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Abstract

A TCP trunk is an aggregate traffic stream whose data
packets are transported at a rate dynamically determined
by TCPÕs congestion control. Typically such a trunk is
implemented on top of a layer-2 virtual circuit or an MPLS
label switched path. A management TCP connection is used
to regulate the rate at which the trunk transmits its data
packets. Setting up a TCP trunk over a circuit or a path is
easy, involving only the two end nodes of a trunk to imple-
ment the management TCP connection. A TCP trunk can
guarantee minimum bandwidth while being able to grab
additional bandwidth when it is available. When carried by
a TCP trunk, UDP flows will be constrained in their band-
width usage, although they themselves do not perform
congestion control. Experiments on testbed networks have
validated these properties. TCP trunking can be an effective
tool for network operators in managing bandwidth sharing
between aggregates.

1. Introduction

Providing qualities of service (QoS) for the Internet has
been an active area of study in recent years. For instance,
QoS can be provided end-to-end at per-flow level using
methods such as RSVP [18], or on a per-packet basis using
methods such as Diff-Serv [12, 5].

This paper addresses the issue of providing QoS for
aggregate traffic streams rather than individual flows. An
aggregate stream is a collection of IP flows that are grouped
together for the same routing and QoS treatment between
two points in a network. It is important for carriers to differ-
entiate service levels and provide contracted quality of
service for aggregates, as their commitments to customers
are likely to be at the aggregate level rather than for indi-
vidual flows.

Traditionally, layer-2 circuits such as ATM virtual
circuits are used to pin down network paths that will carry
aggregate traffic streams. Recently, it has also been
proposed that MPLS [2, 15] be used to achieve similar

objectives. See [1] for discussions on requirements for
traffic engineering over MPLS.

We study the use ofTCP trunks[3, 4] as a means for
providing congestion controlled aggregate streams. These
streams are typically implemented on top of layer-2 virtual
circuits or MPLS label switched paths. A TCP trunk is a
circuit or path which transports data packets at a rate
dynamically determined by TCPÕs congestion control.
Unlike fixed-bandwidth circuits, a TCP trunk is elastic in
the sense that it will adjust its bandwidth to adapt to
changing load conditions of the network, using TCPÕs
congestion control algorithms.

This paper is organized as follows: Section 2 gives an
overview of TCP trunks and their properties. Section 3
describes our implementation of TCP trunks, based on a
novel approach that decouples control from data in TCP
congestion control [16]. The implementation will allow
TCP trunks to have a guaranteed minimum bandwidth
(GMB). Buffer management algorithms for routers on the
path of a TCP trunk and at its sender are discussed in
Sections 4 and 5. With these buffer management algorithms,
a TCP trunk can assure strong properties such as no loss of
user packets due to congestion, and can improve its perfor-
mance regarding utilization and fairness. In Section 6, we
describe TCP trunking experiments on laboratory testbed
networks, and report measured performance results. In
particular, we show that TCP trunks can guarantee
minimum bandwidths, while being able to acquire addi-
tional bandwidths when they are available, and can protect
interactive Web traffic from competing UDP or large TCP
flows. Section 7 summarizes and concludes the paper.

2. Overview of TCP trunks and their
properties

This section gives an overview of TCP trunks and their
properties. A TCP trunk is an aggregate traffic stream on a
layer-2 circuit or an MPLS path, where data packets are
transported at a rate dynamically determined by TCPÕs
congestion control. Figure 1 (a) depicts an IP network with
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four router nodes. Figure 1 (b) shows two TCP trunks: tcp-
trunk-1 from A to C and tcp-trunk-2 from D to B.

The layer-2 circuit or MPLS label switched path associ-
ated with a TCP trunk is called thepath of the trunk. For
example, the path of tcp-trunk-1 is from A to B and to C.
The senderandreceiverof a TCP trunk are, respectively,
the source and destination of the trunk path. For example,
tcp-trunk-1Õs sender and receiver are A and C, respectively.

Like a conventional leased line or a layer-2 virtual
circuit, a TCP trunk may carry a number ofuser flows,
which are host-to-host TCP or UDP flows. Packets of user
flows are calleduser packets. Figure 1 (c) depicts that tcp-
trunk-1 carries two user TCP flows, tcp-1 and tcp-2.

To implement TCPÕs congestion control for a TCP
trunk, we use amanagement TCP connection. Over this
management TCP connection, management packets will be
injected by the trunk sender into the network to sample its
congestion level. As in a normal TCP connection, based on
arrivals of acknowledgment packets or their absence, the
sender will determine the rate at which management packets
will be sent. The sending rate of management packets will,
in turn, determine the rate of the trunk in transmitting data
packets.

The use of management packets for TCP trunks is
similar to that of resource management cells [19] for ATM
virtual circuits. These management packets or cells are
independent of user data in the sense that they are injected
into and removed from the network without intruding on the
user traffic, and do not have to be aware of the user data
protocols.

Under this approach, data packets are transmitted at
rates determined by TCPÕs congestion control, but are not
subject to retransmission and associated delays. We call this
approach Òdecoupling control from data for TCP congestion
controlÓ [16].

A TCP trunk can simultaneously satisfy a number of
properties of interest to various applications. These include:

P1. Guaranteed and elastic bandwidth.(See Section 3 for
implementation methods, and Figures 4 and 5 for experi-
mental results.)

- Guaranteed minimum bandwidth (GMB): A TCP trunk
can guarantee that it will deliver at least some number of
bytes of data over a period of a time when there are data
to be sent.

- Elastic bandwidth: Beyond GMB, a TCP trunk can grab
additional network bandwidth when it is available. A
TCP trunk can share the available bandwidth with other
competing TCP trunks in a fair way, in proportion to the
trunkÕs GMB, or in any other desired proportion.

P2. Immediate and in-sequence forwarding.(See Section
3.)

- At the trunk sender, arriving user packets will be imme-
diately forwarded to the trunk, provided this is allowed
by the trunkÕs management TCP. Similarly, at the trunk
receiver, arriving user packets will be immediately
forwarded to output network interfaces. In particular,
the receiver will not wait for the arrivals of other user
packets which may be delayed due to retransmission or
other reasons.

- User packets arriving at the trunk sender or receiver will
be forwarded out in-sequence, that is, in the order of
their arrivals.

P3. Lossless delivery.(See Section 4 for router buffer
requirements, and Figure 6 for experimental results.)

- Suppose that routers on the path of the trunk can differ-
entiate management and user packets by packet
marking, and during congestion, they will drop manage-
ment packets before user packets. (This is similar to
what routers supporting diff-serv [12] can do.) Then the
TCP trunk can guarantee that user packets will not over-
flow buffers in these routers, while being able to adapt
its bandwidth to network congestion using TCPÕs
congestion control. (Note, however, that user packets
may still be dropped at the trunk sender if they arrive at
a rate higher than the available bandwidth of the trunk.
This is similar to the situation when data arrive at the
sender of a fixed-bandwidth leased line at a rate higher
than the bandwidth of the leased line. See Section 5 for
discussions on buffer management at the trunk sender.)

P4. Aggregation and isolation.(See Figure 9 for experi-
mental results.)

- By aggregating a number of user flows into a single
TCP flow, a trunk will reduce the number of flows
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routers on the trunk path will need to handle. This will
decrease packet drop rates, for the same router buffer
size [11].

- By using a TCP trunk to carry UDP flows, which are not
congestion controlled or not ÒTCP-friendlyÓ [20],
these UDP flows can no longer starve competing TCP
connections.

- By aggregating TCP flows from various user sites into
dedicated TCP trunks, sites with different numbers of
flows can share the network bandwidth fairly.

We note that setting up a TCP trunk involves only the
two end nodes of the trunk to implement the associated
management TCP. Except some diff-serv-like settings
needed for assuring lossless delivery of user packets as
noted above, routers on the trunk path do not require addi-
tional set up.

Using the approach of Section 3, we have implemented
the TCP trunk sender and receiver on FreeBSD 2.2.7
machines. The rest of this paper describes our TCP trunking
implementations, discusses their design considerations, and
reports experimental results on our laboratory testbed
networks.

Before experimenting with TCP trunking on the
network testbeds, we used the Harvard TCP/IP network
simulator [17] to simulate various properties of TCP trunks.
Our results from the simulator were consistent with those
from the network testbeds reported in Section 6.

3. TCP trunking implementation

This section describes our implementation of TCP
trunks, for which Figure 2 provides an overview.

3.1. Management TCP

To implement TCPÕs congestion control, a TCP trunk
is associated with a TCP connection, called management
TCP. The management TCP is a normal TCP connection
from the trunk sender to the trunk receiver but does not
actually transmit any real data. The management TCP
works on a Òvirtual byte stream,Ó which does not physically
exist.

Each packet transmitted by the sender of the manage-
ment TCP is amanagement packet, consisting of only the
TCP/IP header, and no TCP payload. Thus the management
packet identifies some bytes of the virtual byte stream that
the packet is supposed to carry, but does not actually carry
any data in the packetÕs TCP payload.

When the receiver of the management TCP receives a
management packet, it performs the normal TCP receiving
operations such as generation of anACK packet, but
appends no data to the TCP receive buffer.

The purpose of this management TCP is to control the
rate at which the trunk sender sends user packets. More
precisely, each management packet transmitted by the
management TCP is followed by at mostVMSS(virtual
maximum segment size) bytes of user packets, where VMSS
is a parameter to be set for the trunk. Typically, VMSS =
1500. This implies that the rate at which user packets are
sent will be at most VMSS/HP_Sz times the rate at which
management packets are transmitted, whereHP_Szis the
size of management packets in bytes. Since transmission
rate of management packets is regulated by the management
TCPÕs congestion window, so is the transmission rate of
user packets.

To smooth its bandwidth change, the trunk can employ
multiple management TCPs. Suppose that there are M
management TCPs. Then a 50% bandwidth reduction from
any of them after TCP fast retransmit is triggered will only
result in a reduction of the total trunk bandwidth by a factor
of (1/2)/M. Experiment suite TT1 of Section 6.1 demon-
strates smooth bandwidth transitions of TCP trunks when
four management TCPs are used for each trunk.

3.2. Sending user packets via tunnel queue

User packets arriving at the trunk sender will be redi-
rected to the queue of the tunnel interface as depicted in
Figure 2, rather than the socket send buffer of the manage-
ment TCP.

Figure 2. TCP trunking implementation. At the trunk sender,
arriving packets are redirected to the tunnel queue. The tunnel
queue plays the same role as a TCP socket send buffer for the
management TCP, except that once a user packet has been
forwarded by the management TCP, its occupied buffer space
is immediately reclaimed. (Since there will be no retransmis-
sion of lost user packets, there is no need to hold transmitted
user packets in the buffer.) The management TCP sends out a
management packet without containing any TCP payload,
each time after user packets totaling, on the average, VMSS
bytes have been forwarded out. At the trunk receiver, arriving
user packets are immediately forwarded out based on their
headers. All operations are done in the kernel; no user level
operations are involved.
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Each time after a management packet is transmitted or
retransmitted by the management TCP, the trunk sender will
be allowed to dequeue user packets, totalling at most VMSS
bytes, from the tunnel queue. These packets are forwarded
out from the trunk sender as ÒrawÓ packets. That is, they are
not encapsulated with the TCP/IP header of the manage-
ment TCP. When VMSS bytes have been dequeued from
the tunnel queue, the management TCP is eligible for
sending out the next management packet under the normal
TCP control.

A TCP trunk will not automatically retransmit user
packets in case they are lost. (This is in contrast to the
management TCP of the trunk which will retransmit lost
management packets.) Because different applications have
different reliability requirements (e.g., FTP requires reliable
data transfer and video-conferencing can live with unreli-
able transfer), retransmitting user packets, if it is required,
should be handled by the application or some reliable
protocol on the end hosts.

It is important to note that user and head packets will
traverse on the same trunk path. For example, if the trunk
path is on top of a layer-2 circuit or an MPLS path, then
these packets will have layer-2 or shim header with the
same circuit ID or path label, respectively. Because user and
management packets use the same path, available band-
width detected by probing management packets applies to
user packets.

3.3. TCP trunking with guaranteed minimum
bandwidth

Suppose that via bandwidth provision and connection
admission, it is already guaranteed that the network can
provide a guaranteed minimum bandwidth (GMB) ofX
bytes per millisecond for a TCP trunk. We describe how the
trunk sender can send user packets at the GMB rate, while
being able to send additional user packets under the TCP
congestion control when extra bandwidth is available.

The trunk sender will use a GMB controller equipped
with a timer. The GMB controller will attempt to send some
number of user packets from the tunnel queue each time the
timer expires. (In our implementation, the timer is set to be
1 millisecond.) When the timer expires, if there are packets
in the tunnel queue, the GMB controller will send some of
them under the control of a leaky bucket algorithm. The
objective here is that, for any time interval ofY millisec-
onds, if there is a sufficient number of bytes to be sent from
the tunnel queue, the total number of bytes actually sent by
the GMB controller will approach the target ofX*Y.

For each expiration of the GMB timer, after the GMB
controller has finished sending all the user packets it is
supposed to send, if there are still packets left in the tunnel

queue, they will be sent out under the control of the
management TCP as described in Section 3.1.

In this manner the sender will achieve its GMB under
the control of the GMB controller, and also dynamically
share the remaining network bandwidth under the control of
the management TCP.

4. Router buffer considerations

To work with TCP trunks, a routerÕs buffer can be as
simple as a single FIFO queue. The buffer will be shared by
both user and management packets. To prevent loss of user
packets, the router buffer will need to ensure that (1) when
the FIFO queue buildup occurs, it will drop some incoming
management packets early enough so that the corresponding
TCP trunk sender can reduce, in time, the rate of sending
user packets; and (2) the buffer will have sufficient space
for user packets to accommodate control delay and possible
arrival of new TCP trunks.

More precisely, the router will drop a management
packet when the number of management packets in the
buffer exceeds a certain threshold HP_Th. Following the
arguments of [10, 11], we set:

HP_Th =α*N (1)

where N is the expected number of active TCP flows that
will use the buffer at the same time, andα is the number of
packets that the congestion window of a TCP connection
must have in order to avoid frequent timeouts. A reasonable
choice forα would be 8. This is because if a TCP connec-
tion has 8 or more packets in its congestion window,
chances that the fast retransmit and recovery mechanism [8]
can recover from a single packet loss are pretty good.
Because use of RED [7] can lower the value ofα somewhat,
for all of our experiments reported in this paper, a simple
RED-like scheme is used in routers.

Givenα and N, we want to compute the required buffer
size, in bytes, to ensure no loss of user packets during
congestion. Let HP_Sz be the size of a management packet
in bytes. Recall that VMSS is the virtual maximum segment
size in bytes. (Typically, HP_Sz = 52 and VMSS = 1500.)
Three types of packets may occupy the buffer of a router.
We consider their size requirements:

1. Management packets. The required buffer size for these
packets is:

HP_BS = HP_Th*HP_Sz

2. User packets. The required buffer size for these packets
is:

UP_BS_TCP=HP_BS*(VMSS/HP_Sz) + N*VMSS

The first term reflects the fact that a user packet is VMSS/
HP_Sz times larger than a management packet. The second
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term takes into account the worst case that each of the N
management TCPs has sent out VMSS-byte user packets
but has not sent out the corresponding management packet.

3. User packets sent under the control of GMB controllers.
Let the required buffer for these packets be UP_BS_GMB.
Suppose that the fraction of the output linkÕs bandwidth
allocated for the GMB traffic isβ, with β < 1. Then one can
expect that

β = UP_BS_GMB/(HP_BS+UP_BS_TCP
+ UP_BS_GMB)

Solving the above equation for UP_BS_GMB gives:

UP_BS_GMB = (HP_BS + UP_BS_TCP)*β/(1 - β)

Thus the total required buffer size, Required_BS, to accom-
modate these three types of packets is:

Required_BS
= HP_BS + UP_BS_TCP + UP_BS_GMB
= (HP_BS + UP_BS_TCP)*1/(1-β)
= (HP_BS + HP_BS*(VMSS/HP_Sz) +N*VMSS)

*1/(1-β) (2)

where by Equation (1),

HP_BS = HP_Th*HP_Sz =α*N*HP_Sz

The actual buffer requirement should be a few percent
larger than Required_BS of Equation (2), to account for the
fact that there could be a few percent more user packets than
management packets in the buffer. (This corresponds to the
fact that a few percent drops of management packets are
normally expected due to loss of management packets when
the management TCP probes for available network band-
width.)

Thus, given the actual values or bounds forα, β, N,
HP_Sz and VMSS, we can use Equation (2) to estimate the
buffer requirement that will ensure no loss of user packets
during congestion. Experiments have demonstrated this
lossless property (see Figure 6 of Section 6).

5. Trunk sender buffer considerations

The sender of a TCP trunk will need to buffer user
packets whenever they arrive at a rate higher than the avail-
able bandwidth of the trunk. When the buffer is full,
arriving user packets will need to be dropped. This is similar
to a fixed-bandwidth leased line whose sender will need to
provide buffering. However, the TCP trunkÕs situation is
more complex than the leased lineÕs situation, because the
available bandwidth of the TCP trunk is subject to the
control of its management TCP and thus may vary dynami-
cally.

For the rest of this section, we assume that all user
flows are TCP flows, and consider the interaction of the two
levels (i.e., trunk and user levels) of TCP congestion
control. We describe a solution for achieving fair and effi-
cient use of the trunk by its user flows.

Consider the situation when a management packet of
the management TCP of the trunk is dropped on the trunk
path. After detecting this packet loss, the trunk sender will
reduce its rate of sending user packets. In the meantime, any
user flow on the trunk may not necessarily experience any
packet loss yet. It will thus continue transmitting at the same
or increased rate, in spite of the fact that the underlying
trunk has already reduced its rate. The queue of the user
flow at the trunk sender will therefore build up, until some
time after a packet from the user flow is dropped at the
queue due to queue overflow. The dropping of the user
packet will then trigger the sender of the user flow to reduce
its transmission rate.

Ideally, when the trunk reduces its bandwidth by some
factor, we would want all the active user flows over the
trunk to also reduce their bandwidths by the same factor.
We use the following three methods to achieve this objec-
tive:

M1. Provide a buffer of size RTTup*TrunkBW to be
shared by all user flows, where RTTup is an upper estimate
of RTTs of user flows, and TrunkBW is the target peak
bandwidth for the TCP trunk. This buffer is provided to
accommodate the feed-back control delay for slowing down
user flows.

M2. Use a RED-like packet dropping scheme [7] to keep
the buffer occupancy at the TCP trunk sender below a cer-
tain threshold. When the threshold is reached, each arriving
packet will be dropped with a probability proportional to the
current buffer occupancy at the TCP trunk sender. When the
buffer is full, all arriving packets will be dropped.

M3. After having dropped a packet from a user flow, the
trunk sender will try not to drop another packet from the
same user flow, until the user flow has recovered its reduced
sending rate resulting from fast retransmit and recovery.
Recall that the user flow will reduce its transmitting rate by
one half. This rate reduction matches that of the underlying
trunk when its management TCP loses a single management
packet, and reduces its rate by one half.

We use a simple per-flow packet accounting method to
implement M3 above. The trunk transmitter will estimate
the total number U of packets that can be sent by a user TCP
flow source between the time it reduces its sending rate by
one half and the time its sending rate is about to ramp up to
its previous sending rate at the time when its packet was
dropped. We use this number U to set a threshold for the
minimum number of packets from the user TCP flow that
should be forwarded before another packet from the same
flow will be dropped.
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6. TCP trunk experiments and performance
measurements

We have conducted TCP trunking experiments on
several testbed networks, including some lab testbeds at
Harvard and an academic research testbed network in
Taiwan that involves a 80km ATM connection between two
cities (Taipei and Hsinchu).

The hosts and routers in the testbeds are FreeBSD 2.2.7
systems running on 300 MHz PCs each with 96MB of RAM
and Intel EtherExpress 10/100 cards set at 10 Mbps. A delay
box implemented in the kernel is used to simulate a linkÕs
propagation delay. Using the delay box, we can set the RTT
of a connection to be any value with a 1-ms granularity.

These experiments have validated TCP trunksÕ proper-
ties in providing elastic and guaranteed bandwidths, deliv-
ering lossless transport over a trunk, isolating UDP flows,
protecting Web traffic, etc. Due to space limitation, this
section describes a subset of these experiments.

6.1. Experiments suite TT1: basic capabilities of
TCP trunks

This experiment suite demonstrates the basic capabili-
ties of TCP trunks in bandwidth management.

Below are the configurations common to experiments
TT1 (a), (b) and (c):

¥ Each trunk uses 4 management TCPs, to provide smooth
bandwidth.

¥ Each trunk has a FIFO buffer (tunnel queue) of 100
packets.

¥ The buffer in the bottleneck router E is of size
Required_BS given by Equation (2) of Section 4.

¥ The user flows are greedy UDP flows using 1,500- byte
packets.

¥ The propagation delay of the link between E and F is 10
ms, and that of any other link is negligible.

¥ Each experimental run lasts 400 seconds or longer.

Experiment TT1 (a):
Configurations:

¥ Trunk 1: GMB = 400 KB/sec, VMSS = 3000 bytes

¥ Trunk 2: GMB = 200 KB/sec, VMSS = 1500 bytes

This experiment is to demonstrate that, trunks can
make full utilization of available bandwidth and share it in
proportion to their GMBs. This is achieved by choosing
Trunk 1Õs VMSS to be twice as large as Trunk 2Õs VMSS.
Thus the achieved bandwidths should be:

¥ Trunk1: 400 + 2/3 * (1200 - 400 - 200) = 800 KB/sec

¥ Trunk2: 200 + 1/3 * (1200 - 400 - 200) = 400 KB/sec

For each of the above two equations, the first term is
the trunkÕs GMB, and the second term is the extra band-
width that this trunk should achieve when competing for
available bandwidth with the other trunk. The available
bandwidth is the remaining bandwidth on the bottleneck
link (the link from E to F) after deducting Trunk 1 and
Trunk 2Õs GMBs (400 and 200 KB/sec) from the bottleneck
linkÕs bandwidth (10 Mbps = 1200 KB/sec). Since Trunk
1Õs VMSS is twice as large as Trunk 2Õs, Trunk 1 should
achieve two times Trunk 2Õs bandwidth in sharing the avail-
able bandwidth. That is, Trunk 1 and 2 should achieve 2/3
and 1/3 of the available bandwidth, respectively.

The experimental results, as depicted in Figure 4, show
that each trunk achieves what the analysis above predicts.
That is, Trunk 1 and Trunk 2 achieve 800 and 400 KB/sec,
respectively.

Experiment TT1 (b):
Configurations:

¥ Trunk 1: GMB = 200 KB/sec, VMSS = 3000 bytes

¥ Trunk 2: GMB = 400 KB/sec, VMSS = 1500 bytes

This experiment is to demonstrate that trunks can make
full utilization of available bandwidth and share it in
proportions independent of the trunksÕ GMBs. In this
configuration, Trunk 1 has a larger VMSS value than Trunk
2, although the former has a smaller GMB than the latter.

Based on the same reasoning as that used in TT1 (a),
the bandwidth allocation according to the analysis should
be:

¥ Trunk1: 200 + 2/3 * (1200 - 400 - 200) = 600 KB/sec

¥ Trunk2: 400 + 1/3 * (1200 - 400 - 200) = 600 KB/sec

Again, the experimental results, as depicted in Figure 5,
show that each trunk achieves about 600 KB/sec. This is
what the above analysis predicts.

Trunk 2

Figure 3. An experimental testbed network with 4 hosts (A,
C, G and H) and 4 routers (B, D, E and F). The sender and
receiver of Trunk 1 are B and F, respectively. The sender
and receiver of Trunk 2 are D and F, respectively. A user
flow from A to G, and another from C to H, use Trunk 1
and 2, respectively. All links are 10 Mbps. Trunks 1 and 2
share the same 10 Mbps link from E to F, which is the
bottleneck link.

Trunk 1

A

C

B

D

E F
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Figure 6. Results of Experiment TT1 (c). Sampled buffer
occupancy in bytes in the bottleneck router E is shown. The
top thick line is the Required_BS value given by Equation
(2), i.e., 222,248 bytes. Note that sampled buffer occupancy
is always below the line. In fact, the logged maximum
occupancy is 210,306 bytes. Thus, in our experiment there
is no loss of user packets.
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¥ Provide lossless delivery of user packets. Figure 6
shows that the maximum buffer occupancy in the bottle-
neck router E is below the Required_BS value given by
Equation (2) of Section 4.

6.2. Experiments suite TT2: protecting
interactive Web users

This suite of experimental results, depicted in Figure 7,
shows that TCP trunking can provide protection for interac-
tive Web users when competing against long-lived greedy
TCP connections. That is, short Web transfers can receive
approximately their fair share of the available bandwidth
and avoid unnecessary timeouts. In these experiments, each
run lasts 10 minutes or longer.

Consider the configuration depicted in Figure 7 (b). On
the middle router where traffic merges, there are many
short-lived Web transfers coming from an input port (a site)
to compete for an output port's bandwidth (1200 KB/sec)
with other long-lived greedy ftp transfers that come from
two other input ports (sites).

Figure 7 (a) shows that when there are only short-lived,
8KB Web transfers in the network, the offered load uses 453
KB/sec bandwidth. (The offered load is limited to 453 KB/
sec, because TCP windows for these Web transfers never
ramp up significantly, due to the small 8KB size of the
transfers.) The request-response delays for these short-lived
Web transfers are small and predictable. The mean delay,
maximum delay, and the standard deviation of the delays
are 353 ms, 1,270 ms, and 82 ms, respectively.

Figure 7 (b) shows that after long-lived greedy ftp
transfers (Òput fileÓ sessions) are introduced into the
network, the short-lived Web transfers can only achieve 122
KB/sec bandwidth in aggregate, which is much smaller than
their fare share (1200/3 KB/sec). The mean delay,
maximum delay, and the standard deviation of the delays
increase greatly and become 1,170 ms, 11,170 ms, and
1,161 ms, respectively. This means that the short-lived Web
transfers are very fragile (the reasons are discussed in [9])
and encounter more time-outs than before. As a result, they
cannot receive their fair share of the bandwidth of the
bottleneck link when competing with long-lived greedy ftp
transfers.

Figure 7 (c) shows that when a TCP trunk is used for
each site to carry the site's aggregate traffic, the bandwidth
used by the short-lived Web transfers increases to 238 KB/
sec. The mean delay, maximum delay, and the standard
deviation of the delays also improve greatly and become
613 ms, 2,779 ms, and 274 ms, respectively.

10 Web servers send
8KB Web pages

50 Pkts

453 KB/s
[mean: 353 ms, std: 82 ms]

Link_BW

max: 1,270 ms

=1200 KB/s

Figure 7. TCP Trunking Experiments Suite TT2. Web site
throughput: (a) under no competing ftp traffic and (b) under
competing ftp traffic. (c) Web side performance for load (b)
when three TCP trunks, one for each site, are used.

10 Web servers send
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122 KB/s
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Link_BW
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ftp Òput fileÓ

5 greedy
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10 Web servers send
8KB Web pages

238 KB/s
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6.3. Experiments suite TT3: protecting TCP flows
against UDP flows over a ring

This experiments suite shows that TCP trunks can help
protect TCP flows against UDP flows. We use a ring testbed
network of Figure 8, on which TCP connections will experi-
ence multiple bottlenecks. As depicted in the figure, the
testbed has five routers on the ring, five edge routers where
the senders and receivers of TCP trunks are implemented,
and five hosts where senders and receivers of user TCP or
UDP flows reside.

All the experiment runs last 300 seconds. Configura-
tion parameters and traffic loads have been so chosen that
possible packet drops due to congestion will only occur in
routers on the ring. In particular, we have configured each
of these routers to have a buffer of 50 packets for manage-
ment packets, and each trunk sender a buffer of 100 packets.
All the links on the testbed have negligibly small propaga-
tion delays. The maximum window size for user TCP flows
is 64KB.

In Case (a) of Figure 9, there are only small TCP trans-
fers with no competing traffic. In case (b), there is a
competing UDP flow from node 3 to node 4. This is an on-
off UDP flow with each on or off period lasting 10ms. The
source of the UDP flow will try to send as many 1024-byte
UDP packets as possible during each on period. In case (c)
there are two trunks: one trunk carries small file transfers
from node 2 to node 1, and the other carries UDP traffic
from node 3 to node 4. In case (d), there are two additional
greedy long-lived TCP transfers from node 4 to node 5, and
from node 5 to node 2.

Table 1 shows average throughput and delay statistics
for the small file transfers from node 2 to node 1. From the
experimental results, we see that these small transfers suffer
when they compete with UDP traffic. Their throughput is
reduced from about 380 KByte/s to about 53 KByte/s. Their
mean, standard deviation, and maximum delay are
increased. With TCP trunks, the situation is much

improved. The throughput for small transfers increases to
about 270 or 252 KByte/s for case (c) or (d), respectively.
The delay statistics are also improved.

7. Summary and conclusions

TCP trunking is a method of providing congestion
control for aggregate traffic streams, typically implemented
on layer-2 virtual circuits or MPLS label switched paths.
For per flow congestion control, TCP has been the most
widely used method. For aggregate streams, congestion
control has been studied in the context of virtual circuits,

Figure 8. A ring testbed network for TCP trunking experi-
ments TT3. The testbed consists of five hosts, five edge
routers which are used as TCP trunk senders or receivers,
and five routers on the ring.

Host

TCP Trunk
Sender or Receiver

Router

Case
Average

Throughput
(KByte/s)

Delay Statistics (ms)
for 8 K transfers

Mean SD Max

(a) 380.05 451.5 147.9 1336

(b) 53.21 2541.1 4021.7 13053

(c) 270.45 507.9 136.5 1921

(d) 252.65 663.9 166.9 1892

Table 1: Performance results of TCP Trunking Experiments
Suite TT3 (b) of Figure 9. Average throughputs and delays
for small TCP transfers from node 2 to node 1 are much
improved when TCP trunks are used.

(a) (b)

(c) (d)

Figure 9. TCP Trunking Experiments Suite TT3: small
TCP transfers compete with UDP flows. Performance
results are summarized in Table 1.

Small
TCP
Transfers

UDP
Flows

Trunk1

Trunk2 Trunk2

1

2

34

5

1

2

3
4

5

1

2

3
4

5

1

2

3
4

5

Trunk1
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including explicit congestion notification methods [6, 13,
14] and ATM flow control schemes such as ABR [19].

The novelty of TCP trunking is its specific proposal of
using TCPÕs congestion control for aggregate flows. This
approach takes advantage of a large body of experience and
knowledge built up over the years about TCP, regarding its
efficient and fair use of the network, and its buffer manage-
ment requirements in routers. None of the other congestion
control methods for virtual circuits have comparable knowl-
edge bases.

This paper describes how normal TCP congestion
control algorithms can be effectively applied to the trunking
environment. This involves the concepts of management
TCP and decoupling control from data for TCP congestion
control, as well as buffer management algorithms for the
trunk sender and for routers on the trunk path, and methods
for guaranteeing minimum bandwidth. We are able to
preserve congestion control effects of TCP algorithms,
while avoiding some of their drawbacks such as loss of user
packets when TCP probes network for available bandwidth,
and delays due to retransmission of lost user packets.

TCP trunking suggests a new way of providing QoS
attributes to layer-2 circuits and MPLS label switched paths.
The approach can realize various bandwidth management
objectives such as guaranteed minimum bandwidths and
elastic sharing of available bandwidth; transport objectives
such as lossless delivery of user packets; and aggregation
and isolation objectives such as protecting Web connections
and isolating UDP traffic. Experimental results of this paper
have validated that TCP trunks can indeed achieve these
objectives.

For further information on the design and implementa-
tion of TCP decoupling, experimental results about TCP
trunks, as well as migration and deployment issues, see
[16].
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