
NFS Dynamics Over Flow-Controlled Wide Area Networks

Koling Chang, Robert Morris and H.T. Kung
Division of Engineering and Applied Sciences, Harvard University

29 Oxford Street, Cambridge, MA 02138, USA
{ chang, rtm, htk} @eecs.harvard.edu

Abstract

The Network File System protocol (NFS) has been the
leading distributed j l e system for workstations since it was
first introduced by Sun Microsystems in 1986. The
geographical scale of NFS has been limited to the local
area due to its relatively low petformance on the wide area
Internet. However, with the advent of high bandwidth wide
area networks such as ATM, NFS over WANs may become
more promising. In this paper; the performance of NFS over
various sizes of WAN is studied. The effects of ATM flow-
control and queuing strategies on NFS are discussed, as are
the petformance of TCP and UDP as NFS transport proto-
cols. The primary conclusion is that standard NFS over
UDP works well over ATM WANs as long as ATM-level flow
control keeps the cell loss rate under one percent. In some
cases, NFS over TCP works badly with small packets due to
unfortunate interactions with TCP s congestion window.

1. Introduction

In this paper we study the performance of NFS [l , 31
over flow-controlled ATM networks with various geograph-
ical scales and drop rates. NFS has poor performance over
wide area networks such as the Internet mainly because of
three factors: high drop rate, long propagation delay, and
low available bandwidth. The latter is most significant for
NFS operations such as read and write that involve large
amounts of data. However, large transfers are substantially
less common than small ones in most NFS workloads [4]. In
such cases, NFS performance is affected more by packet
drop rate and propagation delay.

Our research explores four issues relating to NFS and
WANs. ATM WANs may use flow control to reduce losses;
NFS is affected by both the flow control and the remaining
losses. NFS can be used over TCP on WANs, and we wish
to compare this with NFS over UDP on a flow-controlled
ATM. Even the best WAN cannot reduce propagation delay,
and we identify the situations in which propagation is the
limiting factor in performance. Finally, sophisticated ATM

switches may provide per-VC queuing and round-robin
scheduling, and we show the degree to which this improves
NFS performance.

1.1 NFS Overview

Sun Microsystems' Network File System (NFS) [I, 31
allows programs to access remote files in the same way as
local files. It has seen wide use on a variety of computers
since its introduction in 1986. This is mainly due to its
simplicity and independence of machine and operating
system. NFS is a client-server system. The protocol is
defined in terms of a set of procedures, and their arguments,
results, and effects. These procedures are implemented
using Sun's RPC (Remote Procedure Call) protocol [2] to
simplify programs.

All NFS procedures involve a client sending a request to
the server and waiting for the reply. RPC automates this by
making the client block until1 the server has completed the
call and returned the result. 'If the server does not respond
because of a crash or packet loss, the client periodically re-
sends the request.

The most common operations are client requests to look
up file names or to fetch file attributes such as read/write
permissions or file length; these involve small transfers of a
few hundred bytes over the network, and their performance
is dominated by propagation latency rather than bandwidth.
In contrast, NFS read and wirite operations usually transfer
file blocks of 8192 bytes and more than one outstanding
request is allowed. In this case, network bandwidth can
potentially limit their performance.

NFS can be implemented on top of different transport
protocols because Sun's RPC is designed to be transport
independent. However, the implementation on top of UDP
is mostly used since UDP has historically incurred less CPU
overhead than TCP [9], and because NFS is almost always
used on local networks where TCP's sophisticated error
recovery and congestion control are not required [SI.

0-8186-7780-5/97 $10.00 0 1997 IEEE
5c.4.1

619

mailto:eecs.harvard.edu

However, implementations of NFS on TCP have
recently demonstrated performance better than UDP
over congested networks [41. The reason is that TCP has
better congestion control and faster error recovery than
UDP-based NFS. Whenever a packet is lost, NFSNDP
waits a timeout period on the order of one second and
retransmits the entire request, which might involve
multiple packets. TCP, in contrast, can often respond to
a single dropped packet in one round trip time, and
under many circumstances it re-sends only the lost
packet rather than a whole request. Thus NFS over TCP
should tolerate higher loss rates than NFS over UDP.

1.2 Flow-Controlled ATM

The high drop rate and low bandwidth on current
wide area networks may eventually be improved when
Broadband ISDN using ATM becomes available. ATM
[7], which aims at high bandwidth and low data loss
rate, has been adopted by telecommunication providers
as the standard for future wide area digital networks.
Several flow-control protocols have been proposed for
use at the ATM level to provide “available bit-rate’’
(ABR) services and reduce data loss; these include rate-
based flow-control [S,lO] and credit-based flow-control
protocols [15]. Both of these approaches will allow
heavily loaded networks to achieve high utilization and
low data loss.

The rate-based flow control method recommended by
ATM Forum, Enhanced Proportional Rate Control
Algorithm (EPRCA) [I l l , is an end-to-end protocol in
which the source of a connection adjusts its sending rate
depending on the network congestion status along its
path. EPRCA does not eliminate cell loss due to conges-
tion. The cell drop rate varies depending on the available
buffer space in the network switches and protocol
parameters. In general EPRCA allows a trade-off
between drop rate and bandwidth utilization when the
switch bandwidth and buffer resources are limited.

Credit protocols such as QFC [15] and FCVC
[12,13,14] use hop-by-hop buffer based flow-control.
FCVC eliminates cell loss by reserving buffer space, but
requires per-VC queueing inside the network switches.
While per-VC queuing may increase a switch’s cost, it
provides performance benefits beyond those provided
by other flow controls. A number of switch vendors
provide it independently of flow-control algorithm. For
instance, the Fore Runner ASX-200BX ATM Switch
from FORE SYSTEMS is a per-VC queueing switch
even though it does not support credit-based flow-
control.

1.3 Paper Outline

This paper is arranged as follows: In Section 2, we
describe our trace-gathering setup, simulator test-bed,
and benchmarks. In Section 3, we use trace-driven simu-
lations to explore NFS performance on a lossless
network with various propagation delays. The TCP
overhead due to slow-start is also shown. In Section 4,
we simulate NFS over a loaded network with various
cell drop rates, and with the EPRCA rate-based flow-
control protocol. In Section 5, we show the performance
advantages of per-VC queueing and credit-based flow-
control for NFS performance. We conclude this paper in
Section 6.

2. Experimental Test-Bed

In order to evaluate the performance of NFS without
a wide-area ATM net dedicated to our experiments, we
used a network simulator. This simulator is an event-
driven ATM network simulator featuring rate-based
EPRCA flow-control, credit-based FCVC flow-control,
TCP, and AAL5 tail dropping mechanism with partial
packet discard. The EPRCA implementation follows the
latest ATM Forum Traffic Management specification of
March 1996 [8]. The TCP stack in this simulator is
taken from the source code of NetBSD 1 . l .

Our NFS simulations are trace-driven: we do not
model the applications that use NFS. We collected
traces of real NFS traffic on a network which directly
connects an NFS client and server. The traces contain
the following data:

’ Type
Time of Request
Time of Response
Request Packet Size
Response Packet Size

The simulator calculates the amount of time the client
computes between requests and the amount of time the
server takes to serve each request by assuming a
propagation time of zero. The simulator preserves the
computation times when it uses the trace, and varies
only the amount of time it takes the network to forward
requests and responses. The details of this procedure
are:

If a request is not a READ or a WRITE, only one
outstanding request is allowed. When the reply
arrives, the interval until the next request is sent will
be the same as in the trace.

620
5c.4.2

The time between when a client issues a request and
when it receives the response is composed of three
parts. The first part is the time it takes the network to
forward the request; the simulator calculates this
based on propagation and queuing delay. The second
part is the amount of time the server spends serving;
this is taken from the trace. The third is the simu-
lated time taken by the network to forward the
response.
Some READ transactions are actually read-ahead,
for which the client does not wait. Similarly, some
WRITE requests are actually write-behind, for
which the client also does not wait. The simulator
decides whether the client must wait for READs and
WRITES by analyzing their original Request and
Response Times in the trace. If the difference
between Request Times of consecutive READs or
WRITES is smaller than a threshold, or the Request
Time of the next transaction is smaller than the
Response Time of current transaction, the interpreter
treats these transactions as read-ahead or write-
behind. In this case, more than one outstanding
request is allowed.

The client machine in these traces was a 133 mHz
Pentium PC running NetBSD 1.0. The server was a 133
mHz DEC Alpha 3000/400 running OSF/1 3.0. Each
traced benchmark was run after a reboot to prevent data
being cached between runs. They are connected by a 10
Mbps Ethernet with no other competing traffic.

The main performance metric in these experiments is
the task completion time (TCT) of a particular bench-
mark listed in Table 1. These tasks involve the Berkeley
MPEG encoder “mpeg-encode-1.3” source code distri-
bution. As detailed in Table 1, these traces include “Is -
1” on the source directories, “cp -r” of the source direc-
tory before compiling, “make” inside the source direc-
tory which compiles an mpegencode executable file,
and finally running the executable with 200 frames of
non-compressed 360x240 video as input to produce a
1.2 MByte compressed mpeg file. All of these
commands are run on the NetBSD client, with all files
accessed using NFS to the server. For comparison, we
also execute the encoder with the input raw frame data
stored locally and output mpeg file remotely.

3. Effects of Propagation and TCP
Overhead

Most NFS transactions are small independent
requests, each of which must complete before the next
can start. Thus as propagation time increases it will

Comm-
and

Is

C P

cp- 1

make

encode-
remote

encode-
local

Table 1 : Command Task List

Description

%bytes sent by client, Rbytes sent by server,
TC=transaction count, TCT=Task Completion

Time of original trace in seconds

Is -1 * */* of 37 files iin the mpeg-encode source
directory

S:54KB, R:62KB, TC=453, TCT=2.11 sec.

cp -r of the mpeg encoder source tree, 0.95
MegaB ytes

S:1034K, R:1032K, TC=771, TCT=9.58

copy single 1 megabyte file

S:l122K R 1126K, TC=268, TCT=5.23sec

compile mpeg-encoder which reads 0.95 mb
source and generate 0.3 mb output.

S: 672K. R: 1196K, TC=2023, TCT=60sec.

read 23 mb frame data and generate 1.2mb
mpeg file; input and output are remote.

S:1680K, R:23M, TC=3519, TCT=66.59 sec

same as encode remote except the 23 mb input
is stored on client local disk

S:1247K, R 157K, TC=173, TCT=50.094sec

eventually dominate the task completion time. Before
this point, the TCT is mainly affected by the underlying
flow-control protocols, network congestion status, and
processing time on the client and server.

In this section, we show simulation results for a loss-
less network with varying client-server distances. The
network has link rates of 155 Mbps and carries no
competing traffic. Figure 1 shows the TCT of several
benchmarks that use NFSNDP. Both X and Y axes are
in log scale. When the network delay is small, the TCT
is dominated by disk latency and processing time.
However, once the network delay exceeds roughly 10
milliseconds, it is the major factor in TCT, and the TCT
increases linearly with delay. We can see that the propa-
gation delay dominates the TCT of Is earlier than the
other benchmarks. This is because Is has only short
requests and is not CPU bound. An RTT of less than
lOOms appears to be the most tolerable, since beyond
that even simple tasks such as Is take a minute or more.

One interesting detail of these results is that the TCT
of encode-local increases relatively modestly with prop-

5c.4.3
62 1

agation delay. Encode-local only uses NFS to write
output to a file, and produces data slowly enough that
NFS write-behind can avoid blocking the process. NFS
can keep up to five write requests outstanding at a time;
since each completes in roughly one network round t i p
time, NFS write throughput is limited to five blocks per
round trip time. encode-local starts to slow down when
the round trip time is so high that this throughput drops
below the rate at which encode-local produces output.

R l T = 0.08 -
RTT = 0.008 ~ I 35000 -

A

I J
0.0001 0.001 0.01 0.1 1
Round-trip Propagation Delay (second, log soale)

Figure 1 : Task Complete Time vs.
Round-trip Propagation Delay for NFS/

UDP over Perfect Net

NFS over TCP performs as well as NFS over UDP as
long as the packet size (called MSS) is large, or 9192
bytes for these simulations. This packet size is typical
for ATM networks. With packets of only 512 bytes, as
are typically used over WANs, the TCTs of make and
encode-local are around 15% and 30% larger with TCP
than UDP respectively (see Figure 2). This degradation
is due to TCP’s slow-start ramp up time. If TCP is about
to send something, but the connection has been idle for
at least one round trip time, TCP first shrinks its conges-
tion window. This decreases NFS write performance,
since an 8192-byte NFS write will require many round
trip times to send if the congestion window is only a few
512-byte packets. There is no similar effect for read
requests because TCP does not consider the connection
idle when the server sends the response: the client’s
request made the connection not idle. The congestion
window does not affect requests other than read or write
because all other requests can fit in the minimum size
window. TCP with large packets always works well
because even an 8192-byte write fits in a single packet.

A close reading of Figure 2 reveals that the TCT for
encode-local over TCP actually decreases when the
network delay increases. When the delay is small, the
idle time between client requests is large relative to the
round trip time; thus TCP often shrinks the client’s
congestion window. When the network delay is large,
the client’s relatively short inter-requests delays do not

100, . Y /

TCPmake -+-
UDPmake -+-

TCP encode-loa1 -U--.
UDP encode-local --.-

I-

o.Ooo1 0.001 0.01 o. 1
Round-trip Propagation Delay (second)

Figure 2: Comparing of TCP and UDP on
“make” and “encode-local”

Y

0 10 20 30 40 50 60 70 80
Time (second)

Figure 3: Congestion Window Size for Two
“encode-local” Cases with Different RTT

4. Performance with Loaded Networks

Other work [4] has demonstrated that NFSPUDP
performs badly over heavily loaded networks, and that
NFSD’CP offers perfomance advantages. TCP recovers
from packet loss faster than NFSAJDP, and can re-send
just the lost packet rather than an entire request. TCP’s
adaptive congestion control window also allows it to use
less switch or router buffer space than NFSPUDP, which
decreases packet loss. These advantages hold primarily
when all competing traffic uses TCP. If other traffic
relies on ATM flow control, as is expected in future

622
5c.4.4

networks, TCP’s advantages for NFS are less significant.
This section reports simulation results for NFS with
both ATM flow control and either TCP or UDP, as
detailed in Table 2.

Name

TCP-9192

Table 2: NFS Transport Protocols

Description (MSS:Packet Size)

TCP with MSS = 9192

I I TCP-512 I TCP with MSS = 512

I Raw AAL5 packet I UDP I
The simulations involve a heavily loaded network

depicted in Figure 4. Each VC is flow-controlled by the
rate-based EPRCA protocol. The parameters for
EPRCA are adjusted to vary the network‘s cell drop rate.
The bottleneck switch has 2500 to 3500 cells of buff-
ering depending on the drop rate. The 50 competing
connections, 25 in each direction, send data as fast as
EPRCA will allow. The NFS connection uses either
TCP with no NFS retransmission timers or UDP with
standard 0.875 second based retransmission timer.

25 Greedy VCs in each direction among 14 hosts
7 on each side of the bottleneck link

d b
One NFS Client on one side and one Server on the other side.

Figure 4: Loaded ATM Network Configuration

NFS over UDP and NFS over TCP with 9192-byte
packets perform similarly in most cases. TCP-5 12 does
not perform well when the drop rate is high and the
amount of data to transfer is large. As seen in Figure 5
and Figure 6, TCP-5 12 performs slightly worse for “1s”
and “make” than TCP-9192 and UDP. However, TCP-
512 performs much worse than TCP-9192 and UDP in
encode-remote and “ c p l ” as seen in Figure 7 and
Figure 8. This is because encode-remote transfers much
more data than make. The cell loss causes the server’s
TCP congestion window to shrink often, which causes
TCP-512 in particular to spend many round-trip times
increasing the window again.

2 4 t
Of! O.&4S 0.601 0.oblS O&? r w &5 0.603 O.Ob35 0.604 0.&5

Figure 5: Task Completion Time of “Is”

0.601 0.632 0.&3D&&0.605 0.608 O.dO7 O d 8

Figure 6: Task Completion Time of “make”

In these simulations, cell drop rate itself is not a
configurable parameter. Instead, it is the measured result
of a specific buffer size and EPRCA parameter set. That
is why the drop rate index distance between each of the
sample points in these graphs vary.

Figure 7: Task Completion Time of “encode-
remote”

5c.4.5
623

180 , I

0

I-

Y

8 5 0 -

n l I

Task

PafecfNet

Static FCVC

EPRCASingle
FIFO with

TCP-9192 and
No Drop

-
0 0.001 0.002 0.003 0.004 0.005 0.W6 0.007

Drop Rate

Is CP cpl maLC -
5.1437 14.701 11.681 78.21

5.3016 17.239 12.144 80.392
-

9.1898 23.97 13.612 101.07

Figure 8: Task Completion Time of “cp l”

5. Per-VC Queueing and Credit-Based
Flow-Control

NFS, as a request-response protocol, is at a disadvan-
tage when competing with “greedy” sources that always
have data ready to send. Flow control mechanisms,
while limiting the rate at which such sources send, typi-
cally allow them to keep fairly large amounts of data
buffered in network switches. This leads to extra
queuing delay. Senders that are limited only by flow
control can maintain a high rate regardless of delay.
Most NFS transactions, however, must slow down as
queuing delay increases, since the client waits for each
response before sending the next request. Even for
READ and WRITE transactions, only 2 outstanding
READ and 5 outstanding WRITE requests are allowed.

Switches that maintain separate queues for each
connection (called per-VC queuing) and serve the
queues fairly will decrease this effect. When an NFS
request arrives at a switch, the NFS VC queue will be
empty; thus the request will be sent relatively soon.

In the simulations discussed in the previous section,
switch queue lengths varied from 0 to 3500 cells. At 155
megabitshecond, this would impose a queuing delay of
up to 10 milliseconds per NFS request. Figures 9 and 10
show the advantages of per-VC queuing for the “make”
and “1s” benchmarks with EPRCA flow control.

Credit-based flow control performs better than rate-
based for these traces for two reasons. First, credit flow
control does not spend time ramping up its rate. Second,
credit systems have round-robin scheduling among
VCs. The simulation results of NFS over static FCVC

‘0 * 0.001 0.002 0.003 D0.f&0.005 0.006 0.007 0.008

Figure 9: Per-VC Queueing vs. Shared
Queueing in “make”

2Q

jt

O.OW5 O.dO1 0.0bliimp0.kfe@&ad03 O.ob35 0.004 0

Figure 10: Per-VC Queueing vs. Shared
Queueing in “Is”

145

with round trip propagation delay equal to 8 millisecond
are listed in Table 3.

Table 3: Performance Improvement in FCVC
with RTT = 8 millisecond

encode
-r

16.73

96.729

114.80

~~

6. Conclusions

The performance of typical NFS tasks starts to suffer
significantly when client and server are separated by

624

,
5c.4.6

more than about 500 miles (RTT 3]Oms). At that time a
single “1s” command might take more than a minute to
finish.

If ATM flow control is used to decrease packet loss,
NFS over UDP performs as well as NFS over TCP when
TCP uses large packets. With small packets, TCP spends
an excessive amount of time with a congestion window
smaller than an NFS request; this causes single requests
to take many round trip times to transmit.

If ATM switches also implement per-VC queuing
and round-robin scheduling, NFS can compete fairly
with other traffic, further increasing performance. The
combination of ATM flow control and per-VC queuing
promise high performance for NFS over wide-area
networks of reasonable size.

References

R. Sandberg, D. Goldberg, S . Kleiman, D. Walsh, and B.
Lyon, “Design and Implementation of the Sun Network
Filesystem”, Proceedings Summer 1985 USENIX
Conference, Portland OR, June 1985.
“RPC: Remote Procedure Call Protocol Specification”,
RFC 1057, Intemic, http://www.intemic.net/rfc/
rfcl0.57.txt, June 1988.
“NFS: Network File System Protocol Specification”,
RFC 1094, SRI Network Information Center, Menlo
Park, CA March 1989.

Rick Macklem, “Lessons Learned Tuning the 4.3 BSD
Reno Implementation of the NFS Protocol”, Winter
USENIX Conference, Dallas, TX, 1991.
Bill Nowicki, “Transport Issues in the Network File
System”, Computer Communication Review, pg 16-20,
March 1989.
Rick Macklem, “The 4.4BSD NFS Implementation”, Sun
Microsystems Inc.
ATM Forum ATM User-Network Interface Specification,
Version 3.0, 1993.
“Traffic Management Specification Version 4.0”, ATM
Forum Technical Committee, af-95-0013R11, March
1996.
Van Jacobson, “Congestion Avoidance and Control”, in
Proceedings of SIGCOMM 1988.

[IO] Charny, A., Clark, D.D., Jain R., “Congestion Control
With Explicit Rate Indication”, Proc. ICC95, June 1995.

[111 L. Roberts, “Enhanced PRCA (Proportional Rate Control
Algorithm)”, AF-TM 94-0735R1, August 1994.[

[123 Kung, H.T., R. Morris, “Credit -Based Flow Control for
ATM Networks”, IEEE Network Magazine, Vol. 9 No.2
March/April 199.5.

[131 Kung, H.T. and K. Chang, “Receiver-Oriented Adaptive
Buffer Allocation in Credit-Based Flow control for ATM
Networks”, Proceedings of INFOCOM 1995, April 2-6,
1995.

[141 Kung, H.T., T. Blackwell, A. Chapman, “Credit-Based
Flow Control for ATM Networks: Credit Update
Protocol, Adaptive Credit Allocation, and Statistical
Multiplexing”, Proceedings of ACM SIGCOMM ‘94.

[151 “Quantum Flow Control”, Version 2.0, FCC-SPEC-95-1.

5c.4.7
625

http://www.intemic.net/rfc

