
Receiver-Oriented Adaptive Buffer Allocation 
in Credit-Based Flow Control for ATM Networks 

H. T. .Kung and Koling Chang 
Division of Applied Sciences, Harvard TJniversity, 29 Oxford Street, Cambridge, MA 02138, USA 

Abstract 

In credit-based flow control for ATM networks, buffer is jirst 
allocated to each VC (virtual circuit) and then credit control is 
applied to the VC for avoiding possible buffer overjow. Receiver- 
oriented, adaptive buffer allocation allows a receiver to allocate 
its buffer dynamically, to VCs from multiple upstream nodes based 
on their bandwidth usage. This paper describes, in detail, such an 
adaptive algorithm capable of supporting a wide range of link 
speeds and propagation delays, and also packing multiple alloca- 
tion and credit records in a single message. Analysis and simula- 
tion results show that even under highly bursty trafic, the adaptive 
scheme guarantees no cell loss due to congestion, and achieves 
excellent performance in utilization, faimess, ramp -up and 
packing, while requiring only relatively small node memory and 
bandwidth overhead. The required memory need only be 4*RTT -+ 
2 *N, where RTT is the link round-trip time in cell cycles and N is 
the number of VCs. 

1. Introduction 

Flow control is essential for asynchronous transfer mode 
(ATM) networks [ 11 in providing “best-effort” services, or ABR 
(Available Bit Rate) services in the ATM Forum terminology. With 
proper flow control, computer users would be able to use an ATh4 
network as easily as they have been using conventional LANs. 
That is, they can use the network at any time without first negoti- 
ating a “traffic contract” with the network. They would be able to 
acquire as much network resources as are available at any given 
moment, and compete equally for the available bandwidth. 

An efficient way of implementing flow-controlled ATM 
networks is through the use of credit-based, per VC, link-by-link 
flow control [6,7,9].  

This paper gives new results related to adaptive buffer alloca- 
tion in credit-based flow control, including: 

9 A receiver-oriented buffer allocation scheme (Section 6). 
Unlike previous sender-oriented buffer allocation schemes [6, 
91, the receiver-oriented scheme here is designed to handle the 
case where VCs from multiple input links dynamically share 

This research was supported in part by BNR and Intel, and in part by 
the Advanced Research Projects Agency (DOD) monitored by ARPN 
CMO under Contract MDA972-90-C-0035 and by AFMC under Contract 
F19628-92-C-0116. 

the same buffer pool at the receiver. The description is given in 
such detail that the algorithm is fully specified without any 
ambiguity. 
Analysis of the adaptive scheme (Section 8). We show that the 
adaptive allocation does not cause cell loss, and provides fair- 
ness and guaranteed ramp-up with only modest amount of 
node memory. 
Extensive simulation results (Section 9). The receiver-oriented 
scheme has been simulated against stressful scenarios 
involving large disparity in link bandwidth and propagation 
delays. The scheme works well in all the tests. 

2. Why credit-based flow control? 

We briefly review credit-based flow control. A credit-based 
flow control method generally works over a flow-controlled link 
for a VC as follows. As depicted by Figure 1, before forwarding 
any data cell over the link, the sender needs to receive credits for 
the VC from the receiver. At various times, the receiver sends 
credits to the sender indicating availability of buffer space for 
receiving data cells of the VC. After having received credits, the 
sender is eligible to forward some number of data cells of the VC 
to the receiver according to the received credit information. Each 
time the sender forwards a data cell of a VC, it decrements its 
current credit balance for the VC by one. 

IO ~ ~ ~ u i ~ e r l  

vc 
V( 

:1 
::2 

Host 1 

HOJ ;t 3 

itch 1 

Figure 1: Credit-based flow control 
applied to each link of a VC 

Simulation and analysis shown in this paper and others (see, 
e.g., [6, 81) demonstrate that for a wide variety of traffic patterns, 
credlit control is fair, uses links efficiently, minimizes delay and 
prevents buffer overruns. The credit system is especially well 

0743-166W95 $04.00 0 1995 IEEE 
2d.2.1 

239 



suited to bursty data traffic that is unpredictable and has little toler- 
ance for delay. Examples of bursty usages include interactive 
Mosaic users, high-level protocol packets, and RPCs. 

In contrast, rate-based flow control (see, e.g., [ l l ,  121) may 
require less expensive hardware and may be effective for steady 
traffic, but appear to have difficulties in handing bursty traffic. 
Rate control will work well as long as rates can be set perfectly or 
near optimally. If the traffic is bursty, then rates can never be set 
correctly, and as a result they must be set adaptively. 

Note that adaptation can not be precise due to inherent facts 
such as incomplete and out-of-date information used, and variable 
control delay. On the other hand, adaptation should not be precise 
either; in fact, the assigned rate of a VC should be higher than its 
fair share to allow opportunistic grabbing of available bandwidth. 

Since adaptive rate setting can not and should not be precise, 
bounding the liability of overrunning switch buffers is a first order 
issue. Credit flow control is explicit about how much data a sender 
may transmit without receiving further credit. Lost or delayed 
feedback messages will not hurt, as the sender would just use the 
previous allowance. When necessary, the sender’s transmission 
can be stopped completely (i.e., rate = 0). Effective approximation 
of these credit properties by rate control has been a major chal- 
lenge. See [8] for elaboration of these reasons of why credit 
control is attractive for bursty traffic. 

Implementing credit-based flow control, an experimental ATM 
switch [2], with 622-Mbps ports, has been developed by BNR and 
Harvard. This switch is operational and initial applications are 
under development. 

3. Credit Update Protocol 

The Credit Update Protocol (CUP) [6] is an efficient and 
robust protocol for implementing credit-based flow control. As 
depicted by Figure 2, for each flow-controlled VC the sender 
keeps a running total Tx-Cnt of all the data cells it has trans- 
mitted, and the receiver keeps a running total Fwd-Cnt of all the 
data cells it has forwarded. (If cells are allowed to be dropped 
within the receiver, Fwd-Cnt will also count these dropped cells). 
The receiver will enclose the up-to-date value of Fwd-Cnt in 
each credit record transmitted upstream. When the sender receives 
the credit record with value Fwd-Cnt, it will update the credit 
balance Crd-Bal for the VC: 

Crd-Bal = Buf-Alloc - (Tx-Cnt  - Fwd-Cnt)  (1) 

where Buf-Alloc is the total number of cells allocated to the 
v c .  

Tx Cnt Fwd C n t  

Data Cell Sender r k  Credit ,Cell 

Crd-Bal 
= Buf-Alloc - (Tx-Cnt - Fwd-Cnt) 

Figure 2: Credit Update Protocol (CUP) 

Note that the quantity, Tx-Cnt - Fwd-Cnt, represents the 
“outstanding credits” which are cells of the VC that the sender has 
transmitted but the receiver has not forwarded. Thus Crd-Bal 

computed by Equation (1) is the proper new credit balance. See [6] 
for a scheme of using credit-check cells periodically to recover 
from possible loss of data or credit cells. 

The frequency that the receiver sends credit records for a VC 
depends on the VC’s progress. More precisely, each time after the 
receiver has forwarded ‘“2” cells for some positive integer N2, 
the receiver will send a credit record upstream. The value of N2 
can be set statically and dynamically. 

A given Bufplloc value of a VC determines the maximum 
bandwidth allowed to the VC by credit flow control. For the rest of 
this section, we make a simplifying assumption that all links have 
the same peak bandwidth of 1, and represent the rate of a VC as a 
fraction of 1. Let RTT be the round-trip time, in cell transmission 
times, of the link between the sender and the receiver (see Figure 
2) including both link propagating delays and credit processing 
time. Assume that the receiver uses fair scheduling policy between 
VCs when forwarding cells out from the receiver’s output link. 
Then if there are N VCs competing for the same output link, the 
maximum average bandwidth over RTT that the VC can achieve 
is: 

BW = Buf-Alloc / (RTT + N2*N) ( 2 )  

The CUP scheme is a lower level and lighter weight protocol 
than typical sliding window protocols used in, e.g., X.25 and TCP. 
In particular, CUP is not linked to retransmission of lost packets. 
In X.25 or TCP, loss of any packets will stop advancing the 
window until the dropped cells have been retransmitted. To imple- 
ment this, each packet carries a sequence number. In contrast, CUP 
does not handle retransmission and reordering problems, and does 
not require that each cell carry a sequence number. 

It can be shown [7] that CUP produces the same buffer 
management results as the well-known “incremental” credit 
updating methods (see, e.g., [3, 51). Instead of sending Fwd-Cnt 
values upstream, these methods send “incremental” credits to be 
added to Crd-Bal at the sender. 

4. Static vs. adaptive credit control 

We call a credit-based flow control static or adaptive, if the 
buffer allocation is static or adaptive, respectively. In a static credit 
control, a fixed value of Buf-Alloc will be used for the lifetime 
of a VC. Requiring only the implementation of CUP in Section 3 
or some equivalent protocol, the method is extremely simple. 

There are situations, however, where adaptive credit control is 
desirable. In order to allow a VC to operate at a high rate, Equation 
(2) implies that Buf-Alloc must be large relative to RTT + 
N2*N. Allocating a small buffer to a VC can prevent the VC from 
using otherwise available link bandwidth. On the other hand, 
committing a large buffer to a VC can be wasteful, because some- 
times the VC may not get sufficient data and scheduling slots to 
transmit at the high rate. The proper rate at which a VC can 
transmit depends on the behavior of traffic sources, competing 
traffic, scheduling policy, and other factors, all of which can 
change dynamically or are not known a priori. In this case, adap- 
tive credit control using adaptive buffer allocation as described 
below can be attractive. 

In summary, adaptive credit control is static credit control plus 
adaptive adjustment of Buf-Alloc of a VC according to its 

240 
2d.2.2 



current bandwidth usage. For configurations where a large Buf- 
Alloc relative to R’IT + N2*N is not prohibitively expensive, it 
may be simplest to implement just static credit control. Otherwise, 
some adaptive buffer allocation scheme may be used to adjust 
Buf-Alloc adaptively. The adaptation can be carried out by 
software. 

5. Adaptive buffer allocation 

Adaptive buffer allocation allows multiple VCs to share the 
same buffer pool in the receiver adaptively, according to their 
needs. That is, Buf-Alloc of a VC will decrease, if the VC does 
not have sufficient data to forward or is back-pressured due to 
downstream congestion. The freed up buffer space will automati- 
cally be assigned to other VCs which have data to forward and are 
not congested downstream. 

Adaptive buffer allocation can be implemented at the sender or 
receiver. As depicted by Figure 3, in a sender-oriented adaptive 
scheme [6] the sender dynamically allocates a shared input-buffer 
at the receiver among a number of VCs from the sender that share 
the same buffer pool. The sender allocates buffer for the VCs 
based on their measured, relative bandwidth usage on the output 
port p .  Adaptive results in [6, 91 all concern with sender-oriented 
adaptive buffer allocation. 

vc 1 Location where Adavtive 
Buffer Allocation Performs 

Figure 3: 

Receiver-oriented 
receiver dynamically 

Input-Buffer Shared T 2 b  
Receiver \‘\ 

Sender-oriented adaptation 

adaptation is depicted by Figure 4. The 
allocates a shared output-buffer among a 

number of VCs from one or more senders that share the same 
buffer pool. The receiver allocates buffer for the VCs based on 
their measured, relative bandwidth usage on the output port q. This 
paper studies receiver-oriented buffer adaptation. 

Figure 4: Receiver-oriented adaptation 

Receiver-oriented adaptation is suited for the case where a 
common buffer pool in a receiver is shared by VCs from multiple 

upstream nodes. Figure 4 depicts such a scenario: the buffer pool 
at output port q of the receiver switch Rcv is shared by four VCs 
from two switches Sndl and Snd2. Note that the receiver (Rcv) can 
observe the bandwidth usage of the VCs from all the senders (in 
this case, Sndl and Snd2). In contrast, each sender can only 
observe the bandwidth usage of those VCs going out from the 
same sender. Therefore, it is natural to use receiver-oriented adap- 
tation in this case. 

Moreover, receiver-oriented adaptation naturally supports the 
adaptation of N2 values for individual VCs to minimize credit 
transmission overhead and increase buffer utilization. As only the 
receiver needs to use N2 values, it can conveniently change them 
locally. See Section 7.5. 

6. A receiver-oriented adaptive scheme 

This section describes the receiver-oriented adaptive scheme of 
this paper. The scheme intends to achieve a set of goals, including 
fast ramp up, small memory requirement, low transmission over- 
head, robustness against transient errors, low implementation cost, 
and ease of use (i.e, no complex parameters to adjust). 

To be precise, the scheme is given in pseudocode. The 
pseudocode is designed for simulation purposes. (See Section 9 for 
simulation results of the code.) For actual implementation on real 
systems, some “re-engineering” may be applied. For example, the 
scheme allows allocation to be computed at any (slow) speed to 
suit the implementation. 

It should be relatively easy to read the pseudocode. The most 
important part is the adaptation formula used in the Compute 
New Buffer Allocation routine in Section 6.8. Note that 
sender and receiver in Figure 2 are also called upstream and down- 
stream nodes, respectively. See Figure 5 for a “visualization” of 
the pseudocode. 

7 N CPs-”-, fly 

Current Design: AI = 2 flTT 

Figure 5: 
- .  

Visualization of thepseudocode 

6.1. Shared buffer pool model 

A shared buffer pool nxde is depicted by Figure 6. The model 
allows links of various speeds and propagation delays. A cell time 

2d.2.3 
241 



is the time to transmit a cell over a link. Different input links may 
have different cell times. We use the following notations: 

OLCT (Output-Link-Cell-Time) 

ILCT (Input-Link-Cell-Time) 

MCT (Minimum-Cell-Time) 

Cell time for the output link 

Cell time for an input link. 

Minimum cell time for all input or output links. 

Input Link 1 

Input Link 2 
Input Link 3 0-1 p;;~ r o u t p u t ~ i n k  

Input Link h 
Receiver 

U 

Figure 6: Shared buffer pool model 
For simulation simplicity, we assume that the OLCT and the 

ILCT for any input link are integral multiples of MCT. If, for 
example, Input Link 2 is three times as slow as a link with the 
maximum speed, then the ILCT for Input Link 2 is 3* MCT. 

The shared buffer pool in the receiver is assumed to have suffi- 
cient bandwidth for supporting the output link and all the input 
links simultaneously. That is, if all the links are of the maximum 
speed, then for each MCT, the shared buffer pool can input one 
cell from each of the input links and output one cell to the output 
link. 

The output link is associated with separate per-VC buffers and 
a round-robin scheduling policy to transmit cells from “eligible 
VCs”. Eligible VCs are defined as those having both positive 
credit balance and one or more data cells to send. For each OLCT, 
the scheduling policy selects a VC to send a data cell from among 
those that are eligible. 

6.2. Parameters 

Per VC parameters 
RTT Round-trip time for VC, in number of MCTs. 

Included in R’IT are ( I )  round-trip link propagation 
time, (2)  credit retum and processing time, and (3) 
credit record queueing delay due to credit packing 
(see Section 6.3). 

VC’s weight reflecting its RTT relative to RTTmi, (see 
the definition of RTTmin below), i.e., VC-Weight = 

VC-Weight 

RTT/RTT,i, 
AllocBound 

Maximum buffer allocation (in cells) VC ever needs 
for achieving its fair share of bandwidth. This bound 
will be used to avoid giving excessive buffer 
allocation to VC. 
Propagation delay, in number of MCTs, of VC’s input 
link. 

PD 

Global parameters 
N 
RTT,, 
RTTmin 

Active VCs are VC[ 11 through VC[N]. 
Maximum R’IT for any of the input links 
Minimum RTT for any of the input links 

PD,, 
AI 

CP 

Maximum PD for any of the input links 
Buffer allocation interval for VC. A new buffer 
allocation for each VC is computed once for each AI. 
Buffer allocation computation period, i. e., the time 
interval between two consecutive buffer allocation 
computations taking place at the receiver for 
individual VCs. 

Maximum number of credit or alloc records a credit 
cell can pack. 

Time delay between the time when the receiver 
finishes the sending of a batch of packed credit cells, 
and the time when it starts sending the next batch. 
Credit-Batch-Send-Period is given in number of 
ILCT of the input link over which the credit cells will 
be sent. 
Measurement interval over which each VC’s 
bandwidth usage is measured 
Size of the shared memory or buffer pool in the 
receiver, in number of cells 

Packing-Limi t 

Credit-B atchSend-Period 

MI 

M 

Parameters only for upstream node 
(Consider the upstream node corresponding to an input link.) 

” 

PP 

Active VCs over the input link are also called VC [ 13 
and VC IN’] 
New allocation phase in period, i.e., time delay before 
phasing in the new buffer allocation for the next VC 

6.3. Guidelines for setting parameters 

Packing-Li mi t 
This code assumes that Packing-Limit = 6, i.e., up to 
six credit or alloc records can be packed in the 48-byte 
payload of a credit cell. 

This code assumes A = IO. This choice of the A value 
should, in general, result in a high packing degree of 
credit or alloc records for congested links. Smaller 
values for A can also work well for a downstream 
node with a large number of ports. 
To account for the queueing delay of credit record due 
to packing, R’IT should include Credit-Batch-Send- 
Period * B, where B is ILCT (of the input link) 
divided by MCT. (See the definition of RTT in Section 
6.2.) 
AI must be at least R’IT,,,. This is the minimum- 
possible adaptation interval from a control theoretical 
viewpoint. In practice, networks should be engineered 
to avoid buffer sharing between VCs with extreme 
RTT disparities, in order to allow fast adaptation for 
VCs with relatively small R’ITs. This code assumes 
AI = RTT,, + N * CP. 
PP should be smaller than CP. This code assumes PP 
= CPl2. 
To simplify implementation, MI is typically an 
integral multiple (>I)  of AI. Assuming MI = 2 * AI, 
this code maintains both Prev-Fwd-Cnt and PPrev- 
Fwd-Cnt counters. 

Credit-Batch-Send-Period = A  * PackingLimit, with A 2 1 

RTT 

AI 

PP 

MI 

242 
24.2.4 



AllocBound = r(4/3)*RTT*MCT / MAX(OLCT, ILCT) + 4/31 
See Section 8.1 for a proof that AllocBound given 
here would allow the VC to achieve its fair share of 
bandwidth. 

This pseudocode assumes C = 4 and D =2. See 
Section 8.2 for a proof that this value of M guarantees 
ramp up. Note that with any choice of the M value, 
this pseudocode guarantees that there will never be 
any cell loss due to congestion. However, larger M 
would allow faster ramp up. 

M = C*RTT,,*(MCT/OLCT) + D*N, with C 2 4 and D ;? 2 

6.4. Upstream node variables 

Per VC variables 
Tx-Cnt 
Crd-Bal 
VC-Activated 

Number of cells transmitted by the upstream node 
Available credit at the upstream node 

Binary flag, when TRUE indicates that VC has been 
activated 

Cur-Alloc Current buffer allocation for VC 
New_Alloc[2] 

VC’s new buffer allocation for the next AI.Two new 
allocation banks (NABS) are used to allow 
incremental phase in of new buffer allocation for 
individual VCs. 

Flag indicating from which NAB the value of New- 
Alloc will be read. (Initially, Valid-NAB = 0) 

Valid-NAB 

Global variables 
Use-New-Alloc-Timer 

This is a timer associated with an output of an 
upstream node. When this timer reaches AI, all 
outgoing VCs will start using their New-Alloc:. See 
Section 7.3 on initializing this timer for allocation 
synchronization. 

Binary flag, when TRUE indicates that Use-New- 
Alloc-Timer has reached AI 

Indicate the NAB from which values of New-Alloc 
should be read for all the VCs going out from the 
upstream node over the link in question. Global-NAB 
toggles for each AI. (Initially, Global-NAB = 0) 

PP-Timer A new buffer allocation can phase in for some VC 
when this timer reaches PP. (Initially, PP-Timer = 0) 

4 Pointer to the next VC for which the new buffer 
allocation will be phased in when PP-Timer reaches 
PP. (Initially, q = 1) 

Use-New-Alloc-Timer-Expired 

Global-NAB 

6.5. Downstream node variables 

Per VC variables 
Rx-Cnt Number of cells received by the shared buffer system 
Fwd_Cnt[2] Number of cells forwarded from the buffer system. 

Two memory banks are used to provide a “frozen” 
copy of Fwd-Cnt for incremental calculation of 
bandwidth usage. 

Fwd-Cnt is stored 
Valid-Bank Indicate which memory bank in which the most recent 

Prev-Fwd-Cnt 

PPrev-Fwd-Cnt 
Fwd-Cnt for the previous allocation interval 

Fwd-Cnt for the allocation interval just before the 
previous one 
Each time after N2 data cells have been forwarded, 
VC is eligible for queueing a new credit record to be 
transmitted upstream. 
Number of cells forwarded since last queueing of 
credit record 
Weighted VC bandwidth usage over the past MI cell 
cycles. (Initially, VU[x]= 0 for all x). 

N2 

N2-Cnt 

vu 
X Newly computed buffer allocation 

Glolbal variables 
TU 

TQ 

TQ-Snapshot 

Total weighted bandwidth usage among all VCs over 
the past MI cell cycles. (Initially, TU = 0). 
Total queue length, or memory usage, of all VCs. 
(Initially, TQ = 0) 

A copy of TQ to be used in buffer allocation 
computations for all the VCs with respect to the same 
allocation interval 

AI-Timer A new buffer allocation interval starts when this timer 
reaches AI. 

CP-Timer A new buffer allocation computation can start for 
some VC when this timer reaches CP. (Initially, CP- 
Timer = 0) 

When this timer reaches Credit-Batch-Send-Period, 
the receiver will start sending a batch of packed credit 
cells until the Credit-Send-Queue is emptied. Credit- 
Batch-Send-Timer increments by one for each ILCT 
of the input link over which credit cells will be sent. 
(Initially Credit-Batch-Send-Timer = 0) 

During packing, PackingCnt counts credit or alloc 
records in the Draft-Cell-Payload to be used in the 
next credit cell. (Initially, Packing-Cnt = 0) 
Pointer to the VC to which the next buffer allocation 
will be performed. (Initially, p = 1) 

Binary flag, when TRUE indicates that it is time to 
send credit cells 

AI-Expired Binary flag, when TRUE indicates that AI-Timer has 
reached AI 

Use-Bank Indicate memory bank to which updated Fwd-Cnt 
should be written. Use-Bank toggles for each new AI. 
(Initially, Use-Bank = 0) 

Credi t-B atch-Send-Timer 

PackingCnt 

P 

Tx-Credit-Cells 

6.6. Switch interface variables 

Per VC variables 
Data.-to-Send 

Indicates that VC has data ready to send 
OK-to-Send 

Indicates VC has a positive credit balance 
Send-Grant Indicates that VC has permission to send a cell at the 

next cell interval 
Cell--Sent Indicates that a cell for VC has been transmitted 

2d.2.5 
243 



6.7. Upstream mde pseudocode 

A c t i v a t e  V C [ i ]  
Cur-Alloc[i] = 1; 
New-Alloc[il = 1; 
Crd-Bal[il = 1; 
VC-Activated[il = TRUE; 

l " w a s m i h  a D a t a  C e l l  f o r  V C L i l  
(For Each ILCT) 
begin 
If (Send-Grant [il == TRUE) 
If (Crd-Bal[il > 0 )  
Send: Data-Cell for VC[il; 
Increment: Tx-Cnt[i] = Tx-Cnt[il 
If (Valid-NABLiI ! =  Global-NAB) 
Set: Valid-NAB[i] = Global-NAB 
Update: Crd-Bal[il = Crd-Bal[il 

+ 

+ New-Alloc[Valid-NAB[ill [il - Cur-Alloc[il; 
Copy : Cur-Alloc [ i 1 = 

Set: New-Alloc[ (Global-NAB+l) mod 21 [il = 1; 
New-Alloc[Valid~NAB[ill[il; 

Decrement: Crd-Bal[il = Crd-Bal[il - 1; 
If (Crd-Bal[il == 0 )  
Set: OK-to-Send[il = FALSE; 

Else Set: OK-to-send = TRUE; 
end 

R e c e i v e  a C r e d i t  C e l l  
(For Each ILCT) 
begin 
For each record in the credit cell do: 
If the record is for VC[il 
If (VC-Activated[il == FALSE) 

Else 
Discard record: 

If (Credit-Record) 
Receive: Credit-RecordIi; Fwd-Cnt[ill; 
If (Valid-NAB[iI ! =  Global-NAB) 
Set: Valid-NABLiI = Global-NAB 
Copy: Cur-Alloc[il = 

Set:New-Alloc[(Global-NAB+1)mod2] [il =l; 
New-Alloc[Valid-NAB[il I [il ; 

Set: Crd-Bal[il = Cur-Alloc[il 
+ Fwd-Cnt [ il - Tx-Cnt [il 

If Crd-Bal[il t 0 

Else Set: OK-to-Send[il = FALSE; 

Receive: Alloc-Record{i, X[il}; 
If (Valid-NAB[il ! =  Global-NAB) 

Set: OK-to-Send[il = TRUE; 

If (Alloc-Record) 

Set: Valid-NAB[i] = Global-NAB 
Update: Crd-Bal[il = Crd-Bal[il 

If (Crd-Bal[il t 0 )  

Else Set: Ok-to-Send[il = FALSE; 
Copy : Cur-Alloc [ i 1 = 

New-Alloc[Valid-NAB[il I [il; 

+ New-Alloc[Valid-NAB[i] I [il - Cur-Alloc[il ; 

Set: Ok-to-Send[il = TRUE; 

Set: New_Alloc[i(Global-NAB+l) mod 21 [i] = 
X l i l ;  
end 

Inerernant Adaptive T i m e r  
(For Each MCT) 
begin 
Increment: Use-New-Alloc-Timer = Use-New-Alloc- 
Timer + 1; 
If (Use-New-Alloc-Timer == AI) 
Global-NAB = (Global-NAB + 1) mod 2 ;  
Set: Use-New-Alloc-Timer = 0; 
Set: Use-New-Alloc-Timer-Expired = TRUE; 
Set: PP-Timer = 0; 

end 

Refresh Buffer Alloeatfon 
(For Each MCT) 
begin 
If (Use-New-Alloc-Timer-Expired == TRUE) 
If (PP-Timer == 0 )  
If (Valid-NAB[q] ! =  Global-NAB) 
Set: Valid-NAB[ql = Global-NAB 
Update: Crd-Bal[ql = Crd-Bal[ql 

+ New-Alloc [Valid-NAB[qI I [SI 
- Cur-Alloc [q] ; 

Set: OK-to-Send = FALSE; 
If Crd-Bal[ql < 0 

Else Set: OK-to-send = TRUE; 
Copy: Cur-Alloc [ql = 

Set: New-Alloc[ (Global-NAB+l) mod 21 [ql = 1; 
// For the next allocation if the Alloc-Record associated with X[q] is lost 
// in transmission, this default allocation of 4 cells will be used. 

New-Alloc [Valid-NABLql I [SI ; 

Increment: q = (q mod N') + 1; 
PP-Timer = (PP-Timer + 1) mod PP; 
If (q = 1) 
Set: Use-New-Alloc-Timer-Expired = FALSE; 
Set: PP-Timer = 0 

end 

A c t i v a t e  = t i l  
Rx-Cnt[i] = 0; 
Fwd-Cnt[O:lllil = 0 ;  
Prev-Fwd-Cnt = 0: 
PPrev-Fwd-Cnt = 0 :  
N2[il = 1; 
N2_Cnt[i] = 0: 
vC-Activated[i] = TRUE; 
Valid-Bank[iI = 0; 

R e c e i v e  a Data C e l l  f o r  WLil 
(For Each ILCT) 
begin 
If (VC-ACTIVATEDLiI == FALSE) 

Else 
Discard cell: 

Receive data cell and put it in buffer 
Increment: TQ = TQ + 1; 
Increment: Rx-Cnt[il = Rx-CntFiI + 1; 
Set: Data-to-Send[il = TRUE; 

end 

244 
2d.2.6 



Forward a Data C e l l  f o r  WEil 
(For Each OLCT) 
begin 
If (Send-Grant [il == TRUE) 
Decrement: TQ = TQ - 1; 
Increment: F’wd-Cnt[Use-Bankl[il = 

Fwd-Cnt[VAlid-Bank[il I [il + 1; 
Valid-Bank[il = Use-Bank; 
Increment: NZ-Cnt[i] = N2_Cnt[iI + 1; 
If (Na-Cnt[il == N2) 
Enqueue : 

Set: N2_Cnt[i] = 0; 

Set Data-to-Send[il = FALSE; 

Credit-Record (i, Fwd-Cnt[Valid-Bank[ill[ill; 

If (Rx-Cnt[i] - Fwd-Cnt[Valid-Bank[ill [i] == 0 )  

end 

Increment Packing Timer 
(For Each ILCT) 
begin 
If (Tx-Credit-Cells = FALSE) 
Increment: Credit-Batch-Send-Timer = 

Credit-Batch-Send-Timer + 1; 
If (Credit-Batch-Send-Timer == 

Credit-Batch-Send-Period) 
Set: Tx-Creditcells = TRUE; 

end 

Send a Credit Cell 
(For Each ILCT) 
begin 
If (Tx-Credit-Cells == TRUE) 
While (Packing-Cnt < Packing-limit) 
If (Credit-Send-Queue is not empty) 
Dequeue: Credit-Send-Queue; 
Insert: credit or alloc record 

in Draft-Cell-Payload; 
Increment: Packing-Cnt = Packing-Cnt + 1; 

Send: credit cell with Draft-Cell-Payload; 
Set: Draft-Cell-Payload is reset to empty; 
Set: Packing-Cnt = 0; 
If (Credit-Send-Queue is empty) 
Set: Tx-Credit-Cells = FALSE; 
Set: Credit-Batch-Send-Timer = 0; 

end 

Increment Adaptive Timer 
(For Each MCT) 
begin 
Increment: AI-Timer = AI-Timer + 1; 

Use-Bank = (Use-Bank + 1) mod 2; 

For (all VCIiIs) 

If (AI-Timer == AI) 

// Switch to the other memory bank 

W[i] = (Fwd-Cnt[(Use-Bank+l) mod 21 [il - 

N Since Fwd-Cnt[(UseBank+l) mod 21 will not be rewritten 
// in this AI, this loop can be done incrementally over multiple 

PPrev-Fwd-Cnt[il) *VC-Weight[il; 

// cell cycles, provide the loop is complete before the next AI 
Increment: TU = TU + W[i]; 
Set: PPrev~Fwd~Cnt[il=Prev~Fwd~Cnt[il; 
Set: Prev-Fwd-Cnt[il = 

Fwd-Cnt[ (Use-Bank+l) mod 21 [il ; 
If (Valid-Bank[i] ! =  Use-Bank) 

Fwd-Cnt[Valid-Bank[ill[il; 
Fwd-Cnt [Use-Bank1 [ i I = 

Valid-Bank[il = UseBank; 
Set: TQ-Snapshot = TQ; 
Set: AI-Timer = 0; 
Set: AI-Expired = TRUE; 
Set: CP-Timer = 0; 

end 

Coqpute N ~ W  Buffer Allocation 
(For Each MCT) 
begin 
If (AI-Expired == TRUE) 
If (CP-Timer == 0 )  
If (TU == 0 )  
X[p] = MIN(MAX(L(M/2 - TQ-Snapshot - N) 

*(I/N)J,o) + 1, Alloc-Bound[pl); 
Else 
X[pl = MIN(MAX(L(M/2 - TQ-Snapshot - N) 

*(W[pl/TU)J,O) + 1, Alloc-Bound[~l) ; 
N2 [PI = rX[Pl/41; 
If N2_Cnt[pl 2 N2Ipl 
Set: N2_Cnt[pl = 0; 
Enqueue : 
Credit-Recordfp, Fwd-Cnt[Valid-Bank[pIl [PI); 

I€ X[pl z 1 
Enqueue: Alloc-Record{p, X[pl}; 

Increment: p = (p mod N) + 1; 
CP-Timer = (CP-Timer + 1) mod CP; 
If (p = 1) 
Set: TU = 0; 
Set: AI-Expired = FALSE; 
Set: CP-Timer = 0 

end 

7. ]Design issues for receiver-&m&xI pse 

schemes 

There are some significant issues inherent in any receiver- 
oriented adaptive schemes. This section examines these issues and 
indicates how they are taken care of by the adaptive scheme of 
Section 6 above. 

7.1. Links of different round-trip times 

Sulppose that the links (e.g., those connecting Rcv to Sndl  and 
Snd2 in Figure 4) have different round-trip times (RTTI and R n z ) .  
Then an adaptive scheme should adjust buffer allocations based on 
the relative bandwidth usage of a VC weighted by the VC’s R U .  
In the pseudocode above, the per VC parameter, vc-Weight, 
captures this weighting information. 

Moreover, the size of the buffer pool at the receiver should be 
related to RTTm,,, where RTT,,,,, is the maximum R‘IT value for 
all the input links. As noted in the pseudocode above, the required 

2d.2.7 
245 



memory size is C*RTT,,,*MCT/OLCT + D*N, with C 2 4 and D 
2 2. 

7.2. Links of different speeds 

Suppose that the links (e.g., those connecting Rcv to Sndl and 
Snd2 in Figure 4) have different speeds. Then the buffer allocation 
upper bound should reflect the differences. That is, VCs through 
lower bandwidth links will have smaller upper bounds. Note that 
in the pseudocode the value of A1 loc-Bound indeed reflects 
link bandwidths. 

The waiting time for the packing of credit or allocation records 
should also be adjusted accordingly. That is, in order to achieve the 
same degree of packing, the receiver should extend this period for 
low bandwidth links. In the pseudo code Cred i t -Ba tch -  
Send-Pe r iod  is proportionally increased for low-speed VCs. 

7.3. Allocation synchronization 

All upstream nodes of a receiver should be synchronized, so 
that data from them will arrive at the receiver reflecting the alloca- 
tion for the same allocation interval (AI). Otherwise, a VC with 
decreased new allocation may still forward an excessive amount of 
data according to previous allocation. As a result, cells could get 
lost at the receiver because of memory overflow. 

In our pseudocode, we use a Use-New-Alloc-Timer for 
each of the upstream nodes to enforce synchronization. The timers 
are initialized to offset differences in link propagation delays. A 
positive side benefit of the use of these timers is that the receiver 
can send allocation records ( Al loc -Record )  for individual 
VCs incrementally without worrying about when senders will get 
them. 

More precisely, if the upstream nodes have different propaga- 
tion delays, then the initial values of Use-New-Allot-Timer 
at these nodes are staggered to account for the differences. That is, 
the initial value of Use-New-Alioc-Timer associated with an 
upstream node is -[AI + (PD,,, - PD)], where PD is the propaga- 
tion delay, in number of MCT, for the input link connecting to the 
upstream node. This ensures that data arriving at the receiver from 
various upstream nodes will all reflect the buffer allocation results 
computed by the receiver for the same AI awhile ago. 

This synchronization method is a little heavy-handed, mainly 
for simulation purposes. In practice, any method which guarantees 
synchronization within A I  will be sufficient. 

7.4. Buffer allocation bound 

Since we require the buffer space in the receiver to be more 
than two RTT, ,  it is possible to allocate more buffer to a VC than 
it can possibly use. Preventing excessive allocation to a VC would 
improve the chance for other VCs to use the memory when their 
needs arise. As explained in Section 8.1, our pseudocode uses a 
tight upper bound (A1 loc-Bound) on the maximum-possible 
allocation a VC would need in terms of link speeds, propagation 
delay and the current N2 value. 

7.5. Adaptive Credit Transmission Frequency 

It is desirable to adapt the frequency of transmitting credit cells 
of a VC, i.e., the N2 value, according to the VC's currently band- 
width usage. Those VCs with large bandwidth usage could use 
large N2 values, and thus would reduce their bandwidth overhead 
of transmitting credit records upstream. On the other hand, an 
inactive VC could be given an N2 value as small as one, to 
increase memory utilization. The N2 value would increases only 
when VC's bandwidth ramps up. Thus the required memory for 
each VC could be as small as one cell. 

The pseudocode implements the N2-adaptation idea described 
above. For a given buffer allocation of a VC, the N2 value is 
simply chosen as a fraction (such as a quarter) of the allocation. 

Allowing N2 to be set automatically is also attractive from the 
ease-of-use viewpoint. That is, there is no need for the higher-level 
software to choose N2 values for individual VCs. 

7.6. Packing of credit or allocation records 

It is possible to carry up to 6 credit or allocation records in the 
48-byte payload of a credit cell. In order to achieve a high degree 
of packing while limiting credit record's waiting time, our 
pseudocode sends a batch of packed credit cells each time after 
Credi  t-Batch-Send-Period expires. That is, the scheduler 
will serve the queued credit or alloc records only when the period 
has expired. Once the period expires, the scheduler will dequeue 
all the records in the queue. As noted in Section 7.2, C r e d i t -  
Batch-Send-Period has a large value for links of small band- 
width. 

8. Analysis of the receiver-oriented scheme 

The section analyzes some important properties of the receiver- 
oriented adaptive scheme presented in Section 6. 

8.1. Upper bound on buffer required by a VC 

We prove in this section that AllocBound given in Section 6.3 
is an upper bound on the buffer required by a VC. 

Let Credit Round Trip (CRT) be the length of the time interval 
starting when an upstream node transmits a data cell and finishing 
when it receives the credit cell triggered by the forwarding of this 
data cell (and possibly some subsequent data cells) at the receiver, 
assuming that there is no congestion. Let X be the new buffer allo- 
cation for the VC. Then 

where Nu, is the current number of VCs competing over the input 
link, Ndw is that over the output link, and NZ is T X M ~  in this 
pseudocode. Note that N2 < X/4 + 1. 

At any given time, one of the following two cases must hold. 
The first case is when 
N_Dw*N2*OLCT 2 Nup*N2*ILCT. 
Then for the VC to achieve l/Ndw of the output link bandwidth, X 
need only be as large as that required for the following equation: 
X*OLCT/CRT = or 

CRT = RTT*MCT + MAX(NUp*N2*ILCT, Ndw*N2*OLCT), 

246 
2d.2.8 



X*OLCT/[RTT*MCT + Ndw*(X/4 + I )  *OLCT] = I/Nd,. 
By solving X from the above equation, we see that 

X = ( 4 / 3 )  *RTT*MCT/ (Ndw*OLCT) + 4 / 3  ( 3 )  

This X value can already allow the VC to achieve its fair share, 
i.e., l/Ndw of the output link bandwidth, and thus any larger value 
for X would not be needed. Therefore Equation (3) gives ari upper 
bound on X for the first case. 

Ndw*N2*OLCT < Nup*N2*ILCT. Then for the VC to achieve 
UNup of the input link bandwidth, X need only be as larger as that 
required for the following equation: 
X*ILCT / CRT = UNup, 
or 
X*ILCT / [RlT*MCT + Nup*(X/4 + l)*ILCT] = UNup, 
By solving X from the above equation, we see that 

Similarly, we consider the second case when 

X = ( 4 / 3 )  *RTT*MCT/ [N,,*ILCT] + 4 / 3  ( 4 )  

This X value can already allow the VC to achieve its fair share, 
i.e., UN, of the input link bandwidth, and thus any larger value 
for X would not be needed. Therefore Equation (4) gives an upper 
bound on X for the second case. 

Now note that the following single formula captures the two 
upper bound results (3) and (4): 

X= ( 4 / 3 )  *RTT*MCT/MAX[Ndw*OLCT,NuP*ILCT] + 4 / 3  ( 5 )  

That is, if Ndw*N2*OLCT 2 NUP*N2*ILCT, 

then the above formula gives (3); otherwise it gives (4). 

X need not be larger than 
(4/3)*RTT*MCT / MAX[OLCT, ILCT] + 4/3 
Thus we let Alloc-Bound 
= r(4/3)*RTI'*MCT / MAX[OLCT, ILCT] +4/31. 

(or Ndw*OLCT 2 Nup*ILCT) 

The upper bound (5) implies that for any Nd, 2 1 and Nup 2 1, 

8.2. Guaranteed Ramp Up 

This section gives a proof that with M given in Section 6.3, 

M 2 (4*RTTmax + N)*MCT/OLCT (6) 

a VC can always ramp up its buffer allocation to achieve its fair 
share of bandwidth. Analysis here is similar to that for Alloc- 
Bound in Section 8.1. 

Suppose that the current buffer allocation X for a VC is insuffi- 
cient for the VC to achieve its fair share of bandwidth. We show 
that buffer allocation for the VC will ramp up, that is, the VC's 
new buffer allocation X will be larger than X, provided that 

TQ c ( 2 / 3 )  *RlTmax*MCT/OLCT ( 7 )  

where TQ is the current total queue size at the receiver. 
Consider the first case when 

Ndw*N2*OLCT 2 Nup*N2*ILCT. 
Because X is not large enough for the V c  to achieve 
output link bandwidth, X*0LCT/CRTab, < lmdw 

Qf the 

This implies that 

Ndw*X/4 < ( 1 / 3 )  *RTT*MCT/OLCT ( 8 )  

In thi!; analysis, we make the simplifying assumption that h 4 1  is 
w4.  

Note that in this code the new allocation X' is obtained by 
dividing the pie M/2 - N - TQ according to VC's bandwidth usage, 
weighted by its RTT, over the output link. Thus, 
X 2 (M/2 - N - TQ)*X*OLCT*(R'IT/RTTmax) 

By (6), (7) and (8), we see X > X. 

X*OI,CT / [Rn*MCT + N,jw*X / 4 *OLCT] < lmdw, or 

/ [R'IT*MCT + Ndw*(X/4)*OLCT]. 

Similarly, consider the second case when 
Ndw*W2*OLCT < Nup*N2*ILCT. 
Because X is not large enough for the VC to achieve l/N-Up of 
the input link bandwidth, X*ILCT/cRT,b, < UNup. 
This iimplies that 
X*ILCT / [RTT*MCT + Nup*X/4 *ILCT] < UNup, or 

NUp*X/4 < (1/3) *RTT*MCT/ILCT ( 9 )  

Note that in this code the new allocation X is obtained by 
dividing the pie M/2 - N - TQ according to VC's bandwidth usage, 
weighted by its RlT, over the output link. Thus, 
X' 2 (M/2 - N - TQ)*X*OLCT* (RTT/RTTmax) 

By (6), (7) and (9), we see X z X. 
Even when (7) does not hold, for either of the above two cases 

X > X can still be true as the inequality (8) or (9) is usually not 
tight. 

/ [RTT*MCT + Nup*(X/4)*ILCTl. 

8.3. Weighted allocation to account for different link 
delays 

In computing new allocation, we apply linear weighting to 
measured bandwidth usage to account for different link RTT 
values. The weighting is necessary since the achievable band- 
width, as described in Section 8.1, is inversely proportional to 
CRT which depends on R l T  and N2. Since in our algorithm the 
N2 value is also proportional to the total buffer allocation (i.e., N2 
= rX/41), the linear weighting used in our code is exactly what we 
need. 

9. Simulation results 

We have developed a cell-level simulator based on the 
pseudolcode of Section 6. Without loss of generality, our simula- 
tion uses MCT as time unit and cell as data unit. The bandwidth 
unit is the bandwidth of the fastest link. Thus the maximum band- 
width is 1. 

The: purpose of the simulation is to evaluate the performance of 
our receiver-oriented adaptive buffer allocation scheme as 
described in Section 6. We want to see if the algorithm can demon- 
strate fair buffer allocation, fair bandwidth sharing, limited queue 
length, high link utilization, and tolerance of significant bandwidth 
and length disparity among input links. 

We use three network configurations for the simulation. Our 
tests let multiple VCs start at the same time or at different times. 

24.2.9 247 



We also consider stressful situations such as sudden bandwidth 
decrease and increase for a link. We observe how fair the VCs 
share the bandwidth, how fast they ramp up, buffer usage, etc. 

Group 

9.1. Three network configurations and basic 
simulation results 

Bandwidth I Bottleneck Link 

The simulation results reported here use three network configu- 
rations. The first two are known at the ATM Forum as “Generic 
Fairness Configurations” [lo] (GFC1 and GFC2) and the third is a 
single switch configuration we call GFC3. 

The GFCl topology and bandwidth setup are shown in Figure 
7 .  The link propagation delay between any two connecting 
switches is 1,800 cells (corresponding to a 1,00Okm, 155.5 Mbps 
link) and that between a switch and a host is 1 cell. Table 1 shows 
the expected bandwidth for each group of VCs in the steady state, 
that can be derived by simple analysis. 

PD: ropd ation delay in # MCTs 
PA = 1 for link between host and switch 

A 

B 
C 
D 
E 
F 

[ 1: Link bandwidth 
Link bandwidth = 1 if not indicated 

(N): Number of VCs in the VC group 

l / L / = U U 3 /  b 1 - U  

2/27 = 0 074 s 4 3 5  
219 = 0 222 s3-s4  
1/27 = 0 037 S142 
2/21 = 0 074 s4-s5 
113 = 0 333 S2-S3 

Figure 7: Generic Fairness Configuration 1 (GFC1) 
Figures 8, 9 and 10 are simulation results of our adaptive 

scheme for GFCl. The bandwidth of several VCs and the total 
buffer usage of several switches are shown in Figure 8 and Figure 
9, respectively. The number of received cells on a VC at the desti- 
nation is given in Figure 10. From this figure we have a clear view 
of the long-term bandwidth achieved by the individual VCs. We 
see that bandwidth results from Figure 8 and Figure 10 match 
perfectly the expected bandwidth depicted in Table 1. 

Table 1: Expected bandwidth for GFCl 

GFC2, depicted in Figure 11, has a network topology similar to 
GFC1, but involving more switches and more varieties in link 
propagation delay. The expected bandwidth of VCs in the steady 
state for GFC2 is shown in Table 2. 

Figure 12 shows the simulation results of our adaptive scheme. 
We note that the VCs indeed achieve the expected bandwidth of 
Table 2. 

0.45 

O 4  r 
035 - 

0 3  - 

0 2 5  - 

0 2  - 

0.15 - 

0.1 - 

Bandwidth 01 VC Groups 

0 50WO (WOW ? M O W  Time 2OWOO (Min_CellLTime) 2 5 W O O  300000 3500W 400000 45WOO 

Figure 8: Bandwidth of VCs for GFCl 

Ton1 Buffer Cccupied by VCs 

5 4  c 53 --- 

50W 

4500 t t  52 -0.- 

0 1  1 ’ I 
0 5WW i O O W 0  150000 200WO 25WOO 3WOW 350000 400WO 

Time (M!n_CeliTime) 

Figure 9: Total buffer occupancy for GFCl 

Figure 10: Destination received cell count for GFCl 

PD: ropa ation delay D = 500 MCTs 
P g  = 1 hCT for link between host and switch 

[ 1: Link bandwidth 
Link bandwidth = 1 if not indicated 

(N): Number of VCs in the VC group 

Al(1 

Figure 11: Generic Fairness Configuration 2 (GFC2) 

2d.2.10 
248 



Table 2: Expected bandwidth for GFC2 

2 300000 

200000 

100000 

0 
0 200000 400000 500000 BOOOW 18+06 1.2er05 1.48+06 1.6~+05 

Time (Mln_Cell_Tlma) 

Figure 12: Destination received cell count for GFC2 

Total Buner occupled In Swnch Porta 

Swilch3 0 . 

2500 

2000 - 

1500 - - - 
1 
ti 

0 50wO loooW 15oooO 2 m 0 0  250000 
Time (Min-Cell-Time) 

Figure 13: Total switch buffer occupancy for GFCS 

GFCS is composed of one switch and 11 hosts. The bandwidth 
of the input links varies from 1 to M O O  and link propagation delay 
varies from 1 to 2,000 MCTs. As shown in Figure 14, there are 50 
VCs coming in from each input port for a total of 500 VCs sharing 
the output port. In the steady state, VCs in group D and G can only 
reach 1/5,000=0.0002 of the output link bandwidth while rest of 
the VCs can reach 98/40,000 = 0.00245 of that. 

The bandwidth sharing result, the destination received cell 
count, and the total queue length for our adaptive scheme are 
shown in Figure 15, 16 and 17, respectively. We see that the 
achieved bandwidth agrees with the expected bandwidth described 
in the preceding paragraph. 

I[ ] Link Bandwidth 

PD= 1 

I1 

1 

)= 1000 

[ 1/100] 

U 3 
Figure 14: GFC3 

Bandwith 01 VCs 

A t  
B -+-. c .B.. D M.. - 
E e- 
F .= - G -f 

" _+.__ I -0.. - 
J +  

!i 0.003 

0 002 

0.001 

0 
0 iOW0 2WW 30000 40000 50400 6WW 70WO BWOO 

Time fMin Cell Time1 

Figure 15: Bandwidth of VCs for GFC3 

Destination Recewed Cell Count 
800 

700 

600 

500 

E a 4.30 

300 

200 

io0 

0 
0 5OWO l W W 0  I50000 2 0 W W  25WW 3WWO 350030 

Time (Min-Cell-Ttme) 

Figure 16: Destination received cell count for GFC3 

9.2. Ramping up test 

This section shows simulation results with VCs starting at 
different times. We want to see how fast a newly started VC can 
ramp up. In the GFC2 case, we let A3, B3, and C1 starting at the 

2d.2.11 
249 



Buner Occvpied by VCa 
4500 

loo0 

500 

4000 ~ 

3500 - 

3000 - 

- 2500 - 3 
I 2000 - 

1500 - 

- ~, Y - 

Table 2. 

03 

0 25 

0.2 

t 0.16 

0 1  

0 06 

0 

A3 c 03 -+- _% w 0 c .e.- 

. -  

Figure 18: Bandwidth of ramping up VCs for GFC2 
sunor ~ i ~ ~ ~ ~ t i ~ ~  .,I vcs in ss 

BOO 
A3 c 03 -+- c, .=-. 

0 200000 4OOWO WOW0 BWOOO ler06 1 2 ~ 1 0 s  148106 1 Betm 
Tlms (Min_C~litlme> 

Figure 19: Credit allocation for rampinn UP VCs, with - - .  
M/2 = 2,000, for GFC2 

In Figure 18 we find that it takes less than 50,000 MCTs for VC 
C to ramp up. The same configuration has also been tested with 
several different sizes of M. The simulation result on the band- 
width of VC A3 seen in switch S5 is shown in Figure 21. We can 
see how the ramp up speed improves as the switch memory 
increases its size. 

0 12 

0.1 

0 08 

t d 0 0 5  
n 

L 
0.04 

0 02 

with various starting times for GFCP 
RBmD-UP with different total buner 

M=4'RTT3W-4000 t 
M;6'RTT+BW=6000 -+- 
M=8'RTTT'BW=8000 -a-- 

! \, M=10'RTT'BW=10000 x 

I /  
" " I  M=20'RTT'BW=20000 *- 

?: 

/ i  

0 = . I -  - - 
2 9 w O O  295000 300000 305000 310000 315000 320000 325000 330000 335000 340000 

T~me (cell cyols) 

Figure 21 : The ramp-up of VC A3 for GFCP 
under various switch buffer sizes 

9.3. Sudden bandwidth decrease in GFC3 

In order to observe the behavior of the adaptive algorithm 
during severe congestion, we create a congestion situation by 
reducing a bottleneck link's bandwidth from 1 to U100 suddenly. 
We assume the GFC3 configuration of Figure 14, with 10 VCs 
(one from each port) going through the switch. 

For the output link we start its bandwidth with 1, reduce it at 
the 500,000th MCT to 1/100, and then increase it at the 
1,100,000th MCT to 1 again. 

After the bandwidth reduction, those small bandwidth VCs 
(coming from bandwidth U100 link) should get fair share band- 
width, i.e., 1/1000. Figure 22 shows this fair share of bandwidth 
between the VCs during the bandwidth reduction period. 

Moreover, Figure 22 shows that even during the bandwidth 
reduction period, newly started VCs can still ramp up. In partic- 
ular, we see that the three VCs (C,E and H) which start at the 
700,000th, 800,000th and 900,000th MCT can all ramp up. Figure 
25 shows that the three VC achieve the same bandwidth (as their 
slopes are the same). Thus, during the bandwidth reduction, not 
only new VCs can ramp up but they will get fair share in band- 
width. 

After the bandwidth reduction, the total queue length will go 
up. In the steady state the queue length will stay higher than before 
since the high input/output bandwidth ratio will cause high queue 
level. This is shown by Figure 23. 

250 
2d.2.12 



Bandwidth Sharing of VCs 
0.3 I 

0.25 i i i  F A -  
F +.. 
0 .,__. 
H .+... 
1.0.. J +  

0.15 

0.1 

0.05 

0 
0 2WOOO 400000 6000W 800000 1-06 1.2et06 1.&+06 1.6er06 

T i m  (Min-CeIl-Time) 

Figure 22: Bandwidth sharing among VCs 
for GFCB 

Total Queue Lsngth 
12ow 

Queue Length c 

1ww 

8000 

[ SOW 

4000 

20w 

O U  
0 5WWO let06 1.58+08 28+08 2.58106 3etW 

Time (Min-Cell_TW" 

Figure 23: Total switch buffer occupancy for GFCB 

VC Destination Rreceived Cell Count 

A +  R +- 

0 
0 2WwO 400030 6WoW 8OWW l e 4 6  1.28+06 1.48+06 1.i 

Time (M!Jl-Cell Time) 
Figure 24: Destination received cell count for GFC3 

J 
E 

- 
with sudden bandwidth reduction 

9.4. Credit cell traffic overhead 

From these simulation results, we note that credit cells traffic is 
tremendously reduced due to adaptive N2 and credit record 
packing. Consider, for example, the link between switches S4 and 
S5 in GFC2. Figure 26 gives the total number of credit cells sent. 
We see that there are about 1.5 million data cells, about 18,600 

Figure 25: Destination received cell count 
for GFCB with three VCs ramping up during bandwidth 

reduction (blow up of Figure 24) 
credit and allocation records, and about 14,000 credit cells. The 
number of credit cells is less than 1% of that of data cells. 

Total RBStllved Calla In DBDtlnallon 
SOOWO 

A1 t A2 -- A3 -0 - 

t 500WO 

4OOWO 

1~30WO 

0 
0 2WOOO 400000 BOOOW 8WOOO 18106 l.Ze+OB 1.4e+06 1.6e+06 

Time (Mln-CaIl-Tlme) 

Figure 26: #data and credit cells over the link between 
S4 and S5 for GFC2. (Data cell number is per-VC and 

credit cell number is for all VCs.) 

10. Conclusions 

When a buffer pool in a node is shared by VCs from multiple 
input links, receiver-oriented rather than sender-oriented adaptive 
buffer allocation must be used. A receiver-oriented scheme is more 
complex than the sender-oriented counterpart because the multiple 
input links may have different R'ITs and link capacities, and 
because allocation at the receiver must be communicated to each 
upstream node. In this paper we have described a receiver-oriented 
adaptive scheme which can effectively deal with these issues. 

VVe have shown, by analysis, that our receiver-oriented adap- 
tive scheme will not lose cells during allocations, and will allow 
newly started VCs to ramp up to get a fair share of bandwidth. We 
have also demonstrated, by simulation, that the scheme achieves 
excellent performance in utilization and fairness, while requiring 
only modest memory and bandwidth overhead. 

The small size of the required memory is especially encour- 
aging. All of our simulation results reported in this paper are based 
on the code of Section 6, which assumes only a memory of 
4*R1[Tmax*MCT/OLCT + 2*N cells, where N is the number of 
the active VCs. Thus the receiver-oriented scheme is attractive for 

2d.2.13 
251 



links that have large propagation delays and need to support a 
large number of VCs. 

Acknowledgments 

We thank the INFOCOM ‘95 reviewers for their helpful 
comments on an early version of this paper. 

References 

ATM Forum, “ATM User-Network Interface Specification,” 
Version 3.0, Prentice Hall, Englewood Cliffs, New Jersey, 
1993. 

Blackwell, et al. “An Experimental Flow Controlled Multi- 
cast ATM Switch,” Proceedings of First Annual Conference 
on Telecommunications R&D in Massachusetts, Vol. 6, pp. 
33-38, October 25, 1994. 

S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, 
M. Levine, M. Wire, C. Peterson, J. Susman, J. Sutton, J. 
Urbanski and J. Webb, “Integrating Systolic and Memory 
Communication in iWarp,” Conference Proceedings of the 
17th Annual International Symposium on Computer Architec- 
ture, Seattle, Washington, June 1990, pp. 70-81. 

V. Jacobson, “Congestion Avoidance and Control,” Proc. 
SIGCOMM ’88 Symposium on Communications Architec- 
tures and Protocols, Aug. 1988. 

M. G. H. Katevenis, “Fast Switching and Fair Control of 
Congested Flow in Broadband Networks,” IEEE J. on 
SelectedAreas in Commun., vol. SAC-5, no. 8, pp. 1315- 
1326, Oct. 1987. 

H. T. Kung, T. Blackwell and A. Chapman, “Credit-Based 
Flow Control for ATM Networks: Credit Update Protocol, 
Adaptive Credit Allocation, and Statistical Multiplexing,” 
Proc. ACM SIGCOMM ‘94 Symposium on Communications 
Architectures, Protocols and Applications, pp. 101 - 114. 

H. T. Kung and A. Chapman, “The FCVC (Flow-Controlled 
Virtual Channels) Proposal for ATM Networks,” Version 2.0, 
1993. A summary appears in Proc. 1993 International Con& 
on Network Protocols, pp. 116-127. (Postscript files of this 
and other related papers by the authors and their colleagues 
are available via anonymous FTP from virtual.harvard.edu:/ 
pubhtkhtm.) 

H. T. Kung and R. Morris, “Credit-Based Flow Control for 
ATM Networks,” IEEE Network Magazine, March 1995. 

C. Ozveren, R. Simcoe, and G. Varghese, “Reliable and Effi- 
cient Hop-by-Hop Flow Control,” Proc. ACM SIGCOMM ‘94 
Symposium on Communications Architectures, Protocols and 
Applications, pp. 89-100. 

[ 101 R. J. Simcoe, “Configurations for Fairness and Other Test,” 

[ 111 C.L. Williamson, D.L. Cheriton, “Load-Loss Curves: Support 
for Rate-Based Congestion Control in High-speed Datagram 
Networks,”, Proc. SIGCOMM ‘91 Symposium on Communi- 
cations Architectures and Protocols, pp. 17-28. 

[ 121 N. Yin and M. G. Hluchyj, “On Closed-Loop Rate Control for 
ATM Cell Relay Networks,” submitted to IEEE Infocom 
1994. 

ATM-FOIU~ 94-0557,1994. 

252 
2d.2.14 


