To appear in INFOCOM'98

TCP Fast Recovery Strategies. Analysisand | mprovements

Dong Linand H.T. Kung

Division of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138 USA

Abstract

This paper suggests that, to match an ideal Internet gateway
which rigoroudly enforces fair sharing among competing TCP
connections, an ideal TCP sender should possess two properties
while obeying congestion avoidance and control principles.
First, the TCP sender which under-uses network resources
should avoid retransmission timeouts. When experiencing
network congestion, a TCP connection should not time out unless
it has already reduced its congestion window to one packet but
still cannot survive. Second, the TCP sender which over-uses
network resources should lower its bandwidth. The congestion
window for a connection should decrease each time a lost packet
is detected, because an ideal gateway will drop packets, during
congestion, with a probability proportional to the bandwidth of
the connection.

Following these guidelines, we propose Network-sensitive
Reno (Net Reno), a set of optimizations that can be added to a

recovery algorithms in 1990 to avoid inefficiency caused by
retransmission timeouts (RTOs) [7, 19, 20].

These basic TCP principles were designed based on the
assumption that the gateway drops at most one packet per flow
when the sender increases the congestion window by one packet
per round-trip time. Therefore, TCP’s fast retransmission and fast
recovery algorithms can quickly recover the loss and adapt to
equilibrium using exponential decrease and linear increase of the
congestion window. A recent study [16] has suggested that
packet loss rates on the Internet have doubled within a year and
that burst dropping is common. With the deployment of Random
Early Detection (RED) gateways [3], the number of dropped
packets per connection will be proportional to its bandwidth
usage at the shared link, causing multiple drops for large window
connections. Therefore, it is worthwhile to study the interactions
between end-systems and gateways at the individual flow level.

In this paper, we use connection and flow interchangeably to

traditional Reno TCP sender. Using TCP’s self-clocking propert;?efer to a flow identifigd by source/destination addresses, port
and the packet conservation rule, Net Reno improves Reno aRmpers, and protocol id.

its variants (New-Reno and SACK), in reducing TCPq 1 Previous Work on Avoiding Timeouts

retransmission timeouts (RTOs) and in being conservative in o)
network usage during the fast recovery phase. Through a trace 1 CP’s fast retransmission and fast recovery algorithms [7,
analysis, we have shown that over 85% of RTOs are due to smafl: 20] were developed to recover packet losses quickly without
congestion windows that prevent fast retransmission anRTOs. The fast retransmls.smn algorithm, which first appeared in
recovery algorithms from being effective. This implies that@hoe TCP [6], retransmits an unacknowledged segment after
sophisticated recovery schemes such as SACK will have limitégceiving three duplicate acknowledgments (ACKs), resets the
benefits for these loads. Net Reno overcomes this problem witff@ngestion window to one packet, and begins slow start. The fast
small window optimization. recovery algorithm in Reno [7, 20] replaces the slow start with
While being less aggressive than previous approaches, NEePngestion avoidance by reducing the congestion window to one
Reno can recover any number of packet losses without timeotit@!f:
as long as the network keeps at least one packet alive for the In Reno, the maximum number of recoverable packet losses
connection. This scheme thus brings TCP one step further towai a congestion window without timeout is limited to one or two
the ideal model. Net Reno requires no modifications to the TCPackets in most cases. Under the most optimistic assumptions
receiver. Simulations and laboratory experiments have showthat the algorithms always be triggered, no more than six, or
that they significantly reduce RTOs and improve TCP’s goodputlog,128 - 1, losses can be recovered with a maximum window
size of 128 packet§ his is because Reno TCP cuts the conges-
tion window by half for each recovered loss. With six back-to-
back lost packets, the final window size would reduce to two
packets. Further losses have to be retransmitted after a long delay
when RTO is triggered by a 500ms slow timer, bringing the
throughput to its knees.

TCP’s selective acknowledgment (SACK) option [12]
enables the receiver, when holding non-contiguous data, to
inform the sender consecutive blocks that were successfully
received. With SACK, the sender is able to identify and

1. Introduction

With its explosive growth, the Internet backbone faces the
challenge of operating at its capacity. Many remote TCP connec-
tions experience high loss rates due to gateway congestion during
busy hours. Congestion avoidance and control have become crit-
ical to the use of the Internet.

In 1988, Jacobson [6] pioneered the concepts of TCP
congestion avoidance and control: slow start, congestion avoid-
ance, conservation of packets, and exponential timer backoff.
TCP was later augmented with fast retransmission and fast

retransmit multiple lost packets within the same round-trip time control; Section 3 summaries terminologies of this paper; Section
(RTT) if there are enough ACK s returning to the sender. 4 describes the problem and solution for small congestion

Hoe [5] proposed a modification to Reno (New-Reno TCP) ~ Windows; Section 5 describes our conservative loss-sensitive
that can help the sender recover multiple packet losses. It is ~ Window reduction mechanisms; Section 6 gives additional opti-
suggested that the sender should fall into a Sow start immedi- ~ Mizations to avoid timeouts; Section 7 presents simulation and
ately after the initial loss is detected and inflate the congestion ~ €xperimental results.

window by one packet for every two duplicate ACKs. This 2 Cooper ative Gateways and End-Systems
scheme, however, generates unnecessary retransmissions for '

packets already cached at the receiver. Fal and Floyd [2] While efficiency and stability have been the major objectives
described a modified New-Reno which avoids unnecessary in the study of TCP congestion avoidance and control algorithms,
retransmissions and slow start. the interactions among competing TCP connections sharing

In summary, we are interested in four different TCPs: gateway resources have not been given equal attention.

» Tahoe: The sender implements fast retransmission only. 2.1 |deal Network Mode

. : i ission an . . .
Reno: The sender implements both fast retransmission and With respect to traffic management, an ideal Internet should

fast recovery. emonstrate the following properties:
» Modified New-Reno: The sender retransmits one lost packeq g prop '

per RTT upon receiving partial ACKs and terminates the ° congestion_ avoidance and control
recovery phase when the whole window is acknowledged. * €dual sharing
« SACK: The sender is able to retransmit multiple lost packets * denial of service avoidance
per RTT using additional information in SACK blocks. An ideal gateway should have mechanisms for congestion
avoidance. It drops packets in order to signal congestion and
trigger end-system’s flow control algorithms. These signals must
Previous studies have assumed that multiple packet loss li¢ selectively delivered only to the offending end-systems. A fair
the major cause of RTO. By studying an extensive set of traces géiteway should statistically avoid dropping packets from connec-
Paxson [17], we have found that for these traces the averatiens that use less than the fair share of the resources. Otherwise
congestion window is small (12 packets) and that over 85% dhe system would not converge to the ideal equilibrium.
the timeouts are due to non-trigger of fast retransmission (see The gateway causes denial of service when it cannot provide
Section 4.1 below). This strongly suggests that no multiple losgt least one packet buffer per flow when the number of simulta-
recovery schemes can be effective for the Internet load repreous flows increases. While it is possible that TCP’s exponential
sented by these traces. Other factors that cause RTO includifigher backoff scheme allows a subset of the competing flows to
lost retransmissions and limited data are not addressed. share the resources while others are waiting in timeouts, we
Another shortcoming of some previous work is that TCP’elieve that smooth sharing and less bandwidth variation provide
efficiency concerns seem to overwhelm network congestiohetter stability than ON/OFF sharing. Unfair bandwidth distribu-
concerns. That is, refinements to improve TCP’s efficiency argon within short intervals noticeable by users is particularly

1.2 Remaining | ssues

provided by adding aggressiveness. biased against short-lived and interactive connections. This idea
. of one buffer per user was first addressed by Nagle [15]. The
13 Resultsof This Paper ideal gateway should delay denial of service by reducing the
In this paper, we provide insights into Internet congestioandwidth variation among the competing flows in order to
avoidance and control in the following two areas: maximize the number of simultaneous users.
+ We describe an ideal model based on cooperative gateway In [11], we demonstrated a fair gateway packet discard algo-
and end-system strategies. rithm, Flow Random Early Drop (FRED), which supports a large

« Following the ideal model, we propose Network-sensitivenumber of simultaneous flows fairly by simply adding more
Reno (Net Reno) TCP, a set of optimizations that make TCPuffers. In contrast, fairness worsens when the buffer size

more resilient to packet losses even under small congestidcreases under other algorithms such as Drop-Tail or RED.
windows and more conservative in network usage. Therefore, enforcing fairness not only benefits each individual

I:tlow, but also makes the maximum number of simultaneous

We hope that, with end-systems running Net Reno TC . ;
P y ¢ gows more scalable with respect to the required gateway buffer

gateways implementing ideal packet discard algorithms will b
able to achieve fair sharing among competing TCP connections: '€

Our optimizations can be applied to both Reno and SACK.2 Ideal End-System M odel
TCP. They require no modifications to the TCP receiver. Most of An ideal end-system should deploy multiplicative decrease

all, they maintain TCP's congestion control algorithms andand additive increase for congestion control and avoidance. As

strictly obey the principles of slow start, congestion avoidanceSuggesteol by [6], anything more aggressive would cause collapse
and conservation of packets [6, 7]. or instability,

The rest of this paper is organized as follows: Section 2
describes our ideal model for Internet congestion avoidance and

Itiscommonly believed that TCP should be robust on recov-
ering packet losses and avoiding timeouts. We claim that a TCP
sender should aggressively recover packet losses and avoid time-
outs. A timeout is necessary only if TCP cannot survive with a
window size of one packet. A fragile TCP connection (which is
very sensitive to losses) should not fall into timeouts while other
connections are increasing their bandwidth share at the gateway.

Matching aggressive TCP recovery schemes with non-ideal
gateway packet discard algorithms deserves further investigation.
An ideal gateway signals the offending connections only. RED
[3], an approximation to the ideal model, assures that the number
of packet losses from a connection is proportional to its band-
width usage. Thus, offending connections using bandwidths
larger than their fair shares will incur more losses than the others.
An ideal TCP sender should respond properly to this clue by
reducing the congestion window each time a lost packet is
detected. A SACK TCP sender which cuts the window by one
half, regardless of the number of losses, may be too aggressive
and destructive to other connections and the whole network.

3. Terminology and Notations

Throughout this paper, we use the following terms in TCP’s
protocol control block. These names are taken from NetBSD .

1.2’s TCP implementation:
» snd_cwnd: the sender’s congestion window size

» snd_una: the smallest sequence number of the unacknowl-*

edged packets
» snd_nxt: sequence number of the next packet to be sent
» snd_ssthresh: sender’s slow start threshold
* dupacks: the number of duplicate ACKs received

Paxson [16] has found that out-of-order delivery is common
and argued that TCP should not retransmit too early by lowering
the received duplicate ACK threshold. In this section, we
describe a novel approach that remedies the problem. This algo-
rithm was used in [11] as a demonstration of FRED where we
pointed out that this small window optimization improves the
robustness of TCP significantly and enables connections with
tiny windows to compete fairly with other high bandwidth
connections sharing the same gateway.

4.1 Trace Study of Timeouts

To understand the dynamics of RTOs, we analyzed 2,000
actual TCP bulk transfers over the Internet. This is a subset of a
large trace collected by Paxson [16, 17] during November and
December of 1995. Each transfer delivered 100KB of data.
Traces were collected at both senders and receivers.

Our objective is to identify retransmission timeouts from the
traces and analyze their causes. We categorize the timeouts into
the following three classes:

* Non-trigger: The sender retransmits a packet without
previous attempts because the fast retransmission algorithm
has not been triggered.

Multiple losses: The sender retransmits a packet that is
different from previous retransmissions sent at the beginning
of this timeout period.

Lost retransmission: The sender retransmits the same packet
that has already been resent.

A TCP receiver sends a duplicate ACK when it receives out-
of-sequence packets. The sender has to accumulate three dupli-
cate ACKs before it triggers the fast retransmission and fast

The following terms are not in the implementation but appear iggcovery algorithms in order to avoid unnecessary retransmis-

our analysis and graphs:

sions due to out-of-order delivery. The non-trigger case will lead

* rcv_rseq: sequence number in the header of a receiveg RTO for all versions of TCP. Under standard Reno, multiple

packet

 rcv_dseq: sequence number of a missing packet observed

the receiver when receiving a non-consecutive packet

acket loss causes back-to-back recoveries as the sender only
ransmits one packet per recovery phase. Previous work
enables the sender to handle multiple losses per recovery,

* snd_sseq: sequence number in the header of a transmittgghroving efficiency during the recovery period. Currently, no

packet

TCP that we are aware of can deal with lost retransmisJSiBrys

Maximum segment size is 512 bytes. All terms describednalyzing the distribution of various causes, we hope to identify
above are converted from sequence numbers to packet numbg{g most significant factor among these three.

(sequence numbers divided by segment size). Delayed ACK is
enabled by default. Each TCP session starts with a congesti
window of one packet and snd_ssthresh of 128 packets (64KB
TCP’s fast timer expires every 200ms and slow timer every 50
ms. A random factor is added to each timeout interval so that

two timers go off at the same time.

4. The Small Windows Problem and Solution

For each timeout, we record the connection’s instant conges-
Bn window size. We then calculate the distribution for all time-
uts that have congestion windows greater than or equal to X
ackets for all values of X. Figure 1 shows details of the analysis.
&stonishingly, this graph shows that over 85% of the timeouts are
due to non-trigger. For the remaining, 11% are due to multiple
loss and 4% are due to lost retransmissions (from the three dots at
X=1). Figure 1 also shows that less than 10% of timeouts have

According to a trace study of this section, the most dominantyngestion window larger than 10 packets (from the total window
factor that causes TCP to timeout appears to be small congestigripution curve) and that the distribution for multiple loss is
windows. Before a lost packet is recovered, the window Sizgayer more than 10% (from the multiple loss curve).

limits the number of returning ACKs the sender may receive.

Because TCP requires three duplicate ACKs in order to trigger

e . hile th nnections are not in timeout. The average window
fast retransmission and fast recovery, small windows may/v € the connections are no 9

prevent these algorithms from being effective.

To verify our findings, we measured the congestion windows

1. See Section 6.2 and [9] for arecent development.

size is 12 packets. Given such a small window size, it is quite
intuitive to expect that non-trigger is common.

These results imply that sophisticated multiple loss recovery
schemes such as SACK have limited benefit for TCP connections
over the load represented in the trace. Given the small congestion
window size, variants of New-Reno might do just aswell. SACK
can, perhaps, be more effective over long links where connec-
tions have large windows and the congestion is not as severe.

1

T
non-trigger ——
multiple loss (SACK effective) -+---
lost rxt &

total dist. ~x

=X)

Weighted Dist. of CWND (>

60

20
Congestion Window (cwnd)

Figure 1. Congestion window sizes distribution and
timeout classes distributions. Non-trigger is the
dominant factor for timeouts. Multiple losses never
contribute to morethan 10% of the timeouts.

4.2 Recovery from Small Windows

This section presents a solution to the small window
problem, based on the packet conservation rule[7]. In Reno TCPR,
the sender stops sending when receiving duplicate ACKs. When
three dupacks are received, the fast retransmission and recovery
phase starts, otherwise the sender waits for an RTO. In our solu-
tion, the sender generates a new packet for each duplicate ACK
received (only for the first two ACKs). As mentioned in [7], a
duplicated ACK received means a packet has left the network.
We can inject one new packet so that the total number of in-flight
packets is as many as the current congestion window allows.
New packets are generated by inflating the congestion window as
in the recovery phase. Assume that the network will keep alive at
least one packet per connection. Then these new packets injected
into the network will cause more ACKs to come back and even-

tually “force” the sender into the recovery phase when thre

duplicate ACKs arrive.

Figure 2 demonstrates the effect of window inflation for
recovering losses for small windows. X-axis is time in the unit of
packet time (time to transmit a 512 byte packet at link rate). Y-
axis is packet number (sequence number divided by segment
size). The connection has a window size of three packets. The
outstanding packets were 43, 44 and 45 transmitted at (93, 43),
(93, 44) and (99, 45). Packet 43 was lost (marked by the triangle
at (97, 43)) and the ACK generated by packet 44 was positive
because packet 42 did not cause an ACK due to delayed ACK.
The ACK generated by packet 45 set dupacks to one. The
congestion window was immediately inflated to four so that
packet 46 was sent at (103, 46) and it became the only packet
alive. One RTT later the ACK generated by packet 46 came back
which incremented dupacks to two and inflated the window
further to five and packet 47 was sent at (108, 47). Another RTT
later, the new returning ACK finally triggered fast retransmission
of packet 43 at (112, 43).

54

snd_nxt —-—
snd_una (ack) -+
52 rcv_rseq =
snd_sseq *
rcv_dseq A »
50 s

X
o

a8

Packet Number

46

a4

42

a0 b L L
90 95 100

105 110 115 120 125
Packet Time

Figure 2. Recovering one packet loss for a window of
three packets, under the small window recovery
scheme.

This optimization for small windows is of less significance
for large windows and may cause extra packet losses under
severe congestion. Therefore, pre-recovery window inflation
should be dynamically enabled. In our implementation, it is trig-
gered only if the congestion window size is less than ten packets.

A similar approach was simultaneously developed in [18].
However, their approach does not justify why two new packets
can be injected into the network or how to account for the two
extra packets in the congestion window after three duplicate
ACKs or a positive ACK are received. It is also pointed out in
18], through trace analysis of a busy web server, that 90% of the
etransmission timeouts are due to non-trigger.

When the recovery phase is triggered, the inflated conge® L 0ss-Sensitive Window Reduction
tion window should be deflated back for computing the slow start Ao mentioned earlier. ideal gateways, to which RED and

threshold. If a positive ACK comes back before dupacks reachgsep approximate, signal congestion by dropping packets from
three, then the number of packets acknowledged should Rgenging flows. The number of packet drops reflect the over
checked against the number of packets injected. If the amougf essiveness of individual flows. A Reno sender reduces its
acknowledged is more than or equal to the amount inflated,yngestion window by one half for each packet loss. Therefore,

dupacks is cleared. Otherwise, dupacks should be subtractedt Y. conaestion window /2~ after L recoveries where L is the
the amount acknowledged as if the next unacknowledged packet 9

is now receiving duplicate ACKs. The reason is that if we havgumber of losses 'n, a window of size W. New-Reno and SACK,
received N ACKs, but can only shift the congestion window les owever, C_UI the window t_’y a half regardless of the number of
than N packets to the right, this next unacknowledged packélSSes: This makes the window to be'2 after one recovery
must be either out-of-order or missing. when all losses are retransmitted.

Besides the mismatch with gateway packet discard algo-
rithms, such loss insensitive window reduction al so causes packet
bursts when recovering multiple packet losses. A partial ACK
that only acknowledges some but not all packets in the original
window causes a sudden shift of the window allowing multiple
packets to be sent. In addition, since the number of in-flight
packets will be smaller than half of the original window size if
more than one packet is lost, the window reset at the end of the
recovery will alow multiple packets to be injected. Fall and
Floyd [2] first pointed out this packet bursts problem.

In this section, we described a loss-sensitive window reduc-
tion a gorithm based on the packet conservation rule. The size of
the congestion window after the recoveries will be a function of
the number of lost packets. Specifically, the algorithm will
reduce the window to W/2-c where c is proportional to the
number of packet losses. In addition, the algorithm does not have
the packet bursts problem.

5.1 Loss-Sensitive New-Reno TCP

We describe below the two changes made to the standard
Reno TCP implemented in NetBSD 1.2 for our loss-sensitive
New-Reno:

1. When apartiadl ACK isreceived, i.e., apositive ACK that
only acknowledges some but not all the packets in the
original window after fast recovery was triggered, imme-
diately retransmit the next lost packet pointed by the ACK
and continue the recovery process. In addition, reduce the
congestion window so that this partial ACK does not cause
more packets to be sent other than the retransmission.

2. If a positive ACK acknowledges all the packets in the
original congestion window, terminate the recovery phase.
Reset the congestion window to one half or less so that at
most one packet can be sent due to the left edge of the
window shifting to the right. This will cause the sender to
slow start instead of blasting a large number of packets to
the network.

Notice from the above two rules that after the number of
outstanding packets is reduced by one-half, each received ACK
(duplicate or partial) causes exactly one packet to be sent for the
rest of the recover phase. In other words, the number of
outstanding packets does not re-grow during the recovery phase.
In contrast, the method of [2] imposes a maximum burst of four
packets for each received ACK and does not adjust the window
upon receiving positive ACKs.

5.2 Loss-Sensitive SACK TCP

While our SACK receiver strictly complies with the specifi-
cation [12], our SACK sender is implemented by the following
additionsto NetBSD 1.2 Reno TCP:

1. If the inflated congestion window alows sending one
packet, retransmit a lost packet and reduce the window by
one packet. If al lost packets have been retransmitted,
send a new packet asin Reno.

2. When apartial ACK is received, retransmit a lost packet
or send a new packet. Reduce the congestion window so

that this ACK does not cause more packets to be sent.
3. Use the last rule defined in Section 5.1 to terminate the
recovery process and reset the congestion window.

Notice again that each received ACK (duplicate or partial)
causes exactly one packet to be sent for the second half of the
recovery phase. The authors of [2] suggest that when SACK
retransmits a lost packet, another packet should be sent because
the number of outstanding packets is at least one less than
expected due to the newly detected lost packet. By doing this, the
number of outstanding packets would be as close to half of the
origina window size as possible. We argue that, under some
circumstances, the congestion window should actualy be
reduced by more than one-half in view of sudden increase of link
sharing at the gateways as indicated by packet losses. Our less
aggressive sender allows the number of outstanding packetsto be
shaped by the exact number of packet losses. Therefore, the
number of packets on the fly is half of the origina window size
minus a constant ¢, i.e, (W/2-c), where c is the distance
between the first and the last lost packets. During no time does
the sender generate more than one packet for each received ACK.
At the end of a multiple-packet loss recovery phase, the number
of outstanding packetsis smaller than half of the original window
size, and the connection uses slow start to ramp up. Our more
conservative scheme strictly obeys the conservation of packets
rule. We believe that the sender should not insist on keeping the
number of in-flight packets to be one half of the window during
recovery when congestion is detected.

5.3 Dealing with Out-of-order Packets During
Recovery

Three duplicate ACKs are required before fast retransmis-
sion starts. This is a conservative measure to avoid unnecessary
retransmission caused by out-of-order delivery. However, the
schemes described in the above two subsections and those in
previous work will retransmit other lost packets in the same
window upon receiving thefirst partial ACK. Thisis inconsistent
with the origina Reno approach and may cause unnecessary
retransmission when out-of-order packets occur. This is demon-
strated in the following example:

With a congestion window of W packets (W >> 3), the
sender has W packets in-flight. Assume P, is lost, P,, and the
retransmission of P, arrive out-of-order. The incoming packet
sequence at the receiver is:

Notice A, is a partial ACK because it falls into the origina
window of W packets. This causes the sender to falsely
retransmit P, due to out-of-order by one packet.

Our Net Reno solves the problem with the following modifi-
cationsto Rule 1 in Section 5.1:

1. When a packet is retransmitted, set a marker at the in-
flight packet with the largest sequence number (snd_nxt).

2. When a partial ACK is received, the following value is
caculated D = (M-A)/S, where M and A are the
sequence numbers of the marker and the partial ACK
respectively, and Sis the segment size. Retransmit the next
lost packet if D is at least three. Otherwise, send a new
packet and more duplicate ACKs must be received in
order to initiate the retransmission. The number of addi-
tional duplicate ACKsis 3-D.

These two rules are used recursively until acomplete ACK is
received. This modification assumes that most out-of-order
delivery is no more than three packets and therefore is consistent
with the original Reno.

6. Additional Recovery Optimizations for
Avoiding Retransmission Timeouts

This section describes the rest of our proposed improve-
ments to Reno TCP and its variantsin detail.

6.1 TCP’s Self-Clocking Property

the packets on the fly in order to shrink its congestion window by
one-half. This was done by waiting for 17 duplicated ACKs (14
plus the origina 3 dupacks). However, both packets were sent as
soon as the congestion window was open again. Each packet was
sent upon receiving one ACK. Once al three lost packets were
retransmitted, new packets started to fill the pipe due to the
inflated congestion window by the conservation of packets rule
starting from (1587, 672). The sguare points in the figure show
the packets actually arrived at the receiver. Notice that the
retransmission for packet 638 did not make it, although retrans-
mitted packets 639 and 640 did (near point (1602, 639)). As a
consequence, snd_una did not get increased and eventualy the
slow timer went off (not shown in the figure).

720

snd_nxt ——
snd_una (ack) -+---

L rcv_rseq =
700 snd_sseq -
rcv_dseq =

o
660 |2

Packet Number

TCP’s round-trip time boundaries can be detected by
counting the number of returning ACKs. This is similar to
congestion avoidance in which the congestion window is
increased by one packet per RTT, except that we use duplicate
ACKs during the recovery phase. To explain our idea, for the
moment, assume that delayed ACK is disabled, that TCP does

20
1520 1540 1560 1580 1600 1620 1640 1660
Packet Time

Figure 3. The retransmission for lost packet 638
was dropped by the gateway. The SACK TCP

connection fell into a retransmission time out.
not change its congestion window size, and that the network does

not drop packets. If the current window size is one packet, then We propose using TCP’s ACK-clock to time out lost retrans-
the time between two consecutive ACKs is exactly one RTTissions. If the clock shows one RTT has gone by and we have
(including queueing and processing delays). If the window size ieceived three additional duplicate ACKs since the end of the
two packets, then the time between every other received ACKs BT T, the current packet pointed by snd_una should be retrans-
one RTT. In general, if the window size is W, then the timemitted again. The three additional dupacks is a conservative
between ACK, and ACK_,,, is one RTT. measure against out-of-order packets. When a positive ACK
jgomes back and additional lost packets have not been recovered,

For the purpose of this paper, we only use the ACK-cloc .
during recovery in which the reference congestion window ighe ACK-clock value !S recorded so that the next unacknow-
edged packet can be timed.

static. More specifically, if the congestion window is W when the . . _

first loss is detected, then we consider W worth of ACKs as the Implementing the ACK-clock is straightforward. The
first RTT and W/2 worth of ACKs as each additional RTT. Thereceiver sends a duplicate ACK for each non-consecutive packet
receiver is required to send one ACK for each non-consecutivéceived. Therefore, the value of dupacks represents exactly the

data packet received.

6.2 Recovery of Lost Retransmissions Using TCP’s
ACK-Clock

This section explains how we use ACK-clock to recover lost
retransmissions. As depicted by Figure 1, lost retransmissions
account for about 5% of the timeouts in the traces we examined.
Reno, New-Reno and SACK do not deal with lost retransmis-
sions. Figure 3 shows a simulation trace of a SACK TCP session.
When the congestion window reached 34 packets (snd_nxt -
snd_una), packets 638, 639, and 640 were dropped, marked by
three triangles around point (1530, 638). SACK TCP quickly
retransmitted packet 638 after receiving three duplicate ACKs at
point (1553, 638). The retransmissions of packets 639 and 640
were delayed until (1583, 639) because TCP had to flush half of

ACK-clock ticks. When a data packet is lost in the network, the
corresponding ACK, which should have been generated and
delivered to the sender, will be missing. This slows down the
ACK-clock. Therefore, one additional tick should be generated
for each retransmission.

Figure 4 shows a simulation trace over the same TCP
connection when the ACK-clock is used. As before, SACK TCP
retransmitted packets 638, 639 and 640, but only the latter two
packets arrived at the receiver. When dupacks reached 40
(3+RTT+3), the sender retransmitted packet 638 again at point
(1623, 638) and the packet successfully arrived at the receiver at
point (1642, 638). Consequently, this caused a huge right shift for
the sender’s congestion window at point (1659, 688) and the
recovery phase terminated. At the time dupacks reached 40, 37

duplicated ACKs had been received, with the other three ticks
coming from the original three retransmissions.

720

710 snd_nxt ——
snd_una (ack) -+
L rcv_rseq =
700 snd_sseq -
rcv_dseq &

Packet Number
[}
~N
o

620
1520 1540 1560 1580 1600 1620 1640 1660
Packet Time

Figure 4. TCP’s ACK-clock recovered the lost
retransmission which enabled the connection to
continue without timeout.

The authors of [9] proposed adding afield to the TCP header
that carries a non-decreasing counter generated by the sender and
echoed by the receiver. Our approach does not require modifica-
tions to the header fields or the receiver. In addition, the scheme
of [9] does not consider out-of-order delivery.

6.3 Correcting the ACK-Clock

The ACK-Clock slows down upon packet losses. In the
worst case, when TCP loses over haf of the packetsin the same
window and the first retransmission, the clock stalls because the
Reno sender requires reception of at least W/2 duplicate ACKsin
order to send new packets and keep the clock ticking.

To prevent stalling, the sender needs to identify the first RTT
boundary without counting returning ACKs. This can be done by
inserting markers after the recovery begins. Piggybacked markers
are sent by the sender with data packets and echoed by the
receiver with ACKs. The only packet sent during the first half of
the RTT is the first retransmission. To increase the probability
that at least one marker successfully returns to the sender, new
packets need to be injected into the network during the first half
of the RTT. But this adds aggressiveness to the agorithm, gives
less time for the gateway queue to drain, and therefore might
cause further congestion. As a compromise, we propose sending
one marked new packet upon receiving the fifth and the seventh
duplicate ACK respectively.

Packet marking can be done in two different ways without
modifying the receiver. The first option isto use time stamps. For
each retransmission, a new time stamp should be used to differ-
entiate new packets from old packets. The second approach is
specific to SACK TCP. When a new packet (not a retransmitted
packet) is sent, the corresponding ACK will carry a SACK block
outside the original window. SACK requires that the first block
must reflect the change made by the reception of this new packet
[12]. Therefore, aslong as new packets are injected into the pipe,
the returning SACK blocks can serve as hon-ambiguous markers.

6.4 Incorporating Back-to-back Recoveries

The recovery process terminates when a positive ACK
acknowledges all packets in the original congestion window.
Simulations show that the sender may immediately fall into
another recovery phase due to the loss of new packets from the
inflated window. The connection needs to accumulate another
three duplicate ACKs for the second recovery.

As stated in Section 5.2, at the end of a recovery the total

number of outstanding packets is about W = W/2—c. If a posi-
tive ACK indicates more than W packets unacknowledged, then
thereis at least one more lost packet even if all the packetsin the
original packets are acknowledged. In SACK TCR, this positive
ACK would carry a SACK block. Such information can be used
to help start the second recovery early.

When the sender receives an ACK that acknowledges less
than the expected number of packets, the sender should
retransmit the packet pointed by the incoming ACK. Because this
lost packet is sent after the window is reduced by one half, itisa
sign of further congestion. The sender should indeed reduce the
window again. We set the dupacks counter to two packets and
send out a new packet to void structural changes to the imple-
mentation. This way, the second recovery will be triggered by the
next incoming duplicate ACK. This is demonstrated by a New-
Reno TCP connection in Figure 5: the first recovery starts after
the sender has received three duplicate ACKs at (150819, 6554)
and retransmitted five lost packets. At the end of the recovery
when a positive ACK is received at (151349, 6590), the sender
sets dupacks counter to two, and transmits a new packet. The
second recovery starts when the next ACK comes at (151369,
6578).

6595

6590
6585
6580
6575

6570 | &

Packet Number

6565 &
3

6560 L i snd_nxt ——
; snd_una (ack) -+

6555 |- snd_sseq -=

6550

6545

L L L
151200 151400 151600

Packet Time

L L
150800 151000

Figure 5. First recovery helps to quickly trigger
the second recovery immediately follows.

6.5 Recoveringwith Limited Data

We have previously demonstrated that, with a window size
of W packets and aloss of L packets, SACK isableto recover all
losses within one RTT, whereas New-Reno requires L*RTT to
finish. During this potentially long period, New-Reno requires
data to generate new packets. If the sender does not have enough

data or is limited by the receiver’'s advertised window, then the

connection would stall into a RTO.

To prevent this RTO, we propose that the sender should re-
send the packets starting from the first unacknowledged packet at

snd_una. Although thiswould cause unnecessary retransmissions tions, we ran the simulation 10 times, each simulating about 30
in case of out-of-order delivery, it can keep the flywheel going seconds of traffic.

and eventualy clock the connection out of recovery. Another Table 1 shows the total number of RTOs each connection has
approach is to send header-only packets with sequence numbers experienced over the ten runs. Notice that the Net Reno optimiza-

higher than snd_una. This accomplishes the same god and tions described in this paper have completely eliminated RTOs
preserves link efficiency although it does not contribute to TCP’s {or hoth New-Reno and SACK TCP.

goodput. Gateways such as RED and FRED that are capable of

measuring buffer usage in bytes should favor the second Gl | C2] C3 | C4| C5 | wd
a roachg J Y new-reno 19 33 36 28 13 | 129
PP ' sack 28 35 26 26 8 123
7. Performance Comparison net-reno 0 0 0 0 0 0

net-reno-sack 0 0 0 0 0 0

We present performance results based on simulations and Table 1. Total number of retransmission timeouts (RTO)
also on experiments on laboratory test networks. over ten runsfor the configuration in Figure 6. Columns

The simulator used for results of Section 7.1 is a distant oneto five show the #RTOsfor the five connections.
descendant of one written for the DARPA/Nortel funded Cred- Tap1e 2 shows the total number of packet losses for each

itNet ATM Project [10] in 1992. The switch implements pureqnnection over the ten runs. Notice that each connection experi-
EPD with no partial packet discard in order to emulate packelnced slightly more losses under Net Reno. This is because the
switching. We use 512 data-byte TCP packets which are carriefhnnections were constantly generating packets into the network
in 12 ATM cells. The gateway decides whether to drop a packgihereas, in the New-Reno and SACK case, the connections were
upon receiving the first cell in the packet. NetBSD 1.2 TCP Rengy, it off during RTOs. The traffic patterns are smoother with Net
source files are used with our modifications described in thigang than without, due to absence of RTOs. Note that Net Reno
paper. did not fall into any RTO even if there were more packet losses.
For the rest of this section, we use the terms New-Reno and 1 co2 T c3 ca 1 c5 1 tom
SACK to represent, respectively, Loss-Sensitive New-Reno and newTeno 2627 | 25028 | 2491 | 2242 | 708 | 10796
SACK described in Section 5. sack 2691 | 2645 | 2562 | 2504 | 734 | 11136

7.1 Avoidin g RTOs by Net Reno net-reno 2674 | 2625 | 2610 | 2553 695 | 11157

net-reno-sack | 2748 | 2704 | 2682 | 2690 | 691 | 11515

Senders C1-C4 in Figure 6 each have a (1ms, 103.3 mbps)
link to a shared gateway. Sender C-5 has a long link of (16 ms,
31.0 mbps). All five connections go through a shared link (2 ms,
51.7 mbps) to the same host receiver. The five FTP sendefs2 Improving Goodput by Net Reno
always have data in the socket buffers and the congestion

windows can grow up to 128 packets. The gateway implemenﬁeno (except packet marking), New-Reno, SACK, and RED
RED [3] (with buffer size = 16 packets, r_mn: 4 .maxh =8V under NetBSD 1.2. The SACK implementation was written from
=0.002, and max= 1/50). As discussed in Section 4.1, our traCescratch, but was partially inspired by a BSDI version [1].

analysis reveals that the average congestion windows size for Figure 7 depicts a test setup in our lab. A TCP sender on a

TCP connections in the trace is 12 packets. We used small buffef§y s fast ethernet sends infinite data to a sink on a 10 mbps

at the gateway so that we can imitate the correct congestig?hemet through a RED gateway (buffersize=20,
window sizes for both local and cross country connections. RED ’

is used to eliminate the phase effects caused by constant propa?éq)qf‘zlq’ %:1/512’ maﬁ:0.0Z). A smgll buffer s_,lz_e IS. to fimit
tion delays and deterministic control algorithms [4]. CP’s window size so that the small window optimization can be

more effectively demonstrated. All links are a couple of feet
16 ms, 31.0 mbp 2 ms, 51.7 mbps long. The maximum segment size is 512 bytes, delayed ACK is
Sink enabled, and the maximum TCP socket buffer size is 256KB. All
machines are 200 Mhz Intel Pentium Pro with 64 MB RAM. To

test the effectiveness of each optimization, we measured the
TCP’s goodput with various combinations of the optimizations
turned on. Each test were run 300 seconds.

Table 2. Total number of packet drops over ten runs for
the configuration in Figure 6

In our laboratory at Harvard, we have implemented Net

C-4 C-3 C-2 C-1 Table 3 summarizes average TCP goodput of the experi-

1 ms, 103.3 mbps ments. The first column shows the optimizations used for the

Figure 6. A simulation test network. A long distance measurement. “Irxt” stands for lost retransmission. The second
TCP competes with four local connections at a RED and third columns show the goodput for New-Reno. and SACK
gateway for the shared link to a sink. respectively. For both New-Reno and SACK, the goodput

improves as more optimizations are added. The gateway reported
We simulated New-Reno, SACK, and Net Reno (Net-Rendoss rate of 1%. For comparison, a standard Reno sender obtained
and Net-Reno-SACK). For each of the above TCP implementa goodput of 4006 kbps. Surprisingly, SACK fell behind New-

Optimizations of Net Reno TCP are applicable to the SACK
100 mbps 10 mbp option and can also work independently under Reno.
Sender Sink

Acknowledgments

Figure 7. An experimental test network. The TCP This work was supported in part by research funding from

sender on a 100 mbps fast ethernet sendsinfinite data Nortel and Sprint. Vern Paxson kindly provided us the N2 trace
to a sink on a 10 mbps ethernet through a RED [16, 17]. His suggestions and the tcpanaly program have saved us
gateway. All links are less than two feet. a tremendous amount of time.

Reno in all cases. We replaced the sender and the sink machines Reference

with two Pentium 100 Mhz machines. Reno and New-Reno . _

provided similar goodput. SACK performance degraded in all [1] Balakrishnan, H., TCP SACK Implementation for BSDI

cases by about 20%. Our simulation traces of Section 7.1 reveal 2 IElII ftg//clsz-ldasdaéus-Pse.rke||GY;edUépUbgCF(J:SaCk/ _ f
that New-Reno provided lower total goodput than SACK, but al, K., Floyd, S., “Simulation-based Comparisons o

Net-Reno’s performance is better than SACK and comparable to Tahoe, Reno, and SACK TCP,” Computer Communication

Review, July 1996
that of Net-Reno-SACK. [8] Floyd, S., Jacobson, V., “Random Early Detection Gate-

We speculate from our simulations and real experiments that ~ ways for Congestion Avoidance,” Transactions on Net-
SACK might not be able to demonstrate significant advantages working, August 1993
over Net Reno under moderate congestion and that it will requi@] Floyd, S., Jacobson, V., “On Traffic Phase Effects in
significantly more CPU power than Reno variants unless it can ~ Packet-Switched Gateways,” Computer Communication
be efficiently implemented. Previous studies of SACK [2, 13] Review, April 1991 _ ,
have all been simulation-based in which end-systems afgl HO® J. “Improving the Start-up Behavior of a Congestion
assumed to have infinite CPU power. Perhaps the necessity ﬁ ?;Crggzloicr{/em%?r: TCF.)' S|GC.OMM 96 ,

. o .) " , V., gestion Avoidance and Control,” SIG-

SACK deserves further investigation, given its added complexity. COMM'88

In addition, transporting SACK blocks from the receiver to the[7] Jacobson, V., “Modified TCP congestion avoidance algo-

sender reduces capacity in the packet payload. rithm,” April 30, 1990, end2end-interest mailing list
new-reno sack [8] Jacobson, V., Braden, R., Borman, D. “TCP Extensions for
none 5274 5009 High Performance,” RFC1323
smawnd 6027 B3] [9] Keshav, S. and Morgan S.P., “SMART Retransmission: Per-
I 5782 506 gngrlzﬂa}gge with Overload and Random Losses,” INFO-
back-to-back >o84 4985 [10] Kung, H.T., Chapman, A., The CreditNet Project, http:/
smallwnd+rxt o717 5925 www.eecs.harvard.edu/cn.html
smallwndrxt+back 6739 5842 [11] Lin, D., Morris, R., “Dynamics of Random Early Detec-
Table 3. Measured TCP goodput (kbps) for configuration tion,” SIGCOMM’97
in Figure 7. The first column specifies the optimization(s) ~ [12] Mathis M., Mahdavi, J., Floyd S., Romanow A., “TCP
used for the measurementsin the samerow. Selective Acknowledgment Options,” RFC2018
. [13] Mathis, M., Mahdavi, J., “Forward Acknowledgment:
8. Conclusions Refining TCP Congestion Control,” SIGCOMM’96

We have described an ideal network model where TCP endl4] Morris, R., “TCP Behavior with Many Flows,” IEEE Inter-
system algorithms will match ideal gateway congestion control R?Ig?\?;l Conference on Network Protocols, October 1997,
algorithms. We .have p.resented optimizations to TCP’s fa t‘LGS] Nagle, J., “One Packet Switches with Infinite Storage,”
recovery strategies to bring end-systems one step further towar

X J =T IEEE Transactions on Communications, Vol. 35, 435-
the ideal model. These optimizations make TCP more tolerant of 435 1987 PP

packet losses and more robust on avoiding retransmission timgs] Paxson, V., “End-to-End Internet Packet Dynamics,” SIG-
outs. Simulations and experiments have shown that Net Reno Ccomm’97
will significantly reduce RTOs and improve TCP’s goodput. [17] Paxson, V., “Automated Packet Trace Analysis of TCP

A Net Reno TCP connection is able to avoid RTOsHé] mplementations, SIGCOMM 7
completely as long as the network keeps at least one packet al eshan, <., stemm. M., “aa ronnan, H., magmanashan,
for each round trip time. This requirement is met by FRED gate- Xé’\tl.é:rr\]/derezai)l/ sHls P;%z,lmT(ng/eBrﬁgﬁ;/Slq,rIﬁlfF%%uosl\);lylgnster-
ways [11]. Reducing RTOs also help improve fair resourc 19] / Y g '

. .)) Stevens, W.R., “TCP Slow Start, Congestion Avoidance,
sharing at gateways. Low bandwidth connections with thes Fast Retransmit, and Fast Recovery Algorithms,” RFC2001

improvements are more likely to recover packet losses and avojdo] \wright, G., Stevens, W. R., TCP/IP ILLUSTRATED VOL-

throughput deficiency than without them. UME 2, Addison-Wesley Publishing Co., New York, 1995
While improving efficiency and robustness, Net Reno is les§21] Zhang, L., Shenker, S., Clark, D., “Observations on the

aggressive than New-Reno and SACK. Net Reno strictly obeys ~ Dynamics of a Congestion Control Algorithm: The Effects

the conservation of packets rule, enforces loss-sensitive window ~ ©f Two-Way Traffic,” SIGCOMM'91

reduction, and does not generate packet bursts during recovery.

