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Abstract -- Measurements on an experimental ATM switch in a 
local area network have demonstrated significant performance 
gains for TCP traffic with ATM-level flow control. Without 
flow control, buffer overruns at ATM switches feeding into 
bottlenecks can prevent TCP from using more than a few 
percent of the potential bandwidth. A detailed analysis of the 
cell loss patterns that foil TCP’s loss recovery strategy is 
presented. With flow control, efficiency is nearly perfect. ATM 
flow control prevents cell loss due to congestion, and as a 
result TCP can avoid retransmit time-out delays and maintain a 
high transmission rate. 

I. INTRODUCTION 

A good deal of traffic over future ATM networks may well 
use existing transport protocols such as TCPDP. TCP has its 
own window-based flow control mechanism which interprets 
lost or delayed packets as evidence of congestion. Switch- 
based ATM networks will be orders of magnitudes faster than 
most existing networks but many ATM switches are expected 
to have relatively limited buffer space; how well will TCP 
work in this situation? Can TCP still be reasonably efficient 
and fair? If not, how to solve the problem? 

There have been many studies and papers [ I I ,  131 
addressing these questions. Some have noted potential perfor- 
mance degradation of TCP over ATM, but few have addressed 
the underlying causes. 

This paper studies the impact of ATM switches and ATM- 
level flow control [2, 91 on TCP performance, and offers 
detailed explanation and analysis. These results are based on 
performance measurements obtained from an experimental 
ATM switch developed by Harvard and Bell-Northern 
Research (BNR). 

11. CREDITNET ATM SWITCH 

BNR and Harvard have jointly developed an experimental 
ATM switch called CreditNet [I], with both 622 megabits per 
second (OC-12) and 155-Mbps (OC-3) ports. Unique features 
of the switch include ATM-level credit-based flow control [7, 
8, 9, 121, per-VC (per virtual circuit) queueing, round-robin 
VC scheduling, multicast support in hardware, highly 
programmable microprocessor-based switch port cards, and 
built-in instrumentation for performance measurement. 

CreditNet’s flow control mechanism reserves buffer space 
in each switch for each VC. As depicted in Fig. 1, the switches 

send “credits” upstream (towards the data sender) reflecting the 
amount of unused space in each VC’s reserved buffer area. A 
switch or host will only send data on a VC if the VC has credit; 
that is, if the downstream switch or host along the VC’s path 
has unused buffer space reserved for the VC. Flow control thus 
can avoid data loss due to congestion. 
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Fig. 1: Credit-based flow control applied to each 
link of a VC. 

The CreditNet switch implements Partial Packet Discard as 
an option.This means that when the option is turned on, once 
the switch drops a cell from a packet, it will keep dropping 
cells until the end of the packet, whether or not it could buffer 
the cells. To allow the destination host to detect the start of the 
next packet, the switch does not drop the cell that marks the 
end of the current packet unless the switch is still out of 
memory. The Partial Packet Discard feature should be distin- 
guished from Early Packet Discard [13], in which the switch 
decides whether to drop the entire packet when the first cell of 
the packet arrives. If the switch does not have roughly one 
packet’s worth of space available, the entire packet is 
discarded. 

As of the first quarter of 1995, five of these switches have 
been built. The switches have successfully interoperated, over 
SONET links, with several commercial or experimental ATM 
host adapters including those from DEC (for Turbochannel), 
Sun (S-Bus), Intel (PCI) and Zeitmet (PCI). Both the OC-3 and 
OC-12 links have been used in applications. In addition, a 
Q93B signalling system has been implemented on the switch. 
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One of the switches now operates on site at Harvard Univer- 
sity. 

III. EXPERIMENTAL 
CONFIGURATIONS 

The experiments described below use two network configu- 
rations in a local area network environment. The first, shown in 
Fig. 2 (a), involves host A sending a continuous stream of data 
through the switch to host B. Host A’s link to the switch runs at 
155 megabits per second (Mbps), while host B’s link runs at 
only 53, enforced by a properly programmed scheduler on the 
link input. This is one of the simplest configurations in which 
congestion occurs. Note that after SONET and ATEA overhead, 
a 155-Mbps link can deliver roughly 134 Mbps or 17 mega- 
bytes per second of useful payload to a host. A 53-Mbps link 
can deliver about 5.7 megabytes per second. 

(a) 
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Fig. 2: (a) Network configuration for single TCP 
experiments on CreditNet; and (b) configuration for 
two competing TCPs. The circles are switches. Each 
darkened bar denotes a switch port. 

The second configuration, shown in Fig. 2 (b), involves 
four hosts. Host A sends data to host C, and host €3 to host D. 
The four host links run at 155 Mbps, and the bottleneck link 
between the switches runs at 53 Mbps. The purpose of this 
configuration is to show how two conversations interact. 

The hosts in all these experiments are DEC Alpha 3000/400 
workstations running OSF/I V3.0. The OSF/1 TCP implemen- 
tation [4], used in all the experiments reported in this paper, is 
derived from 4.3-Reno [ 141. This TCP tends to acknowledge, 
and thus transmit, pairs of packets. The TCP window size for 
these experiments is limited to no more than 64K bytes, and 
the packet size 9180 except when noted. The workstations use 
155-Mbps OTTO Turbochannel adapters provided by DEC. 
The Alphas can send or receive TCP using the OTTOs at about 
15 megabytes per second. The OTTO drivers optionally imple- 
ment CreditNet’s credit-based flow control partially in soft- 
ware; with credit turned on they can send and receive TCP at 
13 megabytes per second. 

The measurements are all directly derived from the instru- 
mentation counters in the CreditNet switch hardware. The 
hardware keeps track of the total number of cells sent by each 
VC and the number of cells buffered for each VC. For all the 
experiments reported in this paper, Partial Packet Discard is 
not turned on. Some discussion on its impact is given in 
Section IV. 

IV. TCP PERFORMANCE WITHOUT 
ATM FLOW CONTROL 

One of the simplest situations in which TCP has trouble 
over ATM without ATM-level flow control involves a host 
with fast link to a switch sending to a host with a slower link. 
This configuration is depicted in Fig. 2 (a). Fig. 3 shows useful 
throughput or “goodput” for a range of switch buffer sizes and 
packet sizes. As noted above, the maximum obtainable band- 
width on the bottleneck link is 5.7 megabytes per second after 
SONET and ATM overhead. The switch buffer sizes account 
only for the memory used by the 48-byte payloads of ATM 
cells. 

16000 ’ MTU=2048 - -  4 
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Fig. 3: Measured TCP performance with varying 
packet size (MTU) and switch buffer space, for the 
configuration of Fig. 2 (a). The dots indicate the 
points where experiments were run. 

Regardless of packet size, TCP performs badly unless the 
amount of buffer space is close to an entire 64Kbyte window, 
the maximum amount of data TCP will send before pausing to 
wait for an acknowledgment. Performance is good at slightly 
less than 64K because a few packets are effectively stored in 
the hosts and adapter cards. The OTTO host adapter buffers 
one packet in on-board memory during both transmission and 
reception, and thus will buffer more bytes when packets are 
large. The fact that lairge packets have better performance than 
small in Fig. 3 is caused only by this storage of packets in the 
hosts and adapters, and not to any deeper advantage. 

Figure 4 shows the TCP bandwidth achieved over time by a 
single connection with 9180-byte packets and 32Kbytes of 
switch buffer space. With much less than 64K of switch buff- 
ering, TCP sends small bursts of data separated by 1.5-second 
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pauses. These pauses are due to retransmission time-outs 
caused when TCP’s window [5] exceeds the switch’s buffer 
space. This happens within a few tens of milliseconds after 
TCP starts to retransmit each time: TCP can send a window in 
less than 10 milliseconds, and the window increases by one 
packet per window sent. Thus after TCP sends a few windows 
of data, the switch drops some packets because the window is 
larger than the buffer space. Since TCP’s minimum time-out is 
at least one second, TCP spends far more time waiting to 
retransmit than it does sending data. The inactivity period of 
more than 2 seconds in Fig. 4 is likely caused by the TCP 
exponential back-off triggered by the loss of some retrans- 
mitted packet. 
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Fig. 4: Measured TCP bandwidth over time show- 
ing time-outs, for the configuration of Fig. 2 (a), 
with 64Kbyte TCP window and 32Kbyte switch 
buffer. 

TCP running through packet switches, which queue and 
switch packets rather than cells, does not suffer from this 
problem. Each time TCP increases its window size to be one 
packet too large for the switch, the packet switch typically 
drops only one packet. TCP can efficiently detect and recover 
from a single lost packet with a mechanism called fast 
retransmit [14], which will decrease the window size and re- 
send the lost packet with very little pause. 

Why doesn’t fast retransmit work over ATM? Fig. 5 plots 
switch buffer occupancy in bytes, measured on the ATM 
switch in the configuration of Fig. 2 (a), just as a TCP connec- 
tion is opening its window enough that the switch must drop 
data. Again, the switch input runs at 155 Mbps, the output at 
53, and there are 32K bytes of buffer space available. Each 
peak is caused by the back-to-back amval of a pair of packets 
at the full input rate. The peaks are spaced out because packets 
leave (and are acked and thus new ones transmitted) at the 
slower output rate. The window increase happens just before 
time 0.21. The two disks above the buffer use line indicate 
times at which the switch hardware indicated it was dropping 
cells. Each disk represents a few dozen lost cells. 

The behavior depicted by Fig. 5 is typical: the switch typi- 
cally drops cells from two packets when TCP opens its window 
too far. Since fast retransmit reliably recovers from only one 
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Fig. 5:  Measured switch buffer occupancy as TCP 
increases the window size over time. The disks 
mark dropped cells. 

I 0.23 

lost packet, it leaves a lot of bandwidth unused while it times 
out. 

Intuitively, TCP has increased its window or the amount of 
data it wants the switch to buffer by one packet. Since the 
switch hasn’t enough space, it must discard up to one packet’s 
worth of data. A packet switch would drop one entire packet. 
But the ATM switch does not know about packets, so it typi- 
cally drops a packet’s worth of cells spread over multiple 
packets . 

A more formal argument that drops from multiple packets 
are common can be made. Assume that under the old window 
size, some number of cells N will be free just after the end of 
each packet’s arrival, and thus the switch buffer has enough 
space to accommodate the future arrival of N cells plus one 
packet just before each packet arrives. When TCP increases its 
window by a packet, the switch can buffer the first N cells of 
this packet but must drop some of the rest. Since at least N 
extra cells are buffered, at most one packet’s worth of buffer is 
available when the next packet arrives. If the next packet is 
even one cell early, some of it must be dropped. 

Figure 6 illustrates the situation predicted by this argument. 
It plots predicted (not measured) switch buffer use as a func- 
tion of time, much like Fig. 5.  In this graph, however, time is 
measured in packet arrival times ht  the switch buffer, and the 
vertical axis in packets worth ot switch buffering. The input to 
the switch buffer runs at ‘hree times the speed of the output. 
The disks mark the times at which the sender starts to send a 
packet; the packet transmitted at time 2.333 (packet i in Fig. 6) 
is the extra packet in a growing window. The dashed line 
shows what would happen if there were no limit on buffer 
space. The solid line shows what happens in a switch that can 
buffer only two packets. The first half of packet i is buffered. 
Some of the second half is dropped, but some is buffered since 
the switch is transmitting at the same time.These fragments 
cause the switch buffer to overtlow again when the packet sent 
at time 3 arrives. In this way two packets are damaged 

A precise explanation is given as follows. The white circle 
in Fig. 6 indicates the maximal switch buffer occupancy level 
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Fig. 6: Predicted graph of switch buffer space used 
as TCP increases the window size over time. The 
disks indicate when each packet starts to arrive. The 
arrows point to dropping. The white circle indicates 
the maximal switch buffer occupancy level beyond 
which a drop from packet i+l will occur. 

beyond which there will be drop from the next packet, packet 
i+l, will occur. The thick line in Fig. 7 shows how the vertical 
position of the white circle is determined. Note that the A value 
in Fig. 6 is greater than zero, as explained in the caption of Fig. 
7. Therefore cells will be dropped from packet i+l . 
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Fig. 7: A proof that the A value in Fig. 6 is 1, Treater 
than zero by noting that B is to the right A and thus 
C is above D. The dotted line has its slope equal to 
the output rate of the switch buffer. 

With Partial Packet Discard, B will move to El’ in Fig. 7. 
Thus C will move down somewhat but will still be above D. 
Therefore the switch will have increased buffer space available 
for packet i+l but will still drop part of it. Experiments confirm 
that Partial Packet Discard has only a marginal effect on effi- 
ciency. Perhaps the reason for the good lhroughput perfor- 
mance of Early Packet Discard in the simulation results [13] is 
that it concentrates all the dropped cells into a single packet, 
from which TCP’s fast-retransmit mechanism can recover. 

The same phenomenon occurs when two TCPs enter a 
switch on different fast links and leave the switch sharing a 

slower link. The TCiPs rarely compete against each other. Both 
spend most of their time in retransmit time-outs; whenever 
either starts to send, it almost immediately opens its window 
far enough that the switch drops multiple packets. 

V. TCP PERFORMANCE WITH ATM 
FLOW CONTROL 

ATM-level credit flow control resolves these TCP perfor- 
mance problems over ATM as described in the preceding 
section. The bottleneck switch no longer discards data when it 
runs out of buffer memory. Instead, it withholds credit from the 
switches and/or hosts upstream from it, causing them to buffer 
data instead of sending it. This backpressure can extend all the 
way back through a network of switches to the sending host. 
The effect is that a congested switch can force excess data to be 
buffered in all the upstream switches and in the source host. 
Data need never be lost due to switch buffer overrun. Thus if 
TCP chooses a window that is too large, the data will simply be 
buffered in the switches and in the host; no data loss and 
retransmission time-outs will result. 

Fig. 8 compares the useful bandwidths achieved with and 
without credit-based ATM-level flow control in the configura- 
tions shown in Fig. 2. For the flow-controlled cases, the switch 
has 100 cell buffers (4800 payload bytes) reserved per VC. For 
the non-flow-controlled cases, the switch has 682 (32 payload 
kilobytes) of buffering per VC. Recall that for the configura- 
tion in Fig. 2 the sl!ow link can deliver at most 5.7 payload 
megabytes per second, and the fast link 17. Thus in both one 
TCP and two TCPs cases, TCP with credit-based flow control 
achieves its maximum-possible bandwidth. 

(a) One TCP 

(b) Two TCPs 

Fig. 8: Measured total bandwidth achieved with 
and without ATM-level credit-based flow control, 
for the (a) and (b) configurations of Fig. 2. 

Using a configuration similar to Fig. 2 (b), experiments 
involving one TCP and one UDP instead of two TCPs have 
also been carried out. A typical measured result is as follows. 
When ATM-level credit-based flow control is used, UDP gets 
its maximum bandwidth only limited by the source, while TCP 
gets essentially the remaining bandwidth of the bottleneck link 
between the two switches. However, when credit-based flow 
control is turned off, TCP’s throughput is significantly dropped 
and the total utilization on the bottleneck link by both TCP and 
UDP reduces to be less than 45%. Thus, when competing with 
UDP, TCP with ATM-level flow control can keep up its 
throughput even though UDP does not reduce its bandwidth 
during network congestion. 
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Fig. 9 shows how much switch buffer space is used when 
one TCP sends into a slow link with credit flow control turned 
on, for the configuration depicted in Fig. 2 (a). The flow 
control system makes sure that enough cells are always buff- 
ered that it can keep the output link busy, but never much more 
than that. The large oscillations correspond to packet bound- 
aries. 
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Fig. 9: Measured switch buffer occupancy when 
one TCP sends into a slow link, as depicted in Fig. 2 
(a), with credit flow control turned on. 

ATM flow control requires switch memory proportional to 
the bandwidth-delay product of the links attached to the switch 
[6]. In a local-area net with low propagation delays a few 
dozen cells per VC might suffice, since this space would be 
supplemented by large host memories. For this reason credit 
flow control should scale well. 

VI. CONCLUSIONS 

Many investigators have noted that TCP performs worse 
over cell-switched ATM than it does over packet-switched 
networks. The experiments and analysis described here suggest 
that this is caused by the particular pattern in which ATM 
switches tend to drop cells. This pattern implies that non-flow 
controlled, cell switches will likely drop more than one packet 
in a row and as a result the efficient TCP fast transmission 
mechanism for single lost packet will not apply. 

While TCP performance can be made quite good using 
packet switches, .the amount of switch memory required is 
often bounded below by packet size rather than the more 
fundamental limit of bandwidth-delay product. A switch with 
ATM-level flow control can achieve near-perfect link utiliza- 
tion while approaching the minimum possible buffer use. 
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