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Abstract
This paper describes a new host interface architecture for high-speed networks operating

at 800 of Mbit/second or higher rates. The architecture is targeted to achieve several 100s
of Mbit/second application-to-application performance for a wide range of host architectures.
The architecture achieves the goal by providing a streamlined execution environment for the
entire path between host application and network interface. In particular, a “Communication
Accelerator Block” (CAB) is used to minimize data copies, reduce host interrupts, support DMA
and hardware checksumming, and control network access.

This host architecture is applicable to a large class of hosts with high-speed I/O busses. Two
implementations for the 800 Mbit/second HIPPI network are under development. One is for a
distributed-memory supercomputer (iWarp) and the other is for a high-performance workstation
(DECstation 5000). We describe and justify both implementations.
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1 Introduction

Recent advances in network technology have made it feasible to build high-speed networks
using links operating at 100s of Mbit/second or higher rates. HIPPI networks based on
the ANSI High-Performance Parallel Interface (HIPPI) protocol [1] are an example. HIPPI
supports a data rate of 800 Mbit/second or 1.6 Gbit/second and almost all commercially
available supercomputers have a HIPPI interface. As a result, HIPPI networks have become
popular in supercomputing centers. In addition to HIPPI, there are a number of high-speed
network standards in various stages of development by standards bodies. These include ATM
(Asynchronous Transfer Mode) [2] and Fibre Channel [3].

As network speeds increase, it is important that host interface speeds increase proportionally,
so that applications can benefit from the increased network performance. Several recent
developments should simplify the task of building host interfaces that can operate at high
rates. First, most computer systems, including many workstations, have I/O busses with
raw hardware capacity of 100 MByte/second or more. Second, existing transport protocols,



in particular Transmission Control Protocol/Internet Protocol (TCP/IP), can be implemented
efficiently [4, 5]. Finally, special-purpose high-speed circuits, such as the AMCC HIPPI chip
set, can be used to handle low-level, time-critical network interface operations.

However, these elements do not automatically translate into good network performance for
applications. The problem is that the host interface involves several interacting functions such
as data movement, protocol processing and the operating system, and it is necessary to take a
global, end-to-end view in the design of the network interface to achieve good throughput and
latency. Optimizing individual functions is not sufficient.

We have designed a host-network interface architecture optimized to achieve high application-
to-application throughput. Our interface architecture is based on a Communication Accelerator
Block (CAB) that provides support for key communication operations. The CAB is a network
interface architecture that can be used for a wide range of hosts, as opposed to an implementation
for a specific host. Two CAB implementations for HIPPI networks are under development. One
is for the iWarp parallel machine [6] and the other one is for the DEC workstation using the
TURBOchannel bus [7]. These two CAB implementations should allow applications to use a
high percentage of the 100 MByte/second available on HIPPI. The interfaces will be used in
the context of the Gigabit Nectar testbed at Carnegie Mellon University [8]. The goal of the
testbed is to distribute large scientific applications across a number of computers connected by a
high-speed network. The network traffic will consist of both small control messages for which
latency is important, and large data transfers, for which throughput is critical.

In the remainder of the paper we first discuss the requirements for the host interface (Section
2). We then present the motivation and hardware and software architecture of the CAB-based
interface (Section 3) and the design decisions for the two CAB implementations (Sections 4 and
5). We conclude with a comparison with earlier work.

2 Requirements for a Network Interface Design

In local area networks, throughput and latency is typically limited by overhead on the sending
and receiving systems, i.e. it is limited by CPU or memory bandwidth resource constraints on
the hosts. This means that the efficiency of the host-network interface plays a central role.
Consuming fewer CPU and bus cycles will not only make it possible to communicate at higher
rates since the communication bottleneck has been reduced, but for the same communication load
more cycles will be available for the application. Efficiency is critical both for applications whose
only task is communication (e.g. ftp) and for applications that are communication intensive, but
for which communication is not the main task.

Since host architecture has a big impact on communication performance, we considered the
communication bottlenecks for different classes of computer systems. A first class consists of
workstations, currently characterized by one or a few CPUs, and a memory bandwidth of a few
100 MByte/second. Existing network interfaces typically allow these workstations to achieve
a throughput of a few MByte/second, without leaving any cycles to the application. Some
projects have been successful at improving throughput over FDDI, but these efforts concentrate
on achieving up to 100 MBit/second for workstations only [9]. This communication performance
is not adequate for many applications [10].

General-purpose supercomputers such as Cray also have a small number of processors
accessing a shared memory. They have however a very high memory and computing bandwidth
and they have I/O subsystems to manage I/O devices with minimal involvement from the CPU.
These resources allow them to communicate at near gigabit rates while using only a fraction of



their computing resources [5].
Special-purpose supercomputers such as iWarp [6] and the Connection Machine [11] have

a very different architecture. Although these systems have a lot of computing power, the
computing cycles are spread out over a large number of relatively slow processors, and they are
not suited to support communication over general-purpose networks. A single cell (for iWarp),
or a front-end (for CM) can do the protocol processing, but the resulting network performance
will match the speed of a single processor, and will not be sufficient for the entire system. The
issue is the efficiency of the network interface: can we optimize the interface so that a single
processor can manage the network communication for a parallel machine?

Our goal is to define a "Communication Acceleration Block" that can support efficient
communication on a variety of architectures. Specifically, this architecture must have the
following properties:

1. High-throughput, while leaving sufficient computing resources to the application. The
goal is to demonstrate that applications on high-performance workstations can achieve
several 100 Mbits/second end-to-end bandwidth. It is not acceptable to devote most of
the CPU and memory resources of a host to network related activities, so the network
interface should use the resources of the host as efficiently as possible, and brute-force
solutions that might work for supercomputers should be avoided. The exact performance
will depend on the capabilities of the host.

2. Modular architecture. The portions of the architecture that depend on specific host
busses (such as TURBOchannel) and network interfaces (such as HIPPI), should be
contained in separate modules. By replacing these modules, other hosts and networks
can be supported. For example, by using different host interfacing modules, the CAB
architecture can interface with the TURBOchannel or to an iWarp parallel machine.

3. Inherently low-cost architecture. The host interface should cost only a small fraction
of the host itself. It is essential that eventually the host interface can be cheaply
implemented using ASICs, similar to existing Ethernet or FDDI controller chips.
Early implementations may be more expensive, but the interface architecture should
be amenable to low-cost ASIC implementation.

4. Use of standards. We concentrate on the implementation of the TCP and UDP internet
protocols since they are widely used and have been shown to work at high transfer
rates [5]. We use UNIX sockets as the primary communication interface for portability
reasons. We also want to better understand how protocol and interface features influence
the performance and complexity of the host-network interface, and other interfaces that
are more appropriate for network-based multicomputer applications will be developed
in parallel or on top of sockets.

3 The Host-Network Interface Architecture

Many papers have been published that report measurements of the overheads associated with
communicating over networks [12, 4, 13, 14, 15, 16]. Even though it is difficult to compare these
results because the measurements are made for different architectures, protocols, communication
interfaces, and benchmarks, there is a common pattern: there is no single source of overhead.
The time spent on sending and receiving data is distributed over several operations such as



System call

Copy data to
system buffers

TCP Protocol
Processing

Calculate
Data Checksum

IP Processing

Create

Access 
Device

MAC Header

Socket processing
System call

Copy data to
user space

TCP Protocol
Processing

Calculate
Data Checksum

IP Processing

Interrupt

MAC Processing

Socket processing

Application

Network

Figure 1: Network data processing overheads

copying data, buffer management, protocol processing, interrupt handling and system calls, and
different overheads dominate depending on the circumstances (e.g. packet size). The conclusion
is that implementing an efficient network interface involves looking at all the functions in the
network interface, and not just a single function such as, for example, protocol processing.

Figure 1 shows the operations involved in sending and receiving data over a network using
the socket interface. These operations fall in different categories. First, there are overheads
associated with every application write (socket call – white), and with every packet sent over
the network (TCP, IP, physical layer protocol processing and interrupt handling – light grey);
these operations involve mainly CPU processing. There is also overhead that scales with the
number of bytes sent (copying and checksumming – dark grey); this overhead is largely limited
by memory bandwidth. In the remainder of this section we first look at how we can minimize
both types of overhead. We then present the CAB architecture, and we describe how the CAB
is seen and used by the host.

3.1 Optimizing per-byte operations
As networks get faster, data copying and checksumming will become the dominating

overheads, both because the other overheads are amortized over larger packets and because
these operations make heavy use of a critical resource: the memory bus. Figure 2 shows the
dataflow when sending a message using a traditional host interface; receives follow the inverse
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path. The dashed line is the checksum calculation. There are a total of five bus transfers for
every word sent. On some hosts there is an additional CPU copy to move the data between
“system buffers” and “device buffers”, which results in two more bus transfers.

We can reduce the number of bus transfers by moving the system buffers that are used to
buffer the data outboard, as is shown in Figure 3. The checksum is calculated while the data
is copied. The number of data transfers has been reduced to three. This interface corresponds
to the “WITLESS” interface proposed by Van Jacobson [17]. Besides using the bus more
efficiently, outboard buffering also allows packets to be sent over the network at the full media
rate, independent of the speed of the internal host bus.

Figure 4 shows how the number of data transfers can be further reduced by using DMA
for the data transfer between main memory and the buffers on the CAB. This is the minimum
number with the socket interface. Checksumming is still done while copying the data, i.e.
checksumming is done in hardware. Besides reducing the load on the bus, DMA has the
advantage that it allows the use of burst transfers. This is necessary to get good throughput
on today’s high-speed I/O busses. For example, the DEC TURBOchannel throughput is about
11.1 MByte/second for single word transfers, but 76.0 MByte/second for 32 word transfers.
However, on some systems, DMA adds enough overhead that it is sometimes more attractive to
copy and checksum the data using the CPU (see Section 5).
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Figure 3: Dataflow in network interface with outboard buffering
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3.2 Optimizing per-packet operations
The CAB should have support for Media Access Control (MAC), as is the case for well

established network interfaces such as Ethernet and FDDI, so that the host does not have to be
involved in negotiating access to the network for every packet. This would be interrupt-intensive
(interrupt based interface) or CPU-intensive (based on polling).

The remaining network interface functions on the host are TCP and IP protocol processing,
including the creation of the TCP and IP headers. Measurements for optimized protocol
implementation show that the combined cost of protocol processing on the send and receive
side is about 200 instructions [4], or about 10 microseconds on a 20 MIPS workstation.

The main (likely only) benefit of moving protocol processing outboard is that it potentially
frees up cycles for the application. The most obvious drawback is that the network interface
becomes more complicated and expensive since it requires a high-performance general-purpose
CPU (with matching memory system) for protocol processing. A second drawback is that the
host and network interface have to share state and the host-interface pair must be viewed as a
multiprocessor. Earlier experiments [18, 16] show that this can make interactions between the
host and CAB considerably more complex and expensive compared with a master-slave model.
Given these drawbacks and the limited advantages, we decided to perform protocol processing
on the host, and to make the CAB a pure slave.

Given the high cost of crossing the I/O bus and of synchronization (e.g. interrupts), the CAB
architecture minimizes the number of host-CAB interface interactions and their complexity. The
host can request a small set of operations from the CAB, and for each operation, it can specify
whether it should be interrupted when the operation is finished. The CAB generates a return tag
for every request it finishes, but it only interrupts the host if requested. The host processes all
accumulated return tags every time it is interrupted. This limits the number of interrupts to one
per user write on transmit, and at most one per packet and one per user read on receive.

3.3 The CAB Architecture
Figure 5 shows a block diagram of the CAB architecture. The CAB consists of a transmit and

a receive half. The core of each half is a memory used for outboard buffering of packets (network
memory). Each memory has two ports, each running at 100 MByte/second. Network memory
can for example be implemented using VRAM, with the serial access port at the network side.
Data is transfered between main memory and network memory using system DMA (SDMA)
and between network memory and the network using media DMA (MDMA).
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Figure 5: Block diagram generic network interface

The most natural place to calculate the checksum on transmit is while the data is placed on
the network. This is however not possible since TCP and UDP place the checksum in the header
of the packet. As a result, the checksum is calculated when the data flows into network memory,
and it is placed in the header by the CAB in a location that is specified by the host as part of the
SDMA request. On receive, the checksum is calculated when the data flows from the network
into network memory, so that it is available to the host as soon as the message is available.

Media access control is performed by hardware on the CAB, under control of the host. We
concentrate on MAC support for switch-based networks, specifically HIPPI networks. The
simplest MAC algorithm for a switch-based network is to send packets in FIFO order. If the
destination is busy, i.e. one or more links between the source and the destination is being used
for another connection, the sender waits until the destination becomes free (called camp-on).
This simple algorithm does not make good use of the network bandwidth because of the Head
of Line (HOL) problem: if the destination of the packet at the head of the queue is busy, the
node cannot send, even if the destinations of other packets are reachable. Analysis has shown
that one can utilize at most 58% of the network bandwidth, assuming random traffic [19].

MAC on the CAB is based on multiple “logical channels”, queues of packets with different
destinations. The CAB attempts to send a packet from each queue in round-robin fashion. If
a destination is busy, the CAB moves to the next queue, which holds packets with a different
destination. The exact MAC algorithm is controled by the host through retry frequency and
timeout parameters for each logical channels. The host can also specify that camp-on should be
used after a number of tries to improve the chances that packets to a busy destination will get
through (i.e. balance fairness versus throughput).

The register files on both the transmit and receive half of the CAB are used to queue host
requests and return tags. The host interface implements the bus protocol for the specific host.
Depending on implementation considerations such as the speed of the bus, the transmit and
receive halves can have their own bus interface, or they can share a bus interface.

The CAB architecture is a general model for a network interface. Although the details of the
host interface, checksum and MAC blocks depend on the specific host, protocol and network,
the architecture should apply to a wide range of hosts, protocols and networks. In Sections 4
and 5 we describe implementation for this architecture for the iWarp parallel machine and for
the DECstation 5000 workstation, two very different systems.



3.4 Host View of Network Interface
From the viewpoint of the host system software, the CAB is a large bank of memory

accompanied by a means for transfering data into and out of that memory. The transmit half
of the CAB also provides a set of commands for issuing media operations using data in the
memory, while the receive side provides notification that new data has arrived in the memory
from the media.

Several features of the CAB have an impact on the structure of the networking software.
First, to insure full bandwidth to the media, packets must start on a page boundary in CAB
memory, and all but the last page must be full pages. This, together with the fact that checksum
calculation for internet packet transmissions is performed during the transfer into CAB memory,
dictates that individual packets should be fully formed when they are transfered to the CAB.

To make the most efficient use of this interface, data should be transferred directly from user
space to CAB memory and vice-versa. This model is different from that currently found in
Berkeley Unix operating systems, where data is channeled through the system’s network buffer
pool [20]. The difference in the models, together with the restriction that data in CAB memory
should be formatted into complete packets, means that decisions about partitioning of user data
into packets must be made before the data is transfered out of user space. This means that
instead of a conventional “layered” protocol stack implementation (Figure 1) where decisions
about packet formation are the sole domain of the transport protocol, some of that functionality
must now be shared at a higher level.

To illustrate how host software interacts with the CAB hardware in normal usage, we present
a walk-through of a typical read and write. To handle a user write, the system first examines
the size of the write and other factors to determine how many packets will be needed on the
media, and then it issues SDMA requests to the CAB, one per packet. The CAB transfers the
data from the user’s address space to the CAB network memory. In most cases, i.e. if the TCP
window is open, a MDMA request to perform the actual media transfer can be issued at the
same time, freeing the processor from any further involvement with individual packets. Only
the final packet’s SDMA request needs to be flagged to interrupt the host upon completion, so
that the user process can be scheduled. No interrupt is needed to flag the end of MDMA of TCP
packets, since the TCP acknowledgement will confirm that the data was sent.

Upon receiving a packet from the network, the CAB interrupts the host, which performs
protocol processing. For TCP and UDP, only the packet’s header needs to be examined as
the data checksum has already been calculated by the hardware. The packet is then logically
queued for the appropriate user process. A user read is handled by issuing one or more SDMA
operations to copy the data out of the interface memory. The last SDMA operation is flagged to
generate an interrupt upon completion so that the user process can be scheduled.

4 The iWarp CAB Implementation

The first implementation of the CAB architecture is for iWarp, a distributed memory parallel
computer. Each iWarp cell has a CPU, memory, and four pathways supporting communication
with neighboring cells. The cells are interconnected as a torus [6]. An iWarp array communicates
with other computer systems by inserting “interface boards” in the back loops of the torus (Figure
6). Interface boards are, besides being linked into the iWarp interconnect, also connected to
an external bus or network, which allows them to forward data between iWarp and the outside
world.

The iWarp-Nectar interface board, or HIPPI Interface Board (HIB), consists of two iWarp



0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

SIB

HIB

HIB

IN

OUT

Figure 6: Connecting the network interface to iWarp

interface cells and a CAB (Figure 7). Each interface cell is linked into the iWarp torus
independently through four iWarp communication pathways, as is shown in Figure 6 for an
8 by 8 iWarp array. The two iWarp cells play the role of host on the network. They are
responsible for TCP and UDP protocol processing and for distributing data to, and collecting
data from, the cells in the iWarp array.

To transmit data over the HIPPI network, cells in the iWarp array send data over the iWarp
interconnect to the “HIB OUT” interface cell. The interface cell combines the data, stores it in
staging memory as a single data stream and issues a write call to invoke the TCP/IP protocol.
The TCP/IP protocol stack does the protocol processing, using the CAB to DMA the data from
staging memory into network memory, calculate the checksum and transmit the data over the
HIPPI network. The inverse process is used to receive data. The HIB can also be used as a raw
HIPPI interface, for example to send data to a framebuffer.

The motivation for using two cells on the network interface is to provide enough bandwidth
between the network and the iWarp array. An iWarp cell has a bandwidth of 160 MByte/second to
its memorysystem (Figure7); this bandwidth is shared by the data stream and program execution.
Since HIPPI has a bandwidth of 100 MByte/second in each direction, a single iWarp cell would
clearly not be able to substain the peak HIPPI bandwidth. A two-cell architecture doubles the
available memory bandwidth, but requires that TCP protocol processing is distributed between
the transmit and receive cells. A shared memory is provided to simplify the sharing of the TCP
state (open connections, open window, unacknowledged data, etc.).

The iWarp Nectar interface physically consists of a transmit and receive board, plus a board
that contains the HIPPI interfaces (necessary to provide space for connectors). All boards are
VME boards, but only use VME for power and ground. Most of the board space is used for
the iWarp components, memory and support chips. Network memory consists of two banks of
2 MBytes of VRAM (can be upgraded to 8 Mbyte each). Each staging memory (see Figure 7)
consists of 128 KBytes of dual ported static RAM. The transmit board is currently operational,
and the full interface is scheduled for completion in December 1992.
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5 The Workstation CAB Implementation

5.1 Target Machine
The CAB architecture is being implemented for the DEC workstations using the TURBOchan-

nel I/O bus [7]; the initial platform will be the DEC 5000/200. The workstation interface is a
single board implementation with a shared bus interface for transmit and receive. The interface
is being built using off-the-shelf components and will be operational in Fall 1992.

The DEC workstation was selected as the target for our network interface after a careful
comparison of the DEC, HP, IBM and Sun workstations. One interesting result was that all four
classes of workstations have similar I/O subsystems: all are based on 100 MByte/second I/O
busses that rely heavily on burst transfers for high sustained throughput. TURBOchannel was
chosen because it is an open, simple bus architecture and because there is research ongoing at
CMU in the operating systems area, mainly based on DEC workstations, that we want to use.
Based on this similarity in I/O architecture, we expect that our results for the TURBOchannel
should largely carry over to other workstations.

5.2 Processor Cache and Virtual memory
On workstations, the use of DMA to transfer data between network memory and host memory

is made more complicated by the presence of a cache and virtual memory. Because of these
extra overheads, it might sometimes be more efficient to use the CPU to copy packet between
user and system space (programmed I/O – grey arrow in Figure 8).

DMA can create inconsistencies between the cache and main memory, resulting in wrong
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data being sent over the network or being read by the application. Hosts can avoid this problem
by flushing the data to memory before transferring it using DMA on transmit (black arrows in
Figure 8), and by invalidating the data in the cache before DMAing on receive. Write-through
caches only require cache invalidation on receive, which can be performed in parallel with the
data transfer from the device to main memory. For performance reasons, most workstations
move towards write-back caches where both cache flushing and invalidation add overhead to
the DMA. Fortunately, these operations make efficient use of the bus since they use bursts to
transfer cache lines to main memory.

On workstations, user pages have to be wired in memory to insure that they are not paged
out while the DMA is in progress. This cost, however, is acceptable and becomes smaller as the
CPU speed increases. For example, the combined cost of a page wire and unwire on a 15 MIPS
DECstation 5000/200 running Mach 2.6 is 134 microseconds while the time to transfer a 16
KByte page from device to memory is 262 microseconds (using a 64 byte burst size). While this
reduces the throughput from 62.4 Mbytes/second to 41.3 Mbytes/second, it is still much faster
than the maximum CPU copy rate (11.1 Mbytes/second). This is one area where moving away
from sockets can help. If the application builds messages in wired-down buffers (of limited
size), the overhead is eliminated. This is similar to mailboxes in Nectar [18].

Figure 9 compares the transmit and receive throughput that can be obtained across Turbo
Channel on the DEC 5000/200 with programmed I/O and with DMA using a block size of 16
words. The overheads for cache invalidation (the DEC 5000/200 has a write-through cache) and
page wiring and unwiring have been included. For small read and write sizes, programmed I/O
is faster. The exact crossover point between programmed I/O and DMA is hard to calculculate,
because it depends not only on the hardware features of the system, but also on how much data
is in the cache at the time of the read or write and the cost of cache pollution.

DMA is faster, even when considering the high overheads, because it can use burst transfers
that make much more efficient use of the bus than the single word transfers used in programmed
I/O. On other workstation architectures (such as the HP Snake and the IBM RS/6000) the CPU
can also burst data across the bus. This functionality is intended for use with graphics devices,
but can also be used for the network interface. Although the I/O bus throughput that can be
obtained using the CPU is typically still lower than the raw DMA rate, it makes programmed
I/O more attractive, and it increases the crossover point between the two.
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5.3 Performance Estimates
To validate the design of the CAB for workstations, we traced where the time is spent when

sending and receiving data on a DECstation 5000/200running Mach 2.6, using existing interfaces
to Ethernet and FDDI. The networking code consists primarily of Tahoe BSD TCP/IP code with
an optimized checksum calculation routine [21]. It does not include optimizations such as header
prediction, but we are in the process of including these. We use a special TURBOchannel-based
timer board with a 40 nanosecond resolution clock to measure the overhead of different network
related operations.

Using these measurements, we constructed graphs that show how much of the host memory
bandwidth, and indirectly of the CPU cycles, is consumed by the different communication-
related operations, and how many cycles are left for the application. Figure 10 shows the
result for communication over FDDI. The horizontal axis shows the throughput and the vertical
axis shows the percentage of the DS5000/200 CPU that is left for the application for a given
throughput. We observe for example that using 100 % of the processor we can only drive
FDDI at about 21 Mbits/second assuming 4500-byte packets. This result is in line with actual
measurements. It is clear that even after optimizing the TCP protocol processing, the existing
network interface will not allow us to communicate at the full FDDI media rate, let alone HIPPI
rates.

Based on these measurements we can estimate the performance for a HIPPI network interface
based on the CAB architecture. The result is shown in Figure 11. As expected, network
throughput is limited by the bandwidth of the memory bus (peak of 100MByte/second). The
graph shows that we should be be able to achieve about 300 Mbit/second throughput. This is
35 % of the total memory bandwidth available on the DEC 5000/200. These estimates do not
include the overhead of wiring and unwiring pages (should reduce throughput), or optimizations
of TCP/IP (should improve the results).
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6 Comparison with earlier work

Several groups have worked on host-network interfaces that provide support for fast
communication. The effort closest to ours is the “WITLESS” interface proposed by Van
Jacobson (see Section 3). The main difference between the two approaches is that we plan
to use DMA for large transfers, since it allows us to use the I/O bus more efficiently. This
is important if the goal is to achieve throughputs of several 100 MBit/second. An interface
based on this architecture, but with hardware support for checksumming, was built for the HP
workstatation [9].

Several other efforts have moved at least some of the protocol processing outboard. The
VMP network adaptor board (VMP-NAB) [22] supports the VMP request-response protocol
and splits protocol processing between the host and the NAB. The host provides the NAB with
a list of requests it is willing to accept, and responses it is expecting. This allows the NAB to
process incoming packets independent from the host, and store them in preallocated buffers.
This reduces the overhead on the host, but the network interface has to be able to interpret packet
headers.

The Protocol Engine Inc. network interface [23] uses custom chips to do outboard protocol
processing for XTP, TP4 and TCP/IP. One of the interface architectures has “intelligence” on
board to manage multi-media communication independently from the host.

The Crossbar Interface (CBI) being developed by LANL is a store-and-forward protocol
processor for switch-based networks based on HIPPI. It can be used as a Host Interface for
systems that are unable to do protocol processing (such as the CM2) and as a Routing Interface
between switches. It is intended to support high throughput for very large packets.
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Figure 11: Estimated Overhead for Communication over HIPPI using CAB

The Ultra network interface does outboard protocol processing for TCP, TP4, and Ultra
native mode [24]. It requires full synchronization between sender and receiver since the data
is transfered directly from the user space on the sender to user space on the receiver, without
any buffering on the network interface. For many applications, some buffering to decouple the
sender and receiver is desirable. Ultra also had to modify the TCP/IP packet format by placing
the checksum in a trailer.

The Nectar prototype system [25] provides a powerful outboard protocol engine. Besides
performing protocol processing, it could also execute application code. By moving protocol
processing outboard, communication was made very inexpensive, and application code on the
network interface could access the network with very low latency, since it bypassed the slow
I/O bus (a VME bus). Since Gigabit Nectar uses a much faster I/O bus and has been optimized
for efficient protocol processing, protocol processing no longer has to be performed outboard to
achieve efficient communication.

The current Connection Machines HIPPI interface has the problem that it does not allow
protocol processing, i.e. only raw HIPPI can be used. Furthermore, all communication has
to be managed by the front end, which communicates with the HIPPI interface over an
Ethernet. Several organizations [26, 27] have been successful at using the interface to distributed
applications across the Cray and CM, by implementing an RPC package that allows applications
to set up communication on the HIPPI interface. We hope that the architecture used for the
iWarp network interface will support both protocol processing and a more straightforward way
of managing I/O.



7 Conclusion

The CAB network interface architecture describes in this papers provides several features
that support efficient communication over high-speed networks:

1. Efficient use of memory and bus bandwidth. By providing outboard buffering and DMA,
the CAB reduces the number of data transfers over the host memory bus. This is very
different from outboard protocol processing [23].

2. Free CPU cycles for applications. By performing data checksums and media access
control in hardware, the CAB frees the CPU for other tasks.

3. Reduce interrupts. By limiting the number of interrupts from the CAB to one per
user write on transmit and one per packet and at most one per read on user read, host
performance is no longer bounded by interrupt handling speed.

The two CAB implementations, for iWarp and DECstation 5000, described in this paper will
be operational soon. There are a number of engineering applications which are being prepared
to make serious use of these implementations.
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