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Abstract

Simulations have been performed to verify the effectiveness of
using link-by-link flow controlled virtual channels for
maximizing ATM network performance. A simulator which
accurately reflects the real hardware design of a flow controlled
ATM switch is used. The switch is currently under joint
development by BNR and Harvard. The simulation results
clearly demonstrate that the flow control mechanism is able to
provide sufficiently rapid feedback to allow a network to adapt to
load changes and maximize its performance. The simulations
also show that, when compared to VCs using other traffic
management approaches, flow controlled virtual circuits are
efficient in terms of buffer usage and in point-to-multipoint
multicast implementations.

1   Introduction

A set ofcredit-based flow control schemes for implementing
link-by-link flow controlled virtual channels has been proposed,
in [5], for asynchronous transfer mode (ATM) networks [1, 3].
These three increasingly memory-efficient credit-based flow
control schemes with increasing implementation cost are named
N123, N123+ andN23 respectively. A credit cell format,
compatible with AAL type 5, is also proposed in [5] along with a
set of credit-related transaction types. These credit-based flow
control schemes have been implemented in a 622-Mbps ATM
switch design under joint development by BNR and Harvard.

Defined in terms of ATM cells, these credit-based flow control
schemes can operate on top of various underlying physical
media. They can efficiently implement flow controlled VCs of
any bandwidth, and can also limit the bandwidth used by the flow
control overhead to any given fraction of the total link
bandwidth.

Moreover, the schemes are robust in the sense that they can
recover automatically from link errors. Adjustments can be
easily made to increase the degree of automatic protection
against errors at the expense of increased bandwidth overhead or
buffer memory size. It is shown in [5] that while enjoying
automatic protection against errors, theN23 Scheme is
equivalent to the “additive” credit updating methods [6, 7, 12], as
far as the effect of flow control on buffer management is
concerned.

A major motivation for using the per VC link-by-link flow
control (LLFC) approach is to maximize ATM network
performance. We have been performing simulations to validate
the approach based on these credit-based flow control schemes.
The simulations have been performed on a simulator which
accurately reflects the hardware design of the BNR/Harvard
switch. The paper is an interim report on the performance
simulations we have done so far.

The organization of the paper is as follows: first, motivations
for per virtual circuit (VC), link-by-link flow control (LLFC) are
given. This is followed by an overview of the credit-based flow
control approach and a description of theN23 Scheme. Then, we
present the main contributions of this paper, that is, our
simulation approach, and descriptions and results of various
simulations we have performed. Finally, comparisons with some
other approaches are given. Note that for completeness, some
background information in [5] is repeated in this paper.

2   Why Per VC Link-by-Link Flow Contr ol?

A basic reason to use per VC LLFC is to providefast
congestionfeedback for individual VCs. Measurements have
shown that data [9, 14] and video [10] traffic often exhibit large
bandwidth variations even over time intervals as small as 10
milliseconds. With the presence of very high-bandwidth traffic
sources such as a high-speed host computer with a 800-mbps
HIPPI [4] network interface, the network must be prepared for
further increase in load fluctuations [13]. A single traffic source
of this kind, or just a few of them, will be able to pump data into
a network at such a high rate to consume a large fraction of the
peak bandwidth of a network link. On the other hand, the traffic
source can complete its data transmission in a short time because
of the very fact that data is transmitted at high rate. Once the
transmission is complete, the network load will suddenly drop
sharply. Thus traffic burstiness will increase as the speed of
traffic sources increases.

In addition, for high-speed networks there is the problem of
increased mismatches in bandwidth [13]. When the peak speed
of links increases in a network, so may bandwidth mismatches in
the network. For example, when a 1-Gbps link is added to a
network which includes a 10-Mbps Ethernet, there will be two
orders of magnitude difference in their speeds. When data flows
from the high-speed link to the low-speed one, congestion will
occur quickly.

The highly bursty traffic and increased bandwidth mismatches
expected will increase the chance of transient congestion. It
therefore becomes absolutely imperative to ensure that transient
congestion does not persist and evolve into permanent network
collapse. To achieve good network performance under these
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situations, the network must provide fast congestion feedback on
a per VC basis [13]. LLFC implements the required feedback at
the fastest possible speed.

Using LLFC, a VC can be guaranteed not to lose cells due to
congestion. When experiencing congestion, backpressure will
build up quickly along congested VCs spanning one or more
hops. When encountering backpressure, the traffic source of a
congested VC can be throttled. Thus excessive traffic can be
blocked at the boundary of the network, instead of being allowed
to enter the network and cause congestion problems to propagate
to other traffic.

The “per VC”LLFC allows multiple VCs over the same
physical link to operate at different speeds, depending on their
individual congestion status. In particular, congested VCs cannot
block other VCs which are not congested.

The throttling feature on individual VCs, enabled by LLFC, is
especially useful for implementing high-performance, reliable
multicast VCs. At any multicasting point involving more than a
moderate number of ports, the probability that one or more of
them are not available at a given cell cycle is likely to be high,
and the delay before a cell is forwarded to all the ports can
fluctuate greatly. It is therefore essential for reliable multicast
VCs to throttle in order to accommodate the inherent high
variations in their transmission speeds. Of course, in practice a
“relatively” reliable multicast which allows some sort of time-out
on blocked multicasting ports will be implemented so that an
unreliable port will not hold up the whole multicast VC for an
unbounded amount of time. In addition, a certain degree of
“asynchrony” will be allowed so that some multicasting ports
may proceed ahead of others by some limited number of cells in
order to increase switch utilization and the multicast VC’s
throughput. (See section 8.2)

Flow control will allow new services for hosts with high-speed
network access links operating, for example, at 100 megabits per
second. For instance, these hosts can be offered a new kind of
service, which may be called a “greedy” service, where the
network will take as much traffic as possible at any instant from
VCs under this service. Flow control can be used to throttle these
VCs on a per VC basis when the network load becomes too high.
There will be no requirements for predefined service contract
parameters, which are difficult to set dynamically. This “greedy
service” is expected to serve many types of best-effort traffic
effectively and efficiently.

3   Credit-Based, Per VC Link-by-Link Flow Control

An efficient way of implementing per VC LLFC is to use a
credit-based approach. A flow controlled VC is composed of one
or more flow controlledVC links or simplylinks, connecting
various network subsystems such as switches and adapters.
Figure 1 depicts two flow controlled VCs (VC1 andVC2) for
which credit-based flow control is used for each link.

Figure 2 is a magnified view of the two flow controlled VC
links between Adapter 1 and Switch 1. During the operation of a
VC, two types of ATM cells, calleddata andcredit cells, will be
used. A data cell transports data belonging to the VC. A credit

cell transports credit values and various credit-related
management information for the VC. All credit cells are
transported over some reserved VCs, called thecredit-carrier
VCs. Refer to [5] for a proposed credit cell format and some
credit-related transaction types.

Each VC link is associated with a pair ofsender and receiver
buffers, which are also calledVC buffers1. Transporting data
cells from the sender buffer to the receiver buffer over the VC
can beflow controlled to prevent overrun of the receiver buffer.
For two consecutive links of the same VC, the receiver buffer of
the upstream link is also used as the sender buffer of the
downstream link.

The credit-based flow control over a VC link generally works
as follows. Before forwarding any data cell over the link, the
sender needs to receive credits for the VC via credit cells sent by
the receiver. At various times, the receiver sends credit cells to
the sender indicating that there is a certain amount of buffer
space available for receiving data cells of the VC. After having
received credits, the sender is eligible to forward data cells of the
VC to the receiver. Each time the sender forwards a data cell of a
VC, it decrements its current credit count for the VC by one.

When receiving a credit cell for a VC the sender updates its
credit count for the VC using anabsoluteupdating method, as
opposed to a relative or additive method. This means that the
new credit count will be computed entirely from the newly
received credit, independently of the old credit count. In

1 VC buffers are denoted by dots in Figures 1 and 2.
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particular, the new credit count will not be relative to the old
credit count. This is in contrast with relative or additive updating
used in some previously proposed “credit-like” flow control
schemes [6, 7, 12], where the new credit count is equal to the old
credit count plus the newly received credit value. The absolute
credit updating allows a robust flow control scheme in the sense
that any effect of a corrupted credit can be recovered
automatically by the arrival of the next successfully transmitted
credit [5].

Three credit-based flow control schemes, called theN123,
N123+ andN23 Schemes, are described in [5], all of which use
absolute credit updating. Generally speaking, theN23 scheme is
the most attractive one of the three methods, as it requires the
smallest buffer memory. Moreover, it is shown in [5], while
using an absolute (and thus fault-tolerant) credit updating
method, theN23 Scheme actually achieves the same effect as an
additive updating method with perfect transmission, as far as
buffer management is concerned. The other two credit-based
flow control schemes,N123 andN123+, can also be attractive
due to their relatively simple implementation. Their extra buffer
space is proportional to the link propagation delay and thus can
be insignificant for local area networks where propagation delays
are small. In this paper, we study only theN23 method.

4   TheN23 Scheme: A Credit-based Flow Control
Scheme

The “N23 Scheme” is a method of implementing the
credit-based flow control scheme described above. This method
has a number of desirable features [5], including (1) provision for
transmitting credit cells at any low bandwidth, (2) robustness
against corrupted credit cell, (3) size of the VC buffer for a VC
bounded by a quantity depending only on the targeted bandwidth
of the VC rather than the peak link bandwidth, and (4) bounded
maximum bandwidth achievable by individual flow controlled
VCs. Of course, this method has the usual features such as
prevention of buffer overflow and underflow typically found in
other flow control methods. This section briefly describes the
N23 Scheme. For details, refer to [5].

4.1   Definitions and Terminologies

For describing theN23 Scheme, it is convenient to consider
three consecutive nodes of a VC, referred to asupstream, current
anddownstream nodes. Figure 3 depicts these nodes along with
their VC buffers. With respect to the link between the upstream
and current nodes, they are the sender and receiver nodes,
respectively. Similarly, with respect to the link between the
current and downstream nodes, they are the sender and receiver
nodes, respectively.

Upstream Node Current Node Downstream Node

Figure 3 Three consecutive nodes of a VC
and their VC buffers

VC Buffer VC Buffer VC Buffer

The following definitions and notations will be used
throughout:

• R = Round-trip link delay between the current and
upstream nodes, including both the link propagation
delay and the time for handling data cells and
processing credit cells at the two endpoints.R is a
system parameter, which can be determined at the
system configuration time, and can be measured by
executing a built-in looping routine.

• BVC = Targeted bandwidth of a VC over timeR.

• Blink = Peak bandwidth of the underlying physical
link over timeR.

• Cell_Size = 53 bytes, for ATM cells.

Note thatBVC≤ Blink is alwaystrue, and in general,BVCcanbe
much smaller thanBlink. This is the reason why theN23Scheme
is designed so that the VC buffer size for a VC is bounded above
by a quantity proportional toBVC rather thanBlink.

4.2   TheN2 and N3 Zones of VC Buffer

For theN23scheme, the VC buffer is composed of two zones
for each VC crossing the current node. As depicted in Figure 4,
they are calledN2 andN3 zones, each possessingN2 andN3
cells, respectively.2

TheN2 zone allows less frequent sending of credit cells (while
still preventing data and credit underflow) to minimize the
bandwidth for transmitting credit cells.

The value ofN2 can be the same for all flow controlled VCs in
a network. The value can be a design or engineering choice. For
example, a reasonable value forN2 in this case could be 10.

• It is also possible that different VCs may use
differentN2 values. For example, a VC for which
automatic recovery from errors is critical may
choose to use a relatively smallN2 in order to
increase the chance that another credit cell will
immediately follow a corrupted credit cell. See
Section 4.5 for further discussions on the error
recovery issue.

The N3 zone prevents data and credit underflow, so that the
VC can sustain its targeted bandwidth as long as the upstream
node has data to forward and the downstream node has space to
receive them. The value ofN3 is given by Equation (3).

• TheN3 zone must be large enough to prevent data
underflow. It must hold enough data cells to
continue sending downstream at the targeted

2 The other two credit-based schemes in [5], calledN123 and
N123+,require three buffer zones.

1/N2
bandwidth

N2 N3

Preventing
data and credit
underflow

for transmitting
credit cells

Figure 4 Two zones of each VC buffer
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bandwidth,BVC, while waiting for new data cells
from upstream reflecting the most recently sent
credit cell on this VC.

• To prevent credit underflow, the upstream node must
receive credit cells each with a sufficiently large
credit value. This prevents the upstream node (when
operating at the targeted VC bandwidth) from
depleting its current credit before the next credit cell
arrives. Note that each new credit value isN2 + N3
less the buffer fill. Thus, for a given value ofN2, the
N3 value must be large enough to allow the sending
of sufficiently large credit values.

4.3   BasicN23 Algorithm

Figure 5 depicts the basic algorithm for theN23 Scheme.3 The
current node will send a credit cell (to the upstream node) for a
VC each time after it has forwardedN2 data cells of the VC (to
the downstream node) since the previous credit cell was sent.
The credit cell will contain a credit value (for the VC) equal to
the number of unoccupied cell slots in the combined area
consisting of theN2 andN3 zones. A credit cell need not be sent
when the combined area is totally occupied.

Upon receiving a credit cell with credit valueC for a VC, the
upstream node is permitted to forward up to C − E data cells of
the VC before the next successfully transmitted credit cell for the
VC is received, whereE is defined by Equation (2). Specifically,
the upstream node maintains a count, called Credit_Count, for
the VC. Credit_Count could be set to beN2 + N3 initially. Each
time the upstream node forwards a data cell of the VC (to the
current node), it decrements the Credit_Count by one. It stops
forwarding data cells (only of this VC) when the Credit_Count
reaches zero, and will be eligible to forward data cells (of this
VC) again when receiving a new credit cell (for this VC) which
gives a positive value forC − E.

3 In the figure, time flows from top to bottom, the occupied area
of a buffer is shaded, and dashed arrows refer to transmission of
credit.

Figure 5 TheN23 Scheme
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More precisely, when receiving a credit cell for a VC, the
sender will immediately update its current Credit_Count for the
VC using:

Credit_Count =Credit Value in the Newly
Received Credit Cell− E (1)

where

E = # of data cells the sender has forwarded over the
VC for the past time period ofR (2)

Notethat this updating is “absolute”, as defined in the end of
Section 3, because the new Credit_Count is computed
independently of the old Credit_Count.

One purpose of theN3 zone, as stated earlier, is to prevent data
overflow and underflow. As shown in [5], to achieve this for a
VC of targeted average bandwidth ofBVC over timeR, it suffices
to chooseN3 to be:4

N3 = R . BVC / Cell_Size (3)

By increasing theN3 value, the VC can transport data cells at a
proportionally higher bandwidth.

4.4   Bounding the Bandwidth for Transmitting Cr edit Cells
and Required N2 Value

For a given value ofN2, the current node will send a credit cell
for the VC to the upstream node each time after having
forwardedN2 data cells of the VC to the downstream node. Thus
over this VC, the link between the current and upstream node
will transport credit cells no more than once everyN2 data cells.
By usingN2value of at leastX for all VCs, the overhead of
transmitting credit cells can be limited to an arbitrary fraction
(1/X) of the link bandwidth. However, the larger the value of N2
is, the larger the required memory in theN2 zone is. The
selection of theN2 value is a design or engineering choice.
Typically, N2 is chosen to be about 10 so that credit cells
consume no more that about 10% of total network bandwidth.

4.5 Robustness of theN23 Scheme

Using a strong error check such as a 32-bit CRC (see a
proposed credit cell format including CRC-32 in [5]), the
probability of undetected incorrect credit cells can be kept at an
acceptably low level. A corrupted credit cell detected by the
CRC at the sender will be discarded and the arrival of the next
successfully transmitted credit cell for the same VC will recover
from the error automatically.

After the sender detects and discards a corrupted credit cell, let
A be the number of future credit cells that will arrive anyhow
before the next successfully transmitted credit cell is received.
ThenA = (B + G) /N2  whereB is the number of data cells of the
VC in the receiver at the sending time of the credit cell (which
becomes corrupted), andG is the number of additional data cells
of the VC which may still arrive reflecting the last successfully
delivered credit cell. Note that B + G can be as large as the
maximum number of cells the VC buffer can hold.

4 There should actually be a ceiling of the right hand side
quantity of equation (2).
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Thus after the sender discards a corrupted credit cell, there
could beA additional future credit cells for the same VC
forthcoming, any of which if successfully transmitted, will
remove any effect caused by the corrupted cell. The value ofA
can be increased to improve this automatic protection against
corrupted credit cells, by decreasingN2 (at the expense of
increased bandwidth overhead for credit cells transmission) or
increasing the VC buffer size, or both. Note that networks with
large propagation delays have larger VC buffers (because of a
large value forN3) and therefore the credit-based flow control
schemes using absolute updating will be more fault-tolerant than
networks with small propagation delays.

However, after the sender detects a corrupted credit cell,
sometimes another credit cell will not immediately follow after
the corrupted credit cell, becauseB + G < N2. In other words, the
corrupted credit cell is the last credit cell generated by a burst of
data. In this case, after the sender has waited for credit cells for
the VC longer than some time-out period, it can request the
receiver to send credit value for a VC (using, for example,
Sender-Request-Credit in [5]). The receiver can also send
redundant credit cells for a VC at any frequency to increase the
protection against error. The absolute nature of the credit count
updating by Equation (1) is such that as discussed in Section 3,
effect of lost credit cells can be automatically recovered by any
future successfully transmitted credit cell for the same VC. The
only impact of a lost credit will be a potential, temporary delay in
forwarding more traffic over the VC.

4.6   Orthogonal Relation to Switching and Scheduling

The credit-based per VC flow control mechanisms discussed
in this paper are orthogonal to issues related to switching and
scheduling functions associated with a switching node. For a
flow controlled VC link, one side of the link does not need to
know whether the other side is a switch or not. The flow control
itself has no concerns on implementation matters at either side of
the link related to how scheduling and/or switching of data cells
of various VCs are performed. That is, flow control functions
prevent data overflow and underflow, whereas switching and
scheduling functions are responsible for implementing various
services, such as guaranteed bandwidth and latency for certain
VCs, on top of the flow control mechanism. However, as
discussed in [5], underlying flow control schemes can facilitate
efficient scheduling.

4.7   VC Buffer Sizes for theN23 Scheme

Figure 6 is a summary of the required per VC buffer sizes for
theN23 Scheme at each node, for various link lengths and
targeted VC bandwidthsBVC. The calculation assumes thatN2 =
10 for all VCs, and the propagation delay per km is 5
microseconds. In addition, it assumes that the time for handling
data cells and processing credit cells at the two endpoints
consumes additional 5 microseconds, as in the BNR/Harvard
ATM switch.

5   Simulation Approach

 The simulator that produced the results in this paper was
designed primarily to verify the architecture of the BNR/Harvard

switch. It models much of the switch down to the level of
registers and clock cycles, and thus provides very accurate
timings at the level of individual ATM cells.

Reflecting the actual switch architecture, the simulator uses a
common memory and output scheduling. Each VC has its own
queue of cells, and VCs are divided into a small number of
groups for scheduling; within each group, VCs that have both
cells and credit are serviced in round-robin. The simulations in
this paper either involve only one group, or treat them as priority
levels. In general, the credit mechanism does not constrain
scheduling except for VCs that have no credit; schedulers for
various qualities of service may be implemented without concern
for credit or buffer management.

The Awesime C++ threads package [11] provides the
simulator’s framework. Each hardware functional block is
simulated with a thread, and threads communicate only through
simulated registers or busses. A thread can allow time to pass
between events by suspending itself for that amount of time; this
is the primary synchronization method within the simulator. A
simulated switch uses roughly 1000 threads of 50 different types.

Each simulation can be configured in two areas. Switches and
hosts can be connected by links with specified propagation
delays. Virtual circuits can be created with specified traffic
patterns. The simplest pattern is called greedy, and sends as much
data as it can, limited only by the credit mechanism. Most other
patterns alternate idle periods with bursts of back-to-back cells.
Each VC has anN3 value for each link it traverses, usually
chosen by Equation (3) to accommodate the VC’s desired peak
bandwidth. Each VC also has a priority.

The output of the simulator is a time-stamped trace of the cells
that enter and leave each switch and host. A specialized
visualization program extracts relevant statistics and produces
graphs, including those in this paper. Bandwidth graphs show the
fraction of link bandwidth used, averaged over an interval
surrounding each data point; the interval is usually 25 cell times.
The bandwidth used includes the ATM header as well as payload.
Bandwidth can be measured for a single VC’s data cells over a
link, for all traffic on a link, or for credit cells alone. Other graphs
include end-to-end delay for a VC’s cells, the total number of
cells queued in a switch, and the number of cells credited to a VC

Figure 6 Per VC buffer size in #cells (i.e.,N2 + N3), and
#KBytes at each node for the N23 Scheme

10 Mbps 100 Mbps 622 Mbps
Link Length
1 km 10+1 cells 10+4 cells 10+23 cells

1 KBytes 1 KBytes 2 KBytes

10 km 10+3 cells 10+25 cells 10+155 cells
1 KBytes 2 KBytes 9 KBytes

100 km 10+24 cells 10+238 cells 10+1475 cells
2 KBytes 14 KBytes 79 KBytes

1000 km 10+235 cells 10+2360 cells 10+14679 cells
13 KBytes 126 KBytes 779 KBytes
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at a particular host or switch. The horizontal axis of each graph
measures time.

6   Full Link Utilization: “Overbooking Inequality”

One can see from Figure 6 that local area networks can support
a large number of VCs with largeBVC, using only a moderate
amount of memory. Each of these VCs may assume a high
bandwidth at various times whenever network load permits. For
example, on a 1 km link, one megabyte of memory can maintain
1,000 VCs, each of which can operate at a speed as high as 100
Mbps, i.e., atBVC = 100 Mbps.

These VCs obviously cannot all operate at their peak
bandwidth simultaneously, over the same physical link of
bandwidthBlink, equal to say, hundreds of megabits per second.
That is, the “overbooking” inequality holds:

(4)

where the summation is over all the VCs on the link. In fact, the
idea of LLFC is to make the left-hand side much larger than the
right-hand side, in order to maximize link utilization. The
credit-based flow control schemes of this paper will flow control
these VCs dynamically so that they can slow down when the link
is congested. However, as soon as the link congestion situation
lightens, each of these VCs can immediately operate at speeds as
high as possible, up to its peak bandwidthBVC, to make the
maximum-possible use of the available bandwidth.

In some sense, the fundamental reason to use link-by-link flow
control or fast feedback is to allow the Overbooking Inequality
(4), in order to let VCs peak at high speeds whenever possible.
This is in sharp contrast with contract-based, rate-control
approaches through which the VC admission process will
disallow such inequality for traffic entering the network.

Figure 7 shows an example of this overbooking. There are two
VCs sharing the same output link of a switch.VC1 is a non
flow-controlled, high-priority VC carrying compressed video
traffic with bandwidth alternating between 10% and 66% of the
link bandwidth.VC2 is anN23 flow-controlled, low-priority VC
carrying best-effort (greedy) traffic such as a file transfer.

Suppose that forVC2 the round-trip link delayR between Host
A and the switch is 155 cell times. Assume that the VC buffer at
the switch forVC2 has anN3 value large enough to sustain the
full link rate, that is,BVC = Blink. Then, by Equation (3),N3 =
155. Of course,VC2 cannot sustain at that rate becauseVC1 is
also sending cells over the same link. Whenever there is

BVC Bl i nk>∑

Host A

Host B

Host FSwitch

VC2: Flow-Controlled

VC1: Non Flow-Controlled
(High Priority, Video)

(Low Priority, Best-effort)

Figure 7 Two flow-controlled VCs
competing for the same output link of a switch

competition, the switch scheduler at the output link will do the
obvious thing, namely, ensuring thatVC1 will win. Ideally, VC2
would vary the rate at which it sends cells so as to use all
bandwidth not used byVC1, keeping the link fully utilized.

The results of a simulation of this scenario are shown in Figure
8. The throughputs of the two VCs always sum to 100%, soVC2
is in fact filling the gaps inVC1’s traffic. Furthermore,VC2 is
doing this without buffering large numbers of cells in the switch:
VC2 never uses more thanN2 + N3 = 10 + 155 = 165 cell buffers.
Notice that the graph ofVC2 lags slightly behindVC1, as is
expected. Both of these result from the flow control mechanism’s
ability to quickly back-pressure and draw-in data forVC2 asVC1
changes its load.This allows the scheduler to achieve what is
expected, without having to be concerned with buffer
management. The rest of this paper explores the detailed
behavior of this flow control mechanism..

7   Understanding Credit-Based Flow Control

In the following sections, we will present simulation studies
and results which will demonstrate the effectiveness of theN23
credit scheme. Please note that anN2 of 10 is used for all
simulations.

7.1   Flow Controlled VC in Noncongested Situations

Consider the simulated situation in Figure 9. A single VC
starts at host A, travels through the switch, and terminates at host
B. Each link has a propagation delay of 50 microseconds, which
is the time it takes to send 77.5 cells; thusR is 155 cell times.
Host A generates a cell for the VC every third cell time and Host
B consumes cells as fast as they arrive. The simulation uses an
N3 of 51, which is theR / 3 that Equation (3) predicts will
guarantee a bandwidth of at least one third of the link capacity.
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Figure 8 The greedy VC (VC2) takes up the left over
bandwidth. The link is fully utilized.
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Figure 9 Single Noncongested VC
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Figure 10 displays the simulated bandwidth used by the VC as

it leaves the switch; the VC achieves the desired bandwidth of
one third. As indicated in Figure 11, credit is always available at
the switch for the VC, so the switch can pass on the VC’s cells
without delay. Since host B consumes cells as they arrive, it
sends one credit cell back to the switch for everyN2 data cells.
The vertical rises in the graph correspond to the arrival of these
cells at the switch. Host B sendsN2+ N3 credits in each cell, but
the switch subtractsE from this value. Since the switch maintains
the bandwidth of 1/3,E is always roughlyR / 3, which is equal to
N3, so the effective credit is roughlyN2. Data cells arrive at the
switch on every third cell cycle, and leave immediately, so the
credit count in Figure 11 decreases by one every three cell times.
Since Host B sends a credit cell with an effective value ofN2 for
everyN2 cells it receives, a new credit arrives at the switch just
as the switch is running out of the credit contained in the
previous credit cell.

Figure 12 and Figure 13 show a situation with one change: the
VC is greedy, and thus willing to send as much data as the flow
control system will allow. In each period ofR, the switch sends
N2+ N3 cells as a full-speed burst; from then until the end of the
period, itsE is as large as the credits returned by host B, so the
switch cannot send more data. Figure 13 does not show the
credits received during this time, since they all have effective
values of zero. The first credit cell that arrives after the end of the
period triggers another burst. The burst sometimes falters at the
beginning, if the first credit arrives whenE is greater thanN3,

Figure 10 Offered load of 33%. Desired bandwidth
of 33% is achieved.
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Figure 11 Offered load of 33%. Credit arrives just
before it is depleted.

and the effective credit is thus less thanN2. OnceE has
decreased enough, the switch can send another continuous burst
of N2+ N3 cells.

The average bandwidth achieved by the VC in Figure 12 is
39% of the link rate, which is the upper bound (N2 + N3) / R
proven in [5]. IncreasingN3 would allow the VC to send faster,
by sending more cells in eachR period; anyN3 value less thanR
has the effect of limiting a VC’s peak bandwidth. IfN3 were
increased toR, the VC would experience the same smooth flow
seen in Figure 11, but at the full link rate. An increase inN3
would not affect the throughput in Figure 10, because host A in
that scenario only offers a load of 33%; such an increase would
only increase the credit values.

If a VC is not congested and has a sufficiently largeN3,
credit-based flow control creates no additional delay at each
node. Simulations such as that of Figure 11 show that for theN23
Scheme, in noncongested situations the VC buffer need never
store more than one cell. When congestion occurs, data cells may
be buffered in the VC buffer. After congestion clears, the extra
delay at the node is no more than that determined by the size of
the VC buffer.

7.2   Resource Sharing under Congestion

If the switch is congested, theN23 credit scheme prevents
overflow of data cells. Together with a round robin scheduler, it
is guaranteed that each competing VC gets an equal share of the
output link.
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Figure 12 Offered load of 100%. Average bandwidth
of 1/3 is achieved, but in bursts.
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Consider the simulated situation in Figure 14, three greedy
VCs competing for the same output link.VC1, VC2 andVC3 are
greedy VCs whoseN3s are set so as to allow them to send at a
maximum rate of 100%, 72% and 40% ofBlink respectively. R is
155 cell times andN3 is set to 155, 113, and 63 forVC1, VC2 and
VC3 according to Equation (2). The initial credit value at the
switch isN2 + N3. Simulation results show that the switch is
congested because the traffic competing for the output link sums
up to 212%Blink. Eventually the sender generates data cells at the
rate of 1/3 ofBlink because of the equal sharing of the output link

and theN23 back pressure. Figure 15 shows the throughput
arriving and leaving the switch forVC1. The sawtooth pattern for
the arriving curve arises because of the bursts of 10 cells sent by
the upstream node upon receiving a credit value of 10. The
straight line for the departing curve shows there is exactly one
cell leaving the switch during any interval of three cell times for
VC1. Note thatN3 is the predominant defining factor of queue
length and delay for greedy traffic. Figure 16 shows the queue
lengths of the three VCs inside the switch. SinceVC1 initially
sends at the full link speed (N2+N3 = 165 cells back to back) into
the switch, but can only send 55 cells over 165 cell times out of
the switch, about 110 cells must be buffered in the switch.
Thereafter, the number of cells buffered remains at about 110,
because after the sender is back pressured, both input and output
links operate at the same speed (1/3 of the link bandwidth). The
fluctuation of 7 cells within a 30 cell time period arises from the
fact that the sender bursts 10 cells back to back, whereas the
switch sends 3 cells for the first 10 cell times and another 7
during the next 20 cell times while the sender runs out of credit,
and thus is silenced. Because each VC is running at 1/3 of the
link speed, we expect the delay to be 3 times the queue length.

Switch Host AHost B

Host D

VC1

VC3

Host C

VC2

Figure 14 Resource sharing under congestion
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Figure 15 Input is bursty, output is smooth. Both are
1/3 of the link bandwidth.

This demonstrates that although the VCs are treated equally, they
may have different queue lengths and thus experience different
delays because of their differentN3 values.

7.3   Resource Sharing for Multiple Switches

Consider the two-switch case, shown in Figure 17, with four
“greedy” VCs.VC1 andVC2 compete for the output link of the
first switch and travel through the second switch, whereVC1
competes with VC3 and VC4 for another output link. The
propagation delay for all links is 50µs, soR=155 cell times. All
VCs are greedy with anN3 of 155 so as to facilitate the sending
at the full link bandwidth.

Simulation results show that bandwidth usage of the three VCs
competing for the output link of Switch 2 quickly converges to
exactly 1/3 each. Since all three VCs have the same priority, the
scheduler sends cells from these VCs in a round robin fashion.
As we shall see, there are always cells to send for each VC, since
the buffer fill remains at over 100 cells per VC.

Figure 18 shows the throughput ofVC1 and VC2 leaving
Switch 1. Notice that initially, both VCs send at 1/2 the
bandwidth. However, sinceVC1 is only given 1/3 of the
bandwidth leaving Switch 2, the credit being sent back to Switch
1 for VC 1 effectively exerts a back pressure, causing the
throughput ofVC1 to throttle back to 1/3 of the link bandwidth.
VC2, being greedy as well, quickly uses the remaining 2/3 of the
link bandwidth. This demonstrates how the flow controlled
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Figure 16 Queue length increases with increasingN3
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Figure 17 Resource sharing for multiple switches
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network as a whole ensures that every VC gets a fair share of its
most congested link.

Figure 19 shows the number of cells queued in the buffer for
VC1 at Switch 2. The buffer fill graphs ofVC3 andVC4 similar
to that ofVC1 in the steady state case. Thus the delay across
Switch 2 for these three VCs is similar as well. Note that the
buffer fill remains between 102 and 107 cells. This can be
explained as follows: Let us focus onVC1. Cells are exiting
Switch 2 at 1/3 the bandwidth. Initially, they are arriving at 1/2
the bandwidth. This mismatch causes the buffer in Switch 2 to
begin filling up. It takes 30 cell cycles for 10 cells to be sent out
of Switch 2, so a credit cell is sent back to Switch 1 every 30 cell
cycles. That credit cell contains the valueN2+N3-Bufferfill,
whereBufferfill is the number of cells buffered in Switch 2. Upon
receipt of the credit cell, Switch 1 subtractsE from that credit
value, which is the number of cells it has sent in the last round
trip time. This effective credit decreases as the buffer fills up
until the following equilibrium is achieved:

whereE = 155/3 since the VC ends up sending at 1/3 the link
bandwidth. Thus the left hand side represents the credit
calculated by Switch 1. The right hand side represents the actual
value the credit cell must contain in order for the VC to use
exactly one third of the bandwidth. Since a credit cell is sent back
from Switch 2 every 30 cell cycles, it must have a value of 10 in
order for the VC to send at 1/3 the bandwidth. Thus, according to
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Figure 18 Throughput of VC1 drops to 1/3 & VC2
takes the remaining 2/3 of the link bandwidth.
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Figure 19 Buffer fill has a lower end of 102-103 and
fluctuates by 3 or 4 cells.

N2 N3 Buffer fi l l− E−+ 10=

the equality, Bufferfill = 103, which corresponds to the lower end
value in Figure 19. This is case forVC3 andVC4 as well.

To explain the fluctuation of 3 or 4 cells in the buffer fill, we
must examine the rate of flow into and out of Switch 2 during one
credit cell sending period, which, as mentioned above, is 30 cell
cycles. During the first 20 of these cell times, Switch 1 sends at a
rate of 1/2, thus sending approximately 10 cells during this
period, during which time Switch 2 sends out 6 or 7 cells, since it
is sending at a rate of 1/3. During the next 10 cell cycles, no more
cells are sent from Switch 1, since the credit has been depleted,
and Switch 2 sends out those 3 or 4 cells. Thus, the buffer
fluctuates by 3 or 4 cells as is verified by Figure 19.

7.4   Competition between Credit and Data cells

Whenever two VCs share a link, but flow in opposite
directions, credit and data must compete for bandwidth. The
average credit bandwidth in one direction is the data bandwidth
in the other divided byN2. In the switch being simulated, credit
cells have priority over data, so any increase in credit bandwidth
decreases data bandwidth in the same direction. These
relationships form a cycle.

Figure 20 is an example of this. Suppose that both VCs are
greedy and have a large enoughN3 to sustain the full link
bandwidth, so that only competition with credit will prevent
them from sending at full speed. LetB1 andB2 be the data
bandwidths of the two VCs; thenB1 = 1 - (B2 / N2) andB2 = 1 -
(B1 / N2). Substituting1 - (B2 / N2) for B1 in the second equation
and solving for B2 indicates thatB2 = N2 / (N2 + 1). If N2 is 10,
then 91% of the bandwidth in each direction should be used by
data, and 9% by credit. Simulation confirms this prediction.

8   Comparing with Other Approaches

8.1   Request-Response with and without Flow Control

Applications which send requests and wait for responses seem
particularly suited to link-level flow control. Consider the NFS
[17] file system protocol, which is based on a remote procedure
call (RPC) mechanism. NFS implementations usually adjust
time-out periods based on round-trip times, but do not explicitly
adjust the amount of load offered in response to congestion
(though see [15]). The underlying RPC mechanism limit the load
to some extent, since clients must often wait for the reply to one
RPC before sending the next. However, NFS requests and
responses range in size from a few hundred bytes to 8 kilobyte
disk blocks, so this limit is not very stringent or precise. Since

SwitchHost A Host B

Host C

VC1

VC2

Figure 20 Credit and data competition
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NFS clients must wait during any delay imposed by the network,
artificially smoothing bursts in NFS traffic is not desirable.

An underlying link-level VC flow control mechanism would
allow NFS to send at full speed when possible, but would throttle
it when the network was congested. Without such flow control,
NFS would force the network to buffer large amounts of data,
pausing only after each RPC request. Simulations based on traces
of real NFS traffic indicate that flow control substantially
decreases the amount of buffer space required to handle a given
number of NFS connections, without increasing delay. For
instance, Figure 21 contains the number of cell buffers that

would be required in a switch to handle different numbers of
clients running a particular set of traces. These numbers are the
maximum queue lengths observed during one second of
simulated traces. The traces are of clients reading each file in a
directory hierarchy; each client communicates with a different
server, but all connections share a single bottleneck link with a
round-trip time of five microseconds. The worst case buffer use
occurs when many clients send a large request at the same time;
these simulations give a feel for how likely that is to happen.

8.2   Multicast with and without Flow Control

Our BNR/Harvard switch features common memory and
output port scheduling, and thus is well suited to multicasting.
For a multicasting VC, the input branch enters a switch through
one input port, and the branches exit through a number of output
ports. Each of these output ports schedules its own branch
asynchronously. In other words, if a port has sent cell1, it can
send cell2 as long as it has credit, even if one of the other
branches has not sent cell1 yet. At any time, there is only one
copy of a data cell, stored in the common memory. When a data
cell has been scheduled for transmission through every branch’s
output port, this cell’s memory location is recycled. After every
N2 cell buffers have been recycled for a multicasting VC, a credit
cell is sent back through the input port to the upstream node. The
credit value isN2+N3 minus the number of cells of the VC still
residing in the common memory.

Non flow controlled multicast can consume large amount of
buffer space, because a cell’s buffer space can not be freed until
all branches have sent out the cell. Consider the situation in
Figure 22: one 5-port low priority bursty multicast VC shares
output links with 5 high priority bursty unicast VCs. The
upstream node of the multicast VC sends cells at the rate of 1/3
of the link speed on average, whereas the unicast VCs send at 1/2
of the full link speed on average. Because the VCs are all bursty,
it is possible that the output links can become congested in the
absence of any flow control, thus requiring a large buffer

# of clients with flow ctl. w/o flow ctl.

4 6 6

8 35 120

12 70 340

15 100 550

Figure 21 Peak cell buffers required for NFS

utilization. Figure 23 shows that flow controlling the low priority
multicast VC creates a savings of the peak buffer space required.
Figure 24 depicts the total number of cells the multicast VC has
forwarded up to each of the cell times shown. The figure shows
that the credit restriction does not affect the throughput: both
curves average about 1/3 of the link speed. The only difference is
that the bursty traffic is smoothed at the output side for the flow
controlled VC, which is not shown in the figure.

We have simulated another situation in which the multicast
VC has 15 branches. The results show that the throughput is
slightly lower than the non flow controlled target rate. In order to
send back each credit cell, all branches in the switch must send
out at leastN2 cells. Thus any link with a competing burst will be
a bottleneck, by preventing credit from being sent back. When
the number of branches becomes larger, the probability that at
least one branch is slowed down by a burst becomes higher and it
is more likely that the throughput of all the output links are
slightly lower than the target. For this reason we use a largerN3
for multicast VCs; the, simulation results shown in Figure 23 and
Figure 24 correspond to this largerN3.

8.3   Link-by-link Flow Contr ol Compared with End-to-End
Flow Control

End-to-end windowed flow control [18] is commonly used in
applications such as file transfer. Such protocols often include
congestion control algorithms to adjust a host’s window size in

multicast VC

Host

Switch

VC

Figure 22 Multicast VC competes with a unicast
VC at each branch port.
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Figure 23 Flow controlled multicast VC consumes
much less buffer space than the non flow controlled VC.
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response to changes in the rate the network is able to sustain.
Such protocols cannot react in less than one end-to-end round
trip time. If congestion occurs suddenly on some link, the switch
feeding that link must be prepared to buffer an entire end-to-end
round-trip time’s worth of data. Thus, if a network wishes to
avoid discarding data, it must allocate an end-to-end round-trip
time’s worth of data in every switch for every connection.

In contrast, link-by-link flow control reacts to congestion
within one link round-trip time. Thus, each switch must be
prepared to buffer one link round-trip time’s worth of data in
every switch for every connection; the total amount of buffering
devoted to a connection is one end-to-end round-trip time’s
worth. The ratio of switch memory requirements for the two
methods is equal to the number of links traversed by a
connection. In any network with more than a few switches,
link-by-link flow control will require far less memory to provide
lossless transmission than end-to-end flow control.

9   Conclusion

The simulation results presented in this paper confirm several
beneficial properties of using link-by-link flow controlled virtual
circuits. As described in Section 6, low-priority best effort traffic
can dynamically fill the bandwidth gap possibly left by other
high-priority traffic, thus achieving full link utilization. “Greedy”
services, as defined in Section 2, can therefore be efficiently
implemented.

When network congestion occurs, the size of the VC buffer of
a flow controlled VC need never grow beyond a predetermined
limit related to the VC’s desired bandwidth and the round-trip
link delay. Simulation results of Section 8.2 demonstrate that a
flow controlled multicast VC uses a much smaller peak buffer
size than a non flow controlled one while delivering the same
throughput. Similar savings in buffer space is also observed in
Section 8.1 for NFS traffic.

Simulations of Section 7 show that the flow control
mechanism itself does not create extra delays under uncongested
situations. If congestion does occur because the size of the buffer
of a flow controlled VC is limited, the delay will be bounded
when the congestion clears up. Other simulations in the section
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Figure 24 The throughput of the multicast VC is
identical, whether flow controlled or not.

validate some properties of flow control that one would expect,
such as fair resource sharing when using fair scheduling.
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