of tasks makes up the application code. The code for

each task is a sequential program to be executed on a

single node. If the code for a task already exists, it, can

be tmtsed in the parallel implementation. The next step

is to identify the synchronization and communication

requirements between the tasks. Their implementation

makes up the system code.

The system code is a separate module with a cleart

interface to the application code. This makes it possible

to reuse the system code when parallelizing other

applications. For the three applications described in

this paper, the system code was developed specifically

for the application, but we are in the process of

packaging the system code in the form of a library that

can be linked in by other applications. The system code

implements a specific communication style for the

parallel computation in hand. For a given application,

the programmer selects the appropriate module for the

system code, based on the application needs.

This strategy for parallelizing applications based on

strictly separating application and system code has

several advantages. First, it naturally supports reuse of

existing application code. For large applications, for

which extensive application-specific knowledge is

embedded in existing code, this is the only practical

approach. The cost of rewriting and maintaining

different versions of the application for different

systems can be prohibitive, no matter what the payoff in

performance due to parallel processing might be. Even

if the application is implemented originally on a parallel

system, for maintenance reasons one would want to

keep most of the cede system independent. Second,

this approach is not limited to a single communication

model, as is shown below by the example applications.

Different modules for system code can be provided to

support a range of synchronization and communication

styles. As mentioned earlier, the Nectar project is in the

processing of building up a library of these modules.

Finally, we note that by implementing the same

system modules on different architectures, porting

applications across these architectures will be easier.

The implementations of the system modules on the

different architectures can be optimized for the

architecture. For example, a system module that

provides support for load balancing can use different

task granularities in different implementations to deal

with differences in the computation speed to

communication latency ratio. We expect that this

approach to portability will be more effective than

trying to provide compatibility at a low level such as

send and receive primitives.
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An alternative to our task-based approach, the

automatic extraction of parallelism as is done

successfully for FORTRAN DO-loops, is not practical

for entire applications. It is unlikely that compilem can

characterize the way the program updates complex data

structures or the complex control flow of a substantial

application. The task-based approach is an intermediate

solution between automatic parallelization and

rewriting the entire application. The programmer

specifies the parallelism explicitly based on his or her

understanding of the application. Since most of the

application, if not all, is executed in sequential stretches

of code, most of the application details can be ignored

in the parallelization process.

The EXPRESS environment [14] developed at

Caltech and Parasoft Coqmration is based on a similar

methodology. The main difference is that we try to

provide communication support at a higher level than

that provided by the EXPRESS libraries which are at

the level of SEND and RECEIVE primitives and global

synchronization primitives.

4. COSMOS: A Logic Simulation Application

Logic simulation is both a time-consuming and a

memory-intensive process. For this reason, many large

circuits cannot be simulated in their entirety on single

computers. A multicomputer such as Nectar can solve

the problem by linking together many existing systems

to increase both the computational power and the

memory.

We describe a parallel implementation of a logic

simulator on Nectar. The simulator is COSMOS [4], a

high-performance logic simulator developed at

Carnegie Mellon over the past several years. COSMOS

is the successor of MOSSIM [5], a widely used

simulator in industry at present. The key feature of

COSMOS is that it compiles the circuit into executable

code, instead of interpreting a representation of the

circuit at run-time. COSMOS first partitions the circuit

into a number of channel-connected subcimuits and

derives a boolean representation of the behavior of each

subcircuit. It translates this representation into C

language evaluation procedures and declarations of data

structures describing the connections between the

subcircuits. This circuit code is then compiled and

linked with a COSMOS kernel and user interface to

generate the simulator program. COSMOS runs about

an order of magnitude faster than MOSSIM, the cost is

a relatively slow and memory-intensive compilation

phase.

Circuits are simulated a clock phuse at a time, and at

the beginning of each phase, external signals such as

clocks can change. The simulation of a phase consists

of a number of simulation steps. During each step,

subcircuits whose input signals have changed since the

previous step are evaluate@ for the first step of each

phase, external signals determine which subcircuits are

evaluated. The simulation of a phase is finished when

all signals are stable, so the number of steps in a phase

depends both on the circuit and on the input signals.

The goal of the COSMOS implementation on Nectar,

called Nectar-COSMOS, is to simulate large single-

chip or multi-chip ciwuits which can have as many as

one million transistors. An initial version of Nectar-

COSMOS in May 1990 could already handle circuits

with hundreds of thousands transistors. More recently,

we have used Nectar-COSMOS to simulate the latest

design of the 650,000-transistor iWarp chip [2, 3],

jointly developed by Carnegie Mellon and Intel. For

the previous fabrication runs, the full-chip simulation of

iWarp was infeasible on any single computers available

to Intel. Using Nectar-COSMOS, a full-chip simulation

of the iWarp chip is possible.

4.1. Mapping COSMOS onto Nectar

In the Nectar-COSMOS implementation, the

subcircuits are statically distributed over the Nectar

nodes; the subcircuits placed on the same Nectar node

form a unit. The connectivity information for the

sulxircuits is used to determine what signals have to be

communicated between the nodes on every simulation

step. Each node runs a copy of the simulator, i.e., the

COSMOS code corresponding to the subcircuits

assigned to the node. After each simulation step, the

node sends the output signals to other nodes that need

them. A node can start on the next simulation step once

it has received the necessary input signals horn the

other nodes.

To detect the end of a phase, distributed termination

detection is required, since the circuit is partitioned, and

no Nectar node has access to all signals. At this point, a

centralized algorithm is used: after a small number of

steps, all nodes report to the master, who determines

whether the circuit is stable. Note that once the circuit

is stable, simulation steps are very fast since no circuits

are evaluated, so doing a few extra steps seems to be
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acceptable. Nevertheless, better algorithms are being

studied.

Because all the nodes work on one phase at a time,

the simulation time for a phase is determined by the

slowest node. Therefore, when placing sulxircuits cwer

Nectar nodes, it is important that all resulting units hlave

nearly the same simulation time. Using sequential

measurement for subcircuits, and experience, ht is

usually possible to achieve a reasonable balance.

In each unit, we distinguish two types of subcircuits

– boundary modules and interior modules. Interior

modules are only connected to subcircuits within the

same uni~ while boundary modules are connected to

subcircuits in other units. Each Nectar node first

simulates the boundary modules, since the simulation of

these subcircuits will produce results needed by other

nodes for the next simulation step. After this is done,

the host simulates the interior modules, while the CAB

sends out the results produced previously by the

simulation of the boundary modules. Thus Nectar-

COSMOS can take advantage of the CAB to owxtap

computation with communication, thereby reducing the

total execution time.

4.2. Results and further work

To evaluate the performance of Nectar-COSMOS,

we simulated a 30x30 maze routing chip implemented

using dynamic CMOS, and consisting of 17CII,000

transistor. Table 4-1 shows the results using dedicated

Sun 4/330 hosts. A cycle consists of 4 phases, each of

which requires about 8 steps to reach stability. We

observe a close to linear speedup up to 3 nodes. (The

work of using more than 3 nodes is in progress.) The

chip could not be be simulated on a single workstation

because we were not able to generate the simulator due

to memory limitations. Based on the simulation of a

single column of the maze router, we estimate that if we

could genemte the simulator on the workstaticm, a

single-node simulator would take approximately 1.32

seconds per cycIe.

Speedup I 1 1.95 I d2.78

Table 4-1: Nectar-COSMOS speedup
for 30x30 maze router

Table 4-2 gives some insight in the structure of the

maze router chip. The chip consists of a 30 by 30 array

of identical cells plus a circuit for clock distribution. In

Nectar-COSMOS, each node gets a block of columns,

and one node also gets the extra burden of the clock

distribution circuit. This mapping results in a good

balance of modules across nodes. It also has the

advantage that most of the subcircuits are interior

modules as indicated in the table. Using this fact, the

Nectar-COSMOS implementation is able to overlap

most of its the communication overhead with

simulation computation. Consequently, a node spends

less than 10% of its total execution time solely on

communication. This expkiins the good speedup

observed. Note that this speedup is obtained in spite of

the fact that there is little activity in the maze router

chip. As shown in Table 4-2, the number of modules

evaluated during a cycle is only about 5070 higher than

the number of modules in the circuit.

Number 1 2 3

of nodes

Boundary - 45 40

modules

Interior 19276 12884

modules

Module 60300 30200 20140

evaluations
per cycle

Table 4-2: 30x30 maze router analysis

The results for the maze router chip show that it is

possible to speed up circuit simulation using a Nectar-

like system. However, Nectar-COSMOS can be

communication intensive when a large of nodes are

used, thus limiting the speedup that can be achieved.

Further evaluation of COSMOS on Nectar is needed,

using more realistic circuits such as iWarp. These

circuits have more potential paraIIelism, since they are

larger and probably have more activities, but they have

the drawback that they are not regular, thus making it

harder to distribute them evenly across the network

nodes.

Future work will concentrate on finding efficient

mappings of subcircuits to nodes. Tradeoffs invoIve

balancing the load, maximizing the number of interior

nodes, and minimizing communication. A

complication is due to the fact that COSMOS does not

simulate subcircuits whose inputs have not changed
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since the previous time step. This optimization makes

the execution time, data dependent, and for some

circuits this might influence how the subcircuits should

be mapped onto the processors.

Even though COSMOS is a significant real

application (about 50,000 lines of code in the COSMOS

compiler chain and kernel), the porting of COSMOS to

Nectar was relatively easy. The reasons are that the

sequential COSMOS had already partitioned the main

&ta structure (the circuit), and that the sequential

implementation already existed on the same

workstations that form the Nectar nodes. As a result, a

mapping where each node runs a copy of the original

program (a simulator), and operates on part of the input

data (circuit) is mtural and required very few changes

to the original program. The only change is that the

simulator now gets input sigmls, and returns output

signals in a slightly different format.

The main effort in Nectar-COSMOS was in

implementing the system code that is specific to the

parallel implementation. Its function is to communicate

the signals between the nodes; as much of the work is

done on the CAB to overlap the communication

overhead with the processing on the CAB. It also

supports communication between the master and the

simulators for initialization and termination detection.

The system code is implemented as a separate module.

As mentioned earlier, an important feature in Nectar-

COSMOS is that we are able to hide the

communication latency by simulating the subcircuits in

the right order (i.e., simulate external circuit modules

before internal ones). We hope that some of these

techniques will extend to other parallel simulators.

5. NOODLES: A Geometric Modeling

Application

NOODLES is a geometric modeling system

[7] developed by the NSF-sponsored Engineering

Design Research Center (.EDRC) at Carnegie Mellon.

NOODLES models objects of different dimensions as a

collection of basic components such as vertices, edges,

and faces. As a m?sult, NOODLES can represent both

real objects, and non-manifold objects, that exist only in

abstract models and cannot be actually built, such as a

single edge of zero thickness. Non-manifold objects

simplify some higher-level operations on models, such

as testing whether two objects touch in a point (their

intersection is a vertex). Applications of NOODLES

include integrated systems for computer design,

knowledge-driven manufacturability analysis, and rapid

tool manufacturing. We describe a Nectar

implementation of NOODLES, called

Nectar-NOODLES, developed jointly by the EDRC and

School of Computer Science at Carnegie Mellon.

The basic operation in NOODLES is the merge

operation. Using this operation, complicated objects

can be built by intersecting a pair of simpler ones. The

merge operation does a pairwise geometric test on

components in both input objects, and it breaks up

components if they intersect. These tests are separated

in stages, depending on the type of the comparison test.

For example, in the fwst stage all vertices of one model

are compared with those of the other. In the subsequent

stages, vertices are compmed with edges, and so on.

Geometric tests may yield updates to the database of

the models. These changes will influence the tests to be

done in subsequent stages, so the computation in each

stage depends on the results of earlier tests. For

example, if two edges intersect, they will be replaced

with four non-intemecting edges, which will be used in

later tests. Thus, the number of tests are data-

dependent, and the cost of the tests depends on the

models.

5.1. The parallelization of NOODLES

Updates in each stage are intrinsically sequential, but

the geometrical tests that produce these updates can be

performed in parallel. When merging two models, each

with n components, the total number of operations

needed for updates is O(n) or O (nlog n), while that for

geometric tests is O (n2). Thus, for large models with

large n, the speedup resulting from parrdlelizing

geometric tests can be substantial. The goal of Nectar-

NOODLES is to allow interactive use of NOODLES,

even for large designs.

Because the execution time of the various tests and

updates in NOODLES is very much data dependent, the

distribution of work across Nectar nodes is done

dynamically at runtime. Nectar-NOODLES uses a

central load balancing strategy: a master node keeps a

central task queue, and slave nodes execute tasks that

they receive from the master. Each task consists of a

series of basic geometrical tests, where each basic test

consists of comparing one component of one model

with a class of components in the other model, for
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example, an edge of one model with all vertices of the

other model.

The master node has two functions. First, it manages

the transition between the stages, including the updiates

to the database. This function is NOODLES specific

and runs on the workstation host. Second, the master

node manages the dynamic load balancing during each

stage. This function involving internode

communication is not specific to NOODLES, and is

implemented on the CAB of the master node. ‘The

advantage of placing the task queue manager on the

CAB is that it can respond to requests faste~ it can

handle about 10000 requests per second. The

workstation of the master node operates as a shave

during each stage.

Nedar-NOODLES cannot rely on a straightforward

partitioning of the input data space, as was done in

Nectar-COSMOS. In order to accommodate non-

manifold models, NOODLES uses an intricate data

structure with a large number of pointers. Distributing

this data structure over the Nectar nodes would require

a total rewrite of NOODLES. Nectar-NOODILES

avoids this by giving each Nectar node a copy of the

geometric models being merged.

The copies of the models on the nodes are kept

consistent by updating all the models at the same [time

and in the same order. To make this possible, updates

to the models are not done “on the fly” as in the

sequential NOODLES, but all updates are delayed until

the end of the stage. When a geometric test indicates

that an update is needed, the slave sends an update

request to the master. The master collects the updates,

and at the end of each stage, it sends the list of updates

for that stage to all the slaves, which use the

information to update their copies of the geometric

models. To allow nodes to send updates to each other,

global names were added to each entry in the

NOODLES databr&. The NOODLES code was not

changed it still operates on its original data structure

using local pointers (which can be different on all the

nodes). The translation between local pointers and

global names is done using a table lookup at the

interface between NOODLES and the system code.

It is interesting to note that an implementation of

NOODLES on a shared-memory paratlel processor

would probably have the same structure as Nectar-

NOODLES. Because of the complexity of the data

structures, it would not be possible to update the

database while other nodes are doing geometric tests.

The shared-memory implementation would have to

batch updates between the testing stages in exactly the

same way as Nectar-NOODLES does. The main

benefit of a shined memory implementation would be

that the updates could be done by a single node, which

is slightly simpler than broadcasting an update request

to all the slaves.

The structure of Nectar-NOODLES lends itself well

to a robust implementation. If a slave node goes down

during a session, no information is lost. The master can

simply reissue the task that slave was working onto one

of the remaining slaves, and the session can continue

without interruption. This should make it possible to

use a large number of nodes reliably, although the

master would of course remain a single point of failure.

In the current implementation, we have not yet

implemented this robust scheme, although the master

does ignore nodes that do not respond during

initialization.

5.2. Results

Table 5-1 shows the speedup for Nectar-NOODLES

merging two models, each consisting of two spheres.

Each of the models has about 3500 components. The

hosts are dedicated Sun 4/330 workstations. The

speedup is relative to a single-node Nectar-NOODLES.

The different columns show the Esults for various task

sizes, starting with 1 test per task to 30 tests per task.

The size of a test ranges from 3 milliseconds in the

early stages to as high as 50-150 milliseconds in the

later stages (6 milliseconds average). We observe a

similar speedups for all task sizes. Even with one test

per packet, we do not observe any degradation of

performance. The Nectar net and the load balancer are

fast enough to support tasks as small as a few

milliseconds. As the task size increases, the specdup

drops slightly, and this effect becomes stronger as the

number of nodes increases. The reason is that the load

balancing becomes less effective in the later stages,

which have a smaller number of larger tasks.

The single node version of Nectar-Ncmiles is almost

30% slower than the sequential Noodles, because some

of the geometric tests may be performed more than

once in the parallel implementation. This duplication

happens because updates to the database are delayed

until the end of each stage and as a result possible

redundant operations are not deleted in time. This
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Number 1 5 10 15 30
of nodes

2 1,94 1.93 1.92 1.90 1.89

3 2.83 2.81 2.81 2.79 2.75

4 3.61 3.62 3.60 3.54 3.47

5 4.40 4.38 4.33 4.29 4.17

Table 5-1: Nectar-NOODLES speedup for different
task sizes (expressed in tests per task)

illustrates a difficulty in parallelizing code that uses

complex data structures. A parallel implementation of

NOODLES on a shared memory machines would have

the same problem.

As in the case of COSMOS, NOODLES was mapped

onto Nectar by running a version of the sequential

program on every node. Again, very few changes had

to be made to the existing code, thus simplifying the

porting of this relatively large application, which has

about 12,000 lines of code. Almost all the code that is

specific to the parallel implementation is in a separate

module. Because of the complexity of the data

structures, the data could not be p-dtioned, but had to

be replicated, thus loosing one of the benefits of using a

multicomputer (more memory). The low

communication latency on Nectar made dynamic load

balancing very effective, even for relatively small task

sizes.

5.3. Building a load baIancing package

We are currently in the process of implementing the

load balancing code that was developed for Ncctar-

NOODLES as a separate package. As a demonstration

of the usefulness of using such an application-

independent package, a second application, ray tracing,

has been ported very quickly to Nectar using this

package. This application allows us to evaluate the

load balancing packet whh smaller packet sizes.

Table 5-2 shows the results. The application consists

of 1024 tasks, each taking about 400 microseconds; the

sequential part of the code takes little time (about a

millisecond). We notice that the speedup curve flattens

at about 5 nodes with a speedup of 4. This shows the

limitations of a central load balancing scheme: the

master node can handle a new request about every 100

Number Time Speedup
of nodes (seconds)

1 0.427 1.00

2 0.208 2.05
, ,

I 3 I 0.142 3.01 I

I 4
I

0.120 3.55

15 I 0.105 j 4.07 I
1 1

I 6 0.100 4.25

[
7 0.098

I
4.34

Table 5-2: Speedup for ray tracing application
using Noodles load balancing package

microseconds, so the minimal execution time is about

100 milliseconds for an application with 1000 tasks.

Using more nodes will require a coarser partitioning of

the problem and a larger problem.

6. Simulation of Air Pollution in Los Angeles

Flow field problems, such as weather forecasting and

tracking of spills, are computationzdly intensive and can

benefit from parallel processing. As a fmt step, we

have implemented a parallel program on Nectar which

tracks pollutant particles in the atmosphere of the Los

Angeles area. The input to the program are the wind

velocities recorded at 67 weather stations around the

Los Angeles (LA) area once every hour. The program

calculates the traces of pollutant particles that are

released in some initial locations.

Computing the particle traces given the wind

conditions is a two phase process, The fwst phase

consists of computing the wind velocity at each point of

a 80x30 grid on the geographic area concerned, for

every hour, given the measurements from the weather

stations and precomputed weights. This problem

involves interpolating from the measurements, as well

as solving the conservation of mass equations across the

grid. In the second phase, each particle is tracked as it

moves about the grid; this requires an interpolation in

both space and time. The time step used in this phase is

30 seconds.

6.1. Parallel implementation over Nectar

When partitioning this program over Nectar, we tried

to maintain the structure and code of the original

sequential program as much as possible. In the fiist

phase, a task consists of calculating the wind velocities

at each point in the grid for a given hour. The second
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phase is parallelized by partitioning the particles among

the processo~ each processor tracks the motion of a set

of particles for the duration of the simulation. The two

phases are pipelined while some processors are tracing

particles at time T, other processors are calculating the

wind velocities for the following few hours. In the

initial implementation, load balancing was done

statically the hours and particles were divided among

the processors before computation begins.

6.2. Results and evaluation

Table 6-1 shows the results for parallelizing the

particIe tracking on Nectar using 1, 2, 3, 4, 6 and 8

nodes. Again, the hosts are dedicated Sun 4/330

workstations.

,

t 3 44 I 2.9 1

I 4 I 34 I 3.7 I

6 23 5.4

8 19 6.6
I

Table 6-1: Specdup for LA pollution simulation

The speedup shown in the table are encouraging, but

since the distribution of work is done statically,

performance degrades quickly if the load on the

(shared) nodes changes during the execution. To avoid

this degradation, we are currently implementing

dynamic load balancing for both phases. For the first

phase, processors receive the next hour to be simulated

from a master. This gives good performance except

that slow nodes might make the latency between the

two phases too largq for this reason, the master shlould

replace nodes that are tm slow. For the second phase, a

load balancing process monitors the progress of each of

the phase two processors, and moves particles from

slow processors to fast processors, if the difference in

simulated time on the slaves becomes too large. If the

network environment does not change, each slave will

trace its particles with minimal disruption by the load

bakmcer.

The communication bandwidth of this application

increases linearly as more processors are added to the

system, since every processor in the second phase must

have all the information computed by the processors in

the first phase. Because we use the Nectar (hardware)

multicast facility between phases one and two, the

communication overhead per simulated hour remains

constant for each node. Eventually, the constant

communication overhead will limit the number of

nodes that can be used effectively for a fixed problem

size.

The total number of bytes sent can be reduced by

using a new mapping in which the grid is partitioned

across the processors. For fist phase, each processor

calculates the wind velocities for its part of the grid, for

all hours, i.e., we partition in space instead of in time.

For the second phase, each processor traces the

particles in its area at any given time, i.e., we divide the

area instead of the particles. This mapping significantly

reduces the communication requirements, but it has

several disadvantages. First, it require more fine-

grained interactions between the processors working on

the same phase for phase one, processors have to

interact when solving the conservation of mass

equations, while for the second phase, communication

is needed when particles cross the partitioning

boundaries.

Second, this mapping is more complicated to

implement, because the structure of the program is

changed more dramatically: we are parallelizing over

an innerloop, while the first mapping parallelized over

the outerloop. Third, load balancing becomes much

more difficult. Not only is the workload in the second

phase no longer static, but moving work between

processors as part of a dynamic load balancing strategy

is much more complex.

The LA simulation program is an example of a

medium size static application (2500 lines of

FORTRAN). Our implementation shows that a very

simple mapping that preserves the program structure is

the most appropriate for a network environment there

is a good match between the resulting coarse-grained

parallelism and an architecture with a small number of

powerful nodes. Finer-grain parallelism should be

exploited in more tightly coupled multipmcessors, i.e.,

inside a node of the multicomputer. We plan to work

on this type of hierarchical decomposition using more

accurate simulation programs and using iWarp arrays

connected by Nectar as the computing engines.
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7. Summary and Concluding Remarks

As demonstrated by the Neetar implementation of the

three applications deseribed in the paper, it is now

possible to parallelize some applications which were

too complex or too large for previous parallel

processing approaches. The two factors that make this

possible are the emerging class of network-based

multicomputers such as Neetar and a systematic

approach to parallelizing large applications.

Beeause Nectar uses existing general-purpose

computers as nodes, parallelized applications can make

immediate use of system software and application code

that are already exist for these computers. Using

existing systems as nodes also has the advantage that

users can work in a familiar environment, for example,

a UNIX workstation. As a result, in spite of the high

complexity of the applications described in the paper,

the implementation of them on Nectar has taken

relatively little effort.

An important requirement for network-based

multicomputers is good network performance. The

bandwidth and latency characteristics of Nectar, for

example, are similar to those of the current generation

custom-made multicomputers. Because of these

features, there is a large class of applications for which

internode communication is no longer bottleneck, and

parallelization over a network becomes practical, as is

demonstrated in the NOODLES and LA pollution

simulation applications. The programmer does not

need to worry too much about communication

overheads in doing load balancing. This is a reason

why it has been relatively easy to achieve good

speedups for the parallelized applications.

Our approach to parallelizing large applications

emphasizes the use of existing application code and the

development of general supports for large-grain

parallelization. Most of the application code should be

architecture independent, and the system code that

implements synchronization and communication may

be reused. Our goal is to provide applications with

programming support at a higher level than sends,

receives, and low-level synchronization primitives.

This effort complements other existing efforts of

providing general supports for parallelizing kernels of

computation for more tightly coupled multiprocessors.

The combined capability will significantly increase the

applicability of parallel processing, we believe.

However, much work needs to be done in support of

this new opportunity, especially in the area of tool

building. We plan to undertake some of this work in

the near future. Results reported in this paper should be

viewed as a progress report of our efforts in the

important am of providing general support for

parallelizing large applications.
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