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Abstract 

The Network File System protocol (NFS) has been the 
leading distributed j l e  system for workstations since it was 
first introduced by Sun Microsystems in 1986. The 
geographical scale of NFS has been limited to the local 
area due to its relatively low petformance on the wide area 
Internet. However, with the advent of high bandwidth wide 
area networks such as ATM, NFS over WANs may become 
more promising. In this paper; the performance of NFS over 
various sizes of WAN is studied. The effects of ATM flow- 
control and queuing strategies on NFS are discussed, as are 
the petformance of TCP and UDP as NFS transport proto- 
cols. The primary conclusion is that standard NFS over 
UDP works well over ATM WANs as long as ATM-level flow 
control keeps the cell loss rate under one percent. In some 
cases, NFS over TCP works badly with small packets due to 
unfortunate interactions with TCP s congestion window. 

1. Introduction 

In this paper we study the performance of NFS [l ,  31 
over flow-controlled ATM networks with various geograph- 
ical scales and drop rates. NFS has poor performance over 
wide area networks such as the Internet mainly because of 
three factors: high drop rate, long propagation delay, and 
low available bandwidth. The latter is most significant for 
NFS operations such as read and write that involve large 
amounts of data. However, large transfers are substantially 
less common than small ones in most NFS workloads [4]. In 
such cases, NFS performance is affected more by packet 
drop rate and propagation delay. 

Our research explores four issues relating to NFS and 
WANs. ATM WANs may use flow control to reduce losses; 
NFS is affected by both the flow control and the remaining 
losses. NFS can be used over TCP on WANs, and we wish 
to compare this with NFS over UDP on a flow-controlled 
ATM. Even the best WAN cannot reduce propagation delay, 
and we identify the situations in which propagation is the 
limiting factor in performance. Finally, sophisticated ATM 

switches may provide per-VC queuing and round-robin 
scheduling, and we show the degree to which this improves 
NFS performance. 

1.1 NFS Overview 

Sun Microsystems' Network File System (NFS) [I, 31 
allows programs to access remote files in the same way as 
local files. It has seen wide use on a variety of computers 
since its introduction in 1986. This is mainly due to its 
simplicity and independence of machine and operating 
system. NFS is a client-server system. The protocol is 
defined in terms of a set of procedures, and their arguments, 
results, and effects. These procedures are implemented 
using Sun's RPC (Remote Procedure Call) protocol [2] to 
simplify programs. 

All NFS procedures involve a client sending a request to 
the server and waiting for the reply. RPC automates this by 
making the client block until1 the server has completed the 
call and returned the result. 'If the server does not respond 
because of a crash or packet loss, the client periodically re- 
sends the request. 

The most common operations are client requests to look 
up file names or to fetch file attributes such as read/write 
permissions or file length; these involve small transfers of a 
few hundred bytes over the network, and their performance 
is dominated by propagation latency rather than bandwidth. 
In contrast, NFS read and wirite operations usually transfer 
file blocks of 8192 bytes and more than one outstanding 
request is allowed. In this case, network bandwidth can 
potentially limit their performance. 

NFS can be implemented on top of different transport 
protocols because Sun's RPC is designed to be transport 
independent. However, the implementation on top of UDP 
is mostly used since UDP has historically incurred less CPU 
overhead than TCP [9], and because NFS is almost always 
used on local networks where TCP's sophisticated error 
recovery and congestion control are not required [SI. 
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However, implementations of NFS on TCP have 
recently demonstrated performance better than UDP 
over congested networks [41. The reason is that TCP has 
better congestion control and faster error recovery than 
UDP-based NFS. Whenever a packet is lost, NFSNDP 
waits a timeout period on the order of one second and 
retransmits the entire request, which might involve 
multiple packets. TCP, in contrast, can often respond to 
a single dropped packet in one round trip time, and 
under many circumstances it re-sends only the lost 
packet rather than a whole request. Thus NFS over TCP 
should tolerate higher loss rates than NFS over UDP. 

1.2 Flow-Controlled ATM 

The high drop rate and low bandwidth on current 
wide area networks may eventually be improved when 
Broadband ISDN using ATM becomes available. ATM 
[7], which aims at high bandwidth and low data loss 
rate, has been adopted by telecommunication providers 
as the standard for future wide area digital networks. 
Several flow-control protocols have been proposed for 
use at the ATM level to provide “available bit-rate’’ 
(ABR) services and reduce data loss; these include rate- 
based flow-control [S,lO] and credit-based flow-control 
protocols [15]. Both of these approaches will allow 
heavily loaded networks to achieve high utilization and 
low data loss. 

The rate-based flow control method recommended by 
ATM Forum, Enhanced Proportional Rate Control 
Algorithm (EPRCA) [I l l ,  is an end-to-end protocol in 
which the source of a connection adjusts its sending rate 
depending on the network congestion status along its 
path. EPRCA does not eliminate cell loss due to conges- 
tion. The cell drop rate varies depending on the available 
buffer space in the network switches and protocol 
parameters. In general EPRCA allows a trade-off 
between drop rate and bandwidth utilization when the 
switch bandwidth and buffer resources are limited. 

Credit protocols such as QFC [15] and FCVC 
[12,13,14] use hop-by-hop buffer based flow-control. 
FCVC eliminates cell loss by reserving buffer space, but 
requires per-VC queueing inside the network switches. 
While per-VC queuing may increase a switch’s cost, it 
provides performance benefits beyond those provided 
by other flow controls. A number of switch vendors 
provide it independently of flow-control algorithm. For 
instance, the Fore Runner ASX-200BX ATM Switch 
from FORE SYSTEMS is a per-VC queueing switch 
even though it does not support credit-based flow- 
control. 

1.3 Paper Outline 

This paper is arranged as follows: In Section 2, we 
describe our trace-gathering setup, simulator test-bed, 
and benchmarks. In Section 3, we use trace-driven simu- 
lations to explore NFS performance on a lossless 
network with various propagation delays. The TCP 
overhead due to slow-start is also shown. In Section 4, 
we simulate NFS over a loaded network with various 
cell drop rates, and with the EPRCA rate-based flow- 
control protocol. In Section 5, we show the performance 
advantages of per-VC queueing and credit-based flow- 
control for NFS performance. We conclude this paper in 
Section 6. 

2. Experimental Test-Bed 

In order to evaluate the performance of NFS without 
a wide-area ATM net dedicated to our experiments, we 
used a network simulator. This simulator is an event- 
driven ATM network simulator featuring rate-based 
EPRCA flow-control, credit-based FCVC flow-control, 
TCP, and AAL5 tail dropping mechanism with partial 
packet discard. The EPRCA implementation follows the 
latest ATM Forum Traffic Management specification of 
March 1996 [8]. The TCP stack in this simulator is 
taken from the source code of NetBSD 1 . l .  

Our NFS simulations are trace-driven: we do not 
model the applications that use NFS. We collected 
traces of real NFS traffic on a network which directly 
connects an NFS client and server. The traces contain 
the following data: 

’ Type 
Time of Request 
Time of Response 
Request Packet Size 
Response Packet Size 

The simulator calculates the amount of time the client 
computes between requests and the amount of time the 
server takes to serve each request by assuming a 
propagation time of zero. The simulator preserves the 
computation times when it uses the trace, and varies 
only the amount of time it takes the network to forward 
requests and responses. The details of this procedure 
are: 

If a request is not a READ or a WRITE, only one 
outstanding request is allowed. When the reply 
arrives, the interval until the next request is sent will 
be the same as in the trace. 
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The time between when a client issues a request and 
when it receives the response is composed of three 
parts. The first part is the time it takes the network to 
forward the request; the simulator calculates this 
based on propagation and queuing delay. The second 
part is the amount of time the server spends serving; 
this is taken from the trace. The third is the simu- 
lated time taken by the network to forward the 
response. 
Some READ transactions are actually read-ahead, 
for which the client does not wait. Similarly, some 
WRITE requests are actually write-behind, for 
which the client also does not wait. The simulator 
decides whether the client must wait for READs and 
WRITES by analyzing their original Request and 
Response Times in the trace. If the difference 
between Request Times of consecutive READs or 
WRITES is smaller than a threshold, or the Request 
Time of the next transaction is smaller than the 
Response Time of current transaction, the interpreter 
treats these transactions as read-ahead or write- 
behind. In this case, more than one outstanding 
request is allowed. 

The client machine in these traces was a 133 mHz 
Pentium PC running NetBSD 1.0. The server was a 133 
mHz DEC Alpha 3000/400 running OSF/1 3.0. Each 
traced benchmark was run after a reboot to prevent data 
being cached between runs. They are connected by a 10 
Mbps Ethernet with no other competing traffic. 

The main performance metric in these experiments is 
the task completion time (TCT) of a particular bench- 
mark listed in Table 1. These tasks involve the Berkeley 
MPEG encoder “mpeg-encode-1.3” source code distri- 
bution. As detailed in Table 1, these traces include “Is - 
1” on the source directories, “cp -r” of the source direc- 
tory before compiling, “make” inside the source direc- 
tory which compiles an mpegencode executable file, 
and finally running the executable with 200 frames of 
non-compressed 360x240 video as input to produce a 
1.2 MByte compressed mpeg file. All of these 
commands are run on the NetBSD client, with all files 
accessed using NFS to the server. For comparison, we 
also execute the encoder with the input raw frame data 
stored locally and output mpeg file remotely. 

3. Effects of Propagation and TCP 
Overhead 

Most NFS transactions are small independent 
requests, each of which must complete before the next 
can start. Thus as propagation time increases it will 

Comm- 
and 

Is 

C P  

cp- 1 

make 

encode- 
remote 

encode- 
local 

Table 1 : Command Task List 

Description 

%bytes sent by client, Rbytes sent by server, 
TC=transaction count, TCT=Task Completion 

Time of original trace in seconds 

Is -1 * */* of 37 files iin the mpeg-encode source 
directory 

S:54KB, R:62KB, TC=453, TCT=2.11 sec. 

cp -r of the mpeg encoder source tree, 0.95 
MegaB ytes 

S:1034K, R:1032K, TC=771, TCT=9.58 

copy single 1 megabyte file 

S:l122K R 1126K, TC=268, TCT=5.23sec 

compile mpeg-encoder which reads 0.95 mb 
source and generate 0.3 mb output. 

S: 672K. R: 1196K, TC=2023, TCT=60sec. 

read 23 mb frame data and generate 1.2mb 
mpeg file; input and output are remote. 

S:1680K, R:23M, TC=3519, TCT=66.59 sec 

same as encode remote except the 23 mb input 
is stored on client local disk 

S:1247K, R 157K, TC=173, TCT=50.094sec 

eventually dominate the task completion time. Before 
this point, the TCT is mainly affected by the underlying 
flow-control protocols, network congestion status, and 
processing time on the client and server. 

In this section, we show simulation results for a loss- 
less network with varying client-server distances. The 
network has link rates of 155 Mbps and carries no 
competing traffic. Figure 1 shows the TCT of several 
benchmarks that use NFSNDP. Both X and Y axes are 
in log scale. When the network delay is small, the TCT 
is dominated by disk latency and processing time. 
However, once the network delay exceeds roughly 10 
milliseconds, it is the major factor in TCT, and the TCT 
increases linearly with delay. We can see that the propa- 
gation delay dominates the TCT of Is earlier than the 
other benchmarks. This is because Is has only short 
requests and is not CPU bound. An RTT of less than 
lOOms appears to be the most tolerable, since beyond 
that even simple tasks such as Is take a minute or more. 

One interesting detail of these results is that the TCT 
of encode-local increases relatively modestly with prop- 
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agation delay. Encode-local only uses NFS to write 
output to a file, and produces data slowly enough that 
NFS write-behind can avoid blocking the process. NFS 
can keep up to five write requests outstanding at a time; 
since each completes in roughly one network round t i p  
time, NFS write throughput is limited to five blocks per 
round trip time. encode-local starts to slow down when 
the round trip time is so high that this throughput drops 
below the rate at which encode-local produces output. 

R l T  = 0.08 - 
RTT = 0.008 ~ I 35000 - 

A 

I J 
0.0001 0.001 0.01 0.1 1 
Round-trip Propagation Delay (second, log soale) 

Figure 1 : Task Complete Time vs. 
Round-trip Propagation Delay for NFS/ 

UDP over Perfect Net 

NFS over TCP performs as well as NFS over UDP as 
long as the packet size (called MSS) is large, or 9192 
bytes for these simulations. This packet size is typical 
for ATM networks. With packets of only 512 bytes, as 
are typically used over WANs, the TCTs of make and 
encode-local are around 15% and 30% larger with TCP 
than UDP respectively (see Figure 2). This degradation 
is due to TCP’s slow-start ramp up time. If TCP is about 
to send something, but the connection has been idle for 
at least one round trip time, TCP first shrinks its conges- 
tion window. This decreases NFS write performance, 
since an 8192-byte NFS write will require many round 
trip times to send if the congestion window is only a few 
512-byte packets. There is no similar effect for read 
requests because TCP does not consider the connection 
idle when the server sends the response: the client’s 
request made the connection not idle. The congestion 
window does not affect requests other than read or write 
because all other requests can fit in the minimum size 
window. TCP with large packets always works well 
because even an 8192-byte write fits in a single packet. 

A close reading of Figure 2 reveals that the TCT for 
encode-local over TCP actually decreases when the 
network delay increases. When the delay is small, the 
idle time between client requests is large relative to the 
round trip time; thus TCP often shrinks the client’s 
congestion window. When the network delay is large, 
the client’s relatively short inter-requests delays do not 

100, . Y /  

TCPmake -+- 
UDPmake -+- 

TCP encode-loa1 -U--. 
UDP encode-local --.- 

I- 

o.Ooo1 0.001 0.01 o. 1 
Round-trip Propagation Delay (second) 

Figure 2: Comparing of TCP and UDP on 
“make” and “encode-local” 

Y 

0 10 20 30 40 50 60 70 80 
Time (second) 

Figure 3: Congestion Window Size for Two 
“encode-local” Cases with Different RTT 

4. Performance with Loaded Networks 

Other work [4] has demonstrated that NFSPUDP 
performs badly over heavily loaded networks, and that 
NFSD’CP offers perfomance advantages. TCP recovers 
from packet loss faster than NFSAJDP, and can re-send 
just the lost packet rather than an entire request. TCP’s 
adaptive congestion control window also allows it to use 
less switch or router buffer space than NFSPUDP, which 
decreases packet loss. These advantages hold primarily 
when all competing traffic uses TCP. If other traffic 
relies on ATM flow control, as is expected in future 
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networks, TCP’s advantages for NFS are less significant. 
This section reports simulation results for NFS with 
both ATM flow control and either TCP or UDP, as 
detailed in Table 2. 

Name 

TCP-9192 

Table 2: NFS Transport Protocols 

Description (MSS:Packet Size) 

TCP with MSS = 9192 

I I TCP-512 I TCP with MSS = 512 

I Raw AAL5 packet I UDP I 
The simulations involve a heavily loaded network 

depicted in Figure 4. Each VC is flow-controlled by the 
rate-based EPRCA protocol. The parameters for 
EPRCA are adjusted to vary the network‘s cell drop rate. 
The bottleneck switch has 2500 to 3500 cells of buff- 
ering depending on the drop rate. The 50 competing 
connections, 25 in each direction, send data as fast as 
EPRCA will allow. The NFS connection uses either 
TCP with no NFS retransmission timers or UDP with 
standard 0.875 second based retransmission timer. 

25 Greedy VCs in each direction among 14 hosts 
7 on each side of the bottleneck link 

d b 
One NFS Client on one side and one Server on the other side. 

Figure 4: Loaded ATM Network Configuration 

NFS over UDP and NFS over TCP with 9192-byte 
packets perform similarly in most cases. TCP-5 12 does 
not perform well when the drop rate is high and the 
amount of data to transfer is large. As seen in Figure 5 
and Figure 6, TCP-5 12 performs slightly worse for “1s” 
and “make” than TCP-9192 and UDP. However, TCP- 
512 performs much worse than TCP-9192 and UDP in 
encode-remote and “ c p l ”  as seen in Figure 7 and 
Figure 8. This is because encode-remote transfers much 
more data than make. The cell loss causes the server’s 
TCP congestion window to shrink often, which causes 
TCP-512 in particular to spend many round-trip times 
increasing the window again. 

2 4 t  
Of! O.&4S 0.601 0.oblS O&? r w  &5 0.603 O.Ob35 0.604 0.&5 

Figure 5: Task Completion Time of “Is” 

0.601 0.632 0.&3D&&0.605 0.608 O.dO7 O d 8  

Figure 6: Task Completion Time of “make” 

In these simulations, cell drop rate itself is not a 
configurable parameter. Instead, it is the measured result 
of a specific buffer size and EPRCA parameter set. That 
is why the drop rate index distance between each of the 
sample points in these graphs vary. 

Figure 7: Task Completion Time of “encode- 
remote” 
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180 , I 

0 

I- 

Y 

8 5 0 -  

n l  I 

Task 

PafecfNet 

Static FCVC 

EPRCASingle 
FIFO with 

TCP-9192 and 
No Drop 

- 
0 0.001 0.002 0.003 0.004 0.005 0.W6 0.007 

Drop Rate 

Is CP cpl maLC - 
5.1437 14.701 11.681 78.21 

5.3016 17.239 12.144 80.392 
- 

9.1898 23.97 13.612 101.07 

Figure 8: Task Completion Time of “cp l”  

5. Per-VC Queueing and Credit-Based 
Flow-Control 

NFS, as a request-response protocol, is at a disadvan- 
tage when competing with “greedy” sources that always 
have data ready to send. Flow control mechanisms, 
while limiting the rate at which such sources send, typi- 
cally allow them to keep fairly large amounts of data 
buffered in network switches. This leads to extra 
queuing delay. Senders that are limited only by flow 
control can maintain a high rate regardless of delay. 
Most NFS transactions, however, must slow down as 
queuing delay increases, since the client waits for each 
response before sending the next request. Even for 
READ and WRITE transactions, only 2 outstanding 
READ and 5 outstanding WRITE requests are allowed. 

Switches that maintain separate queues for each 
connection (called per-VC queuing) and serve the 
queues fairly will decrease this effect. When an NFS 
request arrives at a switch, the NFS VC queue will be 
empty; thus the request will be sent relatively soon. 

In the simulations discussed in the previous section, 
switch queue lengths varied from 0 to 3500 cells. At 155 
megabitshecond, this would impose a queuing delay of 
up to 10 milliseconds per NFS request. Figures 9 and 10 
show the advantages of per-VC queuing for the “make” 
and “1s” benchmarks with EPRCA flow control. 

Credit-based flow control performs better than rate- 
based for these traces for two reasons. First, credit flow 
control does not spend time ramping up its rate. Second, 
credit systems have round-robin scheduling among 
VCs. The simulation results of NFS over static FCVC 

‘0 * 0.001 0.002 0.003 D0.f&0.005 0.006 0.007 0.008 

Figure 9: Per-VC Queueing vs. Shared 
Queueing in “make” 

2Q 

jt 

O.OW5 O.dO1 0.0bliimp0.kfe@&ad03 O.ob35 0.004 0 

Figure 10: Per-VC Queueing vs. Shared 
Queueing in “Is” 

145 

with round trip propagation delay equal to 8 millisecond 
are listed in Table 3. 

Table 3: Performance Improvement in FCVC 
with RTT = 8 millisecond 

encode 
-r 

16.73 

96.729 

114.80 

~~ 

6. Conclusions 

The performance of typical NFS tasks starts to suffer 
significantly when client and server are separated by 
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more than about 500 miles (RTT 3 ]Oms ). At that time a 
single “1s” command might take more than a minute to 
finish. 

If ATM flow control is used to decrease packet loss, 
NFS over UDP performs as well as NFS over TCP when 
TCP uses large packets. With small packets, TCP spends 
an excessive amount of time with a congestion window 
smaller than an NFS request; this causes single requests 
to take many round trip times to transmit. 

If ATM switches also implement per-VC queuing 
and round-robin scheduling, NFS can compete fairly 
with other traffic, further increasing performance. The 
combination of ATM flow control and per-VC queuing 
promise high performance for NFS over wide-area 
networks of reasonable size. 
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