
TCP Trunking for Bandwidth Management of Aggregate Traffic
Abstract

TCP trunking is a novel way of applying TCP conges-
tion control to bandwidth management of aggregate traffic.
This is accomplished by setting up a separate TCP connec-
tion to probe network congestion, and then using the TCP
connection’s congestion control to regulate the bandwidth
usage of the aggregate traffic.

TCP trunking offers several advantages in managing
bandwidth of aggregate traffic. It can dynamically allocate
bandwidth to competing traffic aggregates in a fair manner,
while assuring no loss of user packets due to network
congestion. In addition, it can transmit user packets at
guaranteed rates for traffic aggregates. Implementation
details and experimental results are described in the paper.

1. Introduction

Traffic aggregation has been an essential technique in
managing backbone networks of the Internet. It can reduce
the number of states that backbone nodes need to maintain
for routing [3] and for providing quality of service (QoS) [4,
5]. It can also reduce the number of flows that backbones
need to handle, in order to lower packet loss rates [6].

As aggregate flows become widely used, their conges-
tion control will be important. Traditionally TCP has been
the dominant protocol that provides congestion control for
individual flows between end hosts. In this paper we show
that TCP is also suited in providing congestion control for
aggregate flows between network nodes.

Our approach, which we call TCP trunking, uses a
separate TCP connection to provide congestion control for
aggregate traffic. The TCP trunking approach offers several
advantages. For example, it can provide fair and dynamic
bandwidth allocation as well as guaranteed transmission
rates for traffic aggregates, while assuring no loss of user
packets due to network congestion.
Author names are listed in alphabetical order.

An earlier version of this paper [1] was presented at the ICNP’99
conference. More details about TCP trunking can be found in [2].
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This paper is organized as follows: Section 2 gives an
overview of TCP trunks. Section 3 presents the design goals
for TCP trunking. Section 4 describes our implementation of
TCP trunks. Buffer management algorithms for routers on
the path of a TCP trunk and at its sender are discussed in
Sections 5 and 6. In Section 7, we describe TCP trunking
experiments on laboratory testbed networks and report
measured performance results. Section 8 discusses related
work. Section 9 concludes the paper.

2. Overview of TCP Trunks

A TCP trunk is a network path which carries traffic of
multiple user flows and has its total bandwidth usage regu-
lated by the TCP congestion control algorithm. For a four-
node IP network of Figure 1 (a), Figure 1 (b) shows two TCP
trunks: tcp-trunk-1 from A to C and tcp-trunk-2 from D to B.

Figure 1 (c) depicts that tcp-trunk-1 carries two TCP user
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Figure 1. (a) An IP network; (b) two TCP trunks over the
network; and (c) two user flows (tcp-1 and tcp-2) over
tcp-trunk-1.
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flows: tcp-1 and tcp-2. We call packets of these user flows
user packets.

To implement TCP congestion control of a TCP trunk,
a management TCP connection (also called management
TCP for simplicity) is set up. The sender and receiver of this
management TCP connection are called the trunk sender
and receiver, respectively. For example, in Figure 1 (c), tcp-
trunk-1’s sender and receiver are on A and C, respectively.

Packets of the management TCP are management
packets. Since the management TCP is only for congestion
control purposes, a management packet contains only a
TCP/IP header and carries no TCP payload. As in a normal
TCP connection, based on received acknowledgment
packets or their absence, the trunk sender uses a congestion
window to determine the sending rate of management
packets.

In turn, the sending rate of management packets deter-
mines that of user packets. That is, only each time after
having sent a management packet, the trunk sender will
send some additional number (VMSS of Section 4.1) of
bytes of user packets. In this way the management TCP
regulates the sending rate of user packets of the trunk.

The routing path taken by a TCP trunk is called the
path of the trunk. For example, the path of tcp-trunk-1 is
from A to B and to C. The path of a TCP trunk is normally a
layer-2 circuit. In the future, it can also be an MPLS path [7,
8]. The use of layer-2 circuits or MPLS paths ensures that
user and management packets of a TCP trunk will take the
same path. This allows the use of management packets to
probe congestion level of the path for user packets.

3. Design Goals for TCP Trunks

In this section, we describe design goals for TCP
trunks. For each goal, we list those sections and figures in
the paper which discuss and demonstrate how it is achieved.

G1. Guaranteed and elastic bandwidth. See Section 4 for
implementation, and Figures 4 and 5 for experimental
results.

- Guaranteed minimum bandwidth (GMB): Suppose that
via a separate admission control mechanism (a topic
beyond the scope of this paper), a TCP trunk is given a
guaranteed minimum bandwidth on every hop of its
path. Then the trunk sender can send its user packets at
least at this rate at all time.

- Elastic bandwidth: Beyond GMB, a TCP trunk can grab
additional network bandwidth when it is available. This
property can also keep the overall network utilization
high.

G2. Flexible and fine-grained bandwidth allocation. See
Section 4 for implementation, and Figures 4 and 5 for
experimental results.

- By choosing proper VMSS values, competing TCP
trunks can share the available bandwidth flexibly, in any
desired proportion and in any granularity. For example,
if trunk 1 and trunk 2’s VMSSs are 1,500 and 500
respectively, then the achieved bandwidth of trunk 1
will be about 1500/500 = 300% times that of trunk 2. If
trunk 1 and trunk 2’s VMSSs are 1500 and 1499 respec-
tively, then the achieved bandwidth of trunk 1 is about
1500/1499 = 1.000667% times that of trunk 2.

G3. High-speed, low latency, and in-sequence forwarding.
See Section 4 for implementation.

- The TCP sender and receiver will forward arriving user
packets immediately to the next hop as is and in-
sequence.

G4. Lossless delivery. See Section 5 for required buffer
management and provisioning in routers, and Figure 6 for
experimental results.

- Suppose that routers on the trunk path can differentiate
management and user packets by packet marking, and
during congestion, they can drop management packets
before user packets. (This capability is similar to what
routers supporting diff-serv [4, 5] can do.) Then TCP
trunking guarantees that user packets will not be
dropped inside routers due to congestion.

G5. Traffic aggregation and isolation. See Figure 7 for
hierarchical TCP trunking, and Figure 10 and Figure 12 for
experimental results.

- A TCP trunk uses a single TCP connection to provide
congestion control for multiple TCP user flows. This
reduces the total number of competing TCP flows on a
backbone network. This can reduce packet drop rates in
the backbone [6].

- When carrying UDP user flows, a TCP trunk can isolate
them from other competing flows. Note that UDP flows
for multimedia streaming applications are usually not
“TCP-friendly” [9], that is, they do not employee
adequate congestion control. By containing them in a
TCP trunk (perhaps with some GMB), these congestion
unresponsive UDP flows can no longer starve other
competing TCP flows.

- When carrying “fragile” short-lived TCP user flows
such as transfers of small Web pages, a TCP trunk can
protect them from competing large flows. These fragile
flows can thus experience reduced delays and packet
loss rates.

- When carrying aggregate traffic from multiple user
sites, TCP trunks can ensure fair use of a backbone inde-
pendent of the number of TCP users flows a site may
have.

To validate the TCP trunking approach, we have imple-
mented it on FreeBSD 2.2.8 machines. We have constructed
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laboratory testbeds with nodes based on these FreeBSD
machines. We have done TCP trunking experiments on
these testbeds. In addition, we have performed intensive
simulations on the Harvard TCP/IP network simulator [10]
for large network configurations. The simulation results are
consistent with the experimental results reported in Section
7.

In the rest of this paper we describe our TCP trunking
implementation, discuss its design considerations, and
report experimental results obtained on our testbeds.

4. TCP Trunking Implementation

This section describes our implementation of TCP
trunks. An implementation overview is depicted in Figure 2.

4.1. Management TCP

To provide TCP congestion control for user packets of
a TCP trunk, a management TCP connection is set up. The
management TCP is a normal TCP connection from the
trunk sender to the trunk receiver except that it does not
transmit any real data. The sender of the management TCP
sends out management packets, which contain only TCP/IP
headers and no TCP payloads. This is sufficient for the
purpose of the management TCP, which is to provide
congestion control for user packets. The management TCP

can be thought as a normal TCP connection that transports a
“virtual byte stream,” which does not physically exist.

When the receiver of the management TCP receives a
management packet, it performs the normal TCP receiving
operations such as generation of an ACK packet. However,
the receiver does not need to append any data to the TCP
receive socket buffer since it receives no real data.

Each time when the trunk sender sends out a manage-
ment packet, it will also send VMSS (virtual maximum
segment size) bytes of user packets. VMSS is a parameter to
be set for the trunk, and typically it is 1,500 (Ethernet’s
MTU). This means that the rate at which user packets are
sent will be VMSS/MP_Sz times the rate at which manage-
ment packets are transmitted, where MP_Sz is the size of
management packets in bytes. Since the sending rate of
management packets is regulated by the management TCP’s
TCP congestion control, so is that of user packets.

To smooth bandwidth change, the trunk may employ
multiple management TCPs. Suppose that there are M
management TCPs. Then a 50% bandwidth reduction from
any of them after TCP fast retransmit is triggered will only
result in a reduction of the total trunk bandwidth by a factor
of (1/2)/M. Experiment suite TT1 of Section 7.1 demon-
strates smooth bandwidth transitions of TCP trunks when
four management TCPs are used for each trunk.

4.2. Sending User Packets via Tunnel Queue

User packets arriving at the router on which the trunk
sender operates will be redirected to the queue of a tunnel
interface as depicted in Figure 2. From the kernel’s point of
view, a tunnel interface is no different from a normal inter-
face such as Ethernet [11]. This means that the redirection
can be accomplished simply by changing a routing entry in
the router.

Each time after a management packet is transmitted or
retransmitted by the management TCP, the trunk sender
receives VMSS credits and can dequeue VMSS bytes of
user packets from the tunnel queue. These user packets are
forwarded out by the trunk sender as independent packets in
the sense that they are not encapsulated with the TCP/IP
header of the management TCP. When VMSS bytes have
been dequeued from the tunnel queue and forwarded out,
the management TCP is allowed to send out the next
management packet provided that its TCP congestion
control allows. Note that since a packet needs to be trans-
mitted in its entirety, sometimes not exactly VMSS bytes of
user packets are dequeued and sent out. In this case, credits
are borrowed and later returned to solve the problem.

A TCP trunk does not automatically retransmit lost user
packets. The buffer space occupied by a user packet in the
tunnel queue is reclaimed immediately after the packet is
dequeued and forwarded. This allows applications to use

Figure 2. Overview of TCP trunking implementation. At
the trunk sender, arriving packets are redirected to the
tunnel queue. The tunnel queue plays the same role as a
TCP socket send buffer for the management TCP, except
that once a user packet has been forwarded by the manage-
ment TCP, its occupied buffer space is immediately
reclaimed. (Since there will be no retransmission of lost user
packets, there is no need to hold transmitted user packets in
the buffer.) Each time after VMSS bytes of user packets
have been forwarded out, the management TCP can send
out a management packet that contains only a TCP/IP
header but no TCP payload. At the trunk receiver, arriving
user packets are immediately forwarded out based on their
headers. All operations are done efficiently in the kernel; no
user level operations or overhead are involved.
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different retransmission policies based on their own reli-
ability requirements. (E.g., FTP requires reliable data
transfer whereas video-conferencing can live with unreli-
able transfer.) For some real-time applications such as video
conferencing, retransmitted packets may arrive at the
receiver too late to be useful, and thus will only waste
network bandwidth. Therefore when retransmitting user
packets is desired, it will be handled by applications at the
end hosts. In contrast, for the management TCP which is
used to probe network congestion, a lost management
packet must be retransmitted to keep the probe going.

It is important that user and management packets
traverse on the same trunk path so that the congestion level
detected by probing management packets is applicable to
user packets. For example, if the trunk path is on top of a
layer-2 circuit or an MPLS path, then these packets will
have layer-2 or shim header with the same circuit identifier
or path label, respectively, to ensure that user and manage-
ment packets use the same path.

4.3. TCP Trunking with Guaranteed Minimum
Bandwidth

Suppose that via admission control and bandwidth
reservation the network can provide a guaranteed minimum
bandwidth (GMB) of X bytes per millisecond for a TCP
trunk. We describe how the trunk sender can send user
packets at the GMB rate, while being able to send additional
user packets under TCP congestion control when extra
bandwidth is available.

The trunk sender uses a GMB controller equipped with
a timer. The GMB controller attempts to send some number
of user packets from the tunnel queue each time the timer
expires. (In our implementation, the timer is set to be 1
millisecond.) When the timer expires, if there are packets in
the tunnel queue, the GMB controller will send some of
them under the control of a leaky bucket algorithm. The
objective here is that, for any time interval of Y millisec-
onds, if there is a sufficient number of bytes to be sent from
the tunnel queue, the total number of bytes actually sent by
the GMB controller will approach the target of X*Y.

For each expiration of the GMB timer, after the GMB
controller has finished sending all the user packets that it is
supposed to send, if there are still packets left in the tunnel
queue, they will be sent out under the control of the
management TCP as described in Section 4.1.

In this manner, the sender will send user packets at
GMB under the control of the GMB controller and, at the
same time, dynamically share the available network band-
width under the control of the management TCP.

5. Buffer Management and Provisioning in
Routers

To work with TCP trunks, a router’s buffer can be as
simple as a single FIFO queue for all TCP trunks’ user and
management packets. The router uses the following buffer
management scheme to prevent loss of user packets due to
buffer overflow. When the FIFO queue occupancy starts to
build up, the router will drop some incoming management
packets. Dropping these management packets will trigger
their corresponding TCP trunk senders to reduce their
sending rates of user packets and thus lower the congestion
level. The router does the packet dropping sufficiently early
to ensure that before the buffer is full, the congestion level
will have been lowered so that buffer overflow will not
happen.

More precisely, the router will drop a management
packet when the number of management packets in the
buffer exceeds a certain threshold MP_Th. Following the
arguments of [6], we set:

MP_Th = α*N (1)

where N is the expected number of active management
TCPs that will use the buffer at the same time, and α is the
number of packets that the congestion window of a TCP
connection must have in order to avoid frequent time-outs.
A reasonable choice for α would be 8. This is because if a
TCP connection has 8 or more packets in its congestion
window, chances that the fast retransmit and recovery
mechanism can recover from a single packet loss are pretty
good [12]. Because experimental results show that use of
RED [13] can lower the value of α somewhat, for all of our
experiments reported in this paper, a simple RED-like
scheme is used in routers.

Given α and N, under the condition that the router
always keeps the number of management packets below
MP_Th, we can compute the maximum buffer occupancy,
Require_BS, in Equation (2) below. By configuring the
router buffer to be larger than Require_BS, we can ensure
that no user packets will be dropped due to buffer overflow.
That is, only management packets will be dropped during
congestion, not user packets.

Let MP_Sz be the size of a management packet in
bytes. Three types of packets may occupy the buffer of a
router. We consider their maximum buffer occupancy
respectively as follows.

(1) Management packets

The maximum buffer occupancy of these packets is:

MP_BS = MP_Th*MP_Sz
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(2) User packets sent under management TCP control

The maximum buffer occupancy of these packets is:

UP_BS_TCP=MP_BS*(VMSS/MP_Sz) + N*VMSS

The first term reflects the fact that a user packet is
VMSS/MP_Sz times larger than a management packet.
The second term takes into account the situation that
each of the N management TCPs has sent out VMSS-
byte user packets but not the corresponding manage-
ment packet.

(3) User packets sent under GMB control

Let the maximum buffer occupancy of these packets be
UP_BS_GMB. Suppose that during the admission time
the fraction of the output link’s bandwidth allocated for
the GMB traffic is β, with β < 1. Then one can expect
that when the buffer occupancy builds up, the fraction
of the buffer space occupied by GMB packets is about
β. That is,

β = UP_BS_GMB/(MP_BS+UP_BS_TCP
+ UP_BS_GMB)

Solving the above equation for UP_BS_GMB gives:

UP_BS_GMB = (MP_BS + UP_BS_TCP)*β/(1 - β)

Thus the maximum buffer occupancy, Required_BS, of
these three types of packets altogether is:

Required_BS
= MP_BS + UP_BS_TCP + UP_BS_GMB
= (MP_BS + UP_BS_TCP)*1/(1- β)
= (MP_BS + MP_BS*(VMSS/MP_Sz) +N*VMSS)

*1/(1-β) (2)

where by Equation (1),

MP_BS = MP_Th*MP_Sz = α*N*MP_Sz

The actual maximum buffer occupancy will be a few
percent larger than Required_BS of Equation (2). The
reason is that, to provide the “lossless” property for user
packets, some management packets are dropped while their
corresponding user packets are not.

Given the actual values or bounds for α, β, N, MP_Sz
and VMSS, we can use Equation (2) to calculate the
maximum buffer occupancy. Then the router can be config-
ured with a buffer size larger than the calculated value to
provide the “lossless” property for user packets. Experi-
ments have demonstrated this lossless property and the
accuracy of Equation (2) (see Figure 6 of Section 7).

For routers whose buffers are sized in packets rather
than bytes, one can do an analysis similar to the one above
to estimate Require_BS in packets. That is, by making use

of the fact that all user packets must have some minimum
number of bytes, one can derive an upper bound on the
number of user packets that a block of VMSS bytes can
contain. Using the upper bound, one can then calculate the
number of user and management packets that may need to
be buffered in a router to prevent loss of user packets.

6. Buffer Management on Trunk Sender

The sender of a TCP trunk will need to buffer user
packets when they arrive at a rate higher than the available
bandwidth of the trunk. When the buffer is full, arriving
user packets will need to be dropped. This is similar to a
fixed-bandwidth leased line whose sender also needs to
provide buffering and, when necessary, drop packets.
However, unlike the leased line’s situation, the available
bandwidth of a TCP trunk may vary dynamically subject to
the control of its management TCP.

In this section, we consider the case in which all user
flows of a TCP trunk are TCP flows. We show how the
interaction of the two levels (i.e., trunk and user levels) of
TCP congestion control can be dealt with, to allow a TCP
user flow to dynamically adapt to the trunk’s available
bandwidth without being timed out.

Various buffer management and packet scheduling
schemes can be used at the trunk sender such as single FIFO
or per-flow queueing, and RED or round-robin scheduling.
We considered the use of per-flow queueing with round-
robin scheduling as it is well-known that this can provide
traffic isolation and bandwidth allocation. However, per-
flow queueing with round-robin scheduling alone can easily
cause a trunk’s TCP user flows to time-out. At the time
when the trunk’s bandwidth is suddenly reduced by a half
by its management TCP’s congestion control, if these per-
flow queues are almost full, then a TCP user flow may time-
out due to multiple packet drops in a row. To mitigate this
problem, we use a RED-like packet dropping scheme to
keep the occupancy of these per-flow queues under a low
threshold most of the time. This ensures that when the
trunk’s bandwidth suddenly reduces, there is enough buffer
space to temporarily hold arriving packets without dropping
them all.

In our experiments, rather than using per-flow queueing
with round-robin scheduling, we used a single FIFO with
per-flow packet accounting to implement our RED-like
packet dropping method. Our experimental results show
that our method can fairly allocate bandwidth among TCP
user flows while keeping them running smoothly without
time-outs.

When the trunk reduces its bandwidth by some factor,
we need all the active user flows over the trunk to reduce
their bandwidths by the same factor. Therefore, when a per-
flow queue’s buffer occupancy suddenly increases, which is
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a signal that the underlying TCP trunk’s bandwidth shrinks,
the TCP user flow should be notified to reduce its sending
rate. Note that for a TCP user flow, a single packet drop
suffices to make its sender reduce its sending rate by a half.
In our RED-like packet dropping method, the trunk sender
will try not to drop another packet from the same user flow
until the user flow has successfully recovered from its fast
retransmit and recovery.

More precisely, when the trunk’s bandwidth is reduced
by a half, the trunk sender estimates the congestion window
size W of each active TCP user flow by dividing the current
congestion window size of the management TCP by the
number of active TCP user flows. (This is based on the
assumption that every active TCP user flow uses about the
same share of the trunk’s bandwidth.) From W, we derive
the total number U of packets that can be sent by a TCP user
flow source during a fast retransmit and recovery cycle.
That is, U = W/2 + (W/2+1) + (W/2+2) + ... + W. This is the
number of packets sent between the time the source reduces
its sending rate by a half and the time its sending rate is
about to ramp up to its previous sending rate when its
packet was dropped. We use U/2 as a threshold for the
minimum number of packets from the same TCP user flow
that should be forwarded before another packet from the
same flow will be selected to be dropped. Choosing U/2 is
based on the observation that if a TCP flow can still send
out U/2 packets after reducing its congestion window size
from W to W/2, the chance that the TCP sender has success-
fully recovered from TCP fast retransmit and recovery
without timing-out is very high. Therefore, the TCP flow
can now be subject to another rate reduction if necessary.

7. TCP Trunk Experiments and Performance
Measurements

We have conducted TCP trunking experiments on
several testbed networks, including some laboratory test-
beds at Harvard and National Chiao Tung University in
Taiwan. The hosts and routers in the testbeds are FreeBSD
2.2.8 systems running on 300 or 550 MHz PCs with 128MB
of RAM and Intel EtherExpress 10/100 cards set at 10 or
100 Mbps. A delay box implemented in the kernel is used to
simulate a link’s propagation delay. Using the delay box, we
can set the RTT of a connection to be any value with a 1-ms
granularity.

These experiments have validated TCP trunks’ proper-
ties in providing elastic and guaranteed bandwidth, hierar-
chical bandwidth allocation, providing lossless transport for
user packets, isolating UDP flows, protecting Web traffic,
etc. This section describes a representative set of these
experiments.

7.1. Experiments Suite TT1: Basic Properties of
TCP Trunks

This experiment suite demonstrates the basic capabili-
ties of TCP trunks in bandwidth management.

Below are the configurations common to experiments
TT1 (a), (b) and (c):

• Each trunk uses 4 management TCPs to smooth band-
width change of the trunk. (See a discussion of multiple
management TCPs for a single trunk at the end of
Section 4.)

• Each trunk has a FIFO buffer (tunnel queue) of 100
packets.

• The buffer in the bottleneck router E is of size
Required_BS given by Equation (2) of Section 5.

• The user flows are greedy UDP flows using 1,500-byte
packets.

• The propagation delay of the link between E and F is 10
ms, and that of any other link is negligible.

• Each experimental run lasts 400 seconds or longer.

Experiment TT1 (a):

Configurations:

• Trunk 1: GMB = 400 KB/sec, VMSS = 3000 bytes
• Trunk 2: GMB = 200 KB/sec, VMSS = 1500 bytes

This experiment is to demonstrate that trunks can make
full utilization of available bandwidth and share it in
proportion to their GMBs. This is achieved by choosing
Trunk 1’s VMSS to be twice as large as Trunk 2’s VMSS.
Under this setting, the achieved bandwidths of Trunk1 and
Trunk2 should be:

• Trunk1: 400 + 2/3 * (1200 - 400 - 200) = 800 KB/sec

Trunk 2

Figure 3. An experimental testbed network with 4 hosts (A,
C, G and H) and 4 routers (B, D, E and F). The sender and
receiver of Trunk 1 are B and F, respectively. The sender
and receiver of Trunk 2 are D and F, respectively. A user
flow from A to G, and another from C to H, use Trunk 1 and
2, respectively. All links are 10 Mbps. Trunks 1 and 2 share
the same 10 Mbps link from E to F, which is the bottleneck
link for the given network configuration and traffic loads.

Trunk 1
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E F
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H
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• Trunk2: 200 + 1/3 * (1200 - 400 - 200) = 400 KB/sec

For each of the above two equations, the first term is
the trunk’s GMB, and the second term is the extra band-
width that this trunk should obtain when competing for
available bandwidth with the other trunk. The available
bandwidth is the remaining bandwidth on the bottleneck
link (the link from E to F) after deducting Trunk 1 and
Trunk 2’s GMBs (400 and 200 KB/sec) from the bottleneck
link’s bandwidth (10 Mbps = 1200 KB/sec). Since Trunk 1’s
VMSS is twice as large as Trunk 2’s, Trunk 1 should
achieve two times Trunk 2’s bandwidth in sharing the avail-
able bandwidth. That is, Trunk 1 and 2 should achieve 2/3
and 1/3 of the available bandwidth, respectively.

The experimental results, as depicted in Figure 4, show
that each trunk indeed achieves what the above analysis
predicts. That is, Trunk 1 and Trunk 2 achieve 800 and 400
KB/sec, respectively.

Experiment TT1 (b):

Configurations:

• Trunk 1: GMB = 200 KB/sec, VMSS = 3000 bytes
• Trunk 2: GMB = 400 KB/sec, VMSS = 1500 bytes

This experiment is to demonstrate that trunks can make
full utilization of available bandwidth and share it in
proportions independent of the trunks’ GMBs. In this
configuration, Trunk 1 has a larger VMSS value than Trunk
2, although the former has a smaller GMB than the latter.

Based on the same reasoning as that used in TT1 (a),
the bandwidth allocation according to the analysis should
be:

• Trunk1: 200 + 2/3 * (1200 - 400 - 200) = 600 KB/sec

• Trunk2: 400 + 1/3 * (1200 - 400 - 200) = 600 KB/sec

Again, the experimental results, as depicted in Figure 5,
show that each trunk achieves about 600 KB/sec. This is
what the above analysis predicts.

Experiment TT1 (c):
Configurations:

• Trunk 1: VMSS = 1500 bytes, GMB = 400 KB/sec

• Trunk 2: VMSS = 1500 bytes, GMB = 200 KB/sec

This experiment focuses on the buffer occupancy in the
bottleneck router E. We compare it with the Required_BS
value given by Equation (2) of Section 5. We are interested
in verifying that there is indeed no loss of user packets in
router E.

Using the notations of Section 5, the values of (α, β, Ν,
VMSS) used for this configuration are (8, 0.5, 8, 1500). The
value of α is set to be 8 so that each management TCP’s
TCP fast retransmit and recovery can work reasonably well.
The value of β is 0.5 because the sum of Trunk 1 and Trunk
2’s GMB (400 + 200 = 600 KB/sec) is 50% of the bottle-
neck link’s bandwidth (1200 KB/sec). N is 8 because Trunk
1 and Trunk 2 together have 8 management TCP connec-
tions. When plugging these values into Equation (2) of
Section 5, we find Required_BS to be 222,348 bytes.

In a 600-second run, the logged maximum buffer occu-
pancy is 210,306 bytes. Since the buffer of Required_BS or
222,348 bytes provisioned in the experiment is greater than
210,306 bytes, there is no loss of user packets. The fact that
Required_BS of 222,348 bytes is only about 5% off from
the maximum buffer occupancy of 210,306 bytes suggests

Figure 4. Results of Experiment TT1 (a). Each small point
represents a trunk’s achieved bandwidth averaged in a 1-
second period around the point. The thick line represents
the exponential running average of a trunk’s achieved
bandwidth over time. The achieved bandwidth of each
trunk is exactly what the analysis predicts.
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Figure 5. Results of Experiment TT1 (b). The achieved
bandwidth of each trunk is exactly what the analysis
predicts.
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that Equation (2) calculate Required_BS accurately. Figure
6 depicts sampled buffer occupancy in the bottleneck router
E during this experiment.

In summary, the results of experiments TT1 (a), (b) and
(c) show that a TCP trunk can:

• Provide GMB.
• Use multiple management TCPs to smooth bandwidth

adaptation. (If each TCP trunk used only one manage-
ment TCP rather than four, much larger bandwidth vari-
ations would have been observed.)

• Use different values for the VMSSs of different trunks
to bias their bandwidth sharing in a fine-grained way.
Equal sharing and proportional sharing based on trunks’
GMBs are two special cases of many that can be
achieved.

• Provide lossless delivery of user packets. Figure 6
demonstrate that the maximum buffer occupancy in the
bottleneck router E is below the Required_BS value
given by Equation (2) of Section 5.

7.2. Experiments Suite TT2: Bandwidth
Management via Hierarchical TCP Trunking

This experiment suite shows bandwidth management
via hierarchical TCP trunking involving nested TCP trunks.
As depicted in Figure 7, the experimental network testbed
has 16 nodes connected together by 10 and 100 Mbps

Ethernet links and hubs. For presentation clarity, not all
nodes are shown in the figure.

This experiment demonstrates a two-level TCP
trunking system. On level one, there are two TCP trunks
(L1-T1 and L1-T2) contending for the bottleneck link’s
bandwidth. On level two, within each of level-1 TCP trunks,
there are two competing level-2 TCP trunks (L2-T1 and L2-
T2 inside L1-T1, and L2-T3 and L2-T4 inside L1-T2).

Some parameters important to this suite are as follows.
Each TCP trunk has 4 management TCPs as before. The
value of VMSS used by all of these management TCPs are
1,500. The GMB is set to zero for all TCP trunks. The user
traffic in each level-2 TCP trunk is UDP greedy traffic.

During the experiment, we purposely inject various
amounts of load into the four level-2 TCP trunks at different
times to test the dynamic and hierarchical bandwidth alloca-
tion capability of TCP trunking. We show the achieved
bandwidth of the two level-1 TCP trunks in Figure 8 and the
achieved bandwidth of the four level-2 TCP trunks in
Figure 9, respectively.

At the beginning of the experimental run, on level 1,
only L1-T1 is active and inside L1-T1, on level 2, only L2-
T1 is active. From Figure 8, we see that L1-T1 achieves
100% of the bottleneck link’s bandwidth and, from Figure
9, L2-T1 achieves the full bandwidth of L1-T1.

At the 28th second, the second level-2 trunk L2-T2
inside L1-T1 becomes active. From Figure 8, we see that
because on level 1, L1-T1 is still the sole active trunk, it
remains to occupy 100% of the bottleneck link’s bandwidth.
From Figure 9, we see that the two competing level-2 trunks
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Figure 6. Results of Experiment TT1 (c). Sampled buffer
occupancy in bytes in the bottleneck router E is shown. The
top thick line is the Required_BS value given by Equation
(2), i.e., 222,248 bytes. Note that sampled buffer occupancy
is always below the line. In fact, the logged maximum
occupancy is 210,306 bytes. Thus, in our experiment there
is no loss of user packets.
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Figure 7. The experimental testbed network to demonstrate
TCP trunk’s hierarchical bandwidth allocation capability. In
total, 16 nodes are used. Two of them are used as the shared
traffic source and sinker node respectively, for the four
level-2 trunks. (For presentation clarity, not all used nodes
are shown in this figure.) All links are 10 Mbps except for
those that connect to the shared traffic source and sinker
nodes, which are 100 Mbps. There are two level-1 trunks
contending for the bandwidth of the bottleneck link from
node A to node B. In each level-1 trunk, there are two level-
2 trunks contending for the achieved bandwidth of the level
1 trunk.
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(L2-T1 and L2-T2) inside L1-T1 share the bandwidth of
L1-T1 fairly.

At the 58th second, the level-2 trunk L2-T3 becomes
active. This makes the level-1 L1-T2 that contains L2-T3
become active as well. From Figure 8, we see that the two
competing active level-1 trunks (L1-T1 and L1-T2) share
the bandwidth fairly. From Figure 9, we see that the two
level-2 trunks (L2-T1 and L2-T2) inside L1-T1 share the
bandwidth of L1-T1 fairly, and the sole level-2 trunk (L2-
T3) inside L1-T2 uses the whole bandwidth of L1-T2.

At the 90th second, the level-2 trunk L2-T4 becomes
active. It starts to compete with L2-T3 for the bandwidth of
L1-T2. From Figure 9, we see that now L2-T3 and L2-T4
fairly share the bandwidth of L1-T2. From Figure 8, we see
that L1-T1 and L1-T2 still fairly share the bottleneck link’s
bandwidth on level 1. The introduction of a new active
level-2 trunk in L1-T2 does not affect the bandwidth alloca-
tion on level 1 between L1-T1 and L1-T2.

In summary, the above experimental results show that
TCP trunking can dynamically allocate bandwidth for
nested TCP trunks.

7.3. Experiments Suite TT3: Protecting
Interactive Web Users

This suite of experimental results, depicted in Figure
10, shows that TCP trunking can provide protection for
interactive Web users when competing against long-lived
greedy TCP connections. That is, short Web transfers can
receive approximately their fair share of the available band-
width and avoid unnecessary time-outs. In these experi-
ments, each run lasts 10 minutes or longer.

Consider the configuration depicted in Figure 10 (b).
On the middle router where traffic merges, there are many

short-lived Web transfers coming from an input port (a site)
to compete for an output port's bandwidth (1200 KB/sec)
with other long-lived greedy ftp transfers that come from
two other input ports (sites).

Figure 10 (a) shows that when there are only short-
lived, 8KB Web transfers in the network, the offered load
uses 453 KB/sec bandwidth. (The offered load is limited to
453 KB/sec, because TCP windows for these Web transfers
never ramp up significantly due to the small 8KB size of the
transfers.) The request-response delays for these short-lived
Web transfers are small and predictable. The mean delay,
maximum delay, and the standard deviation of the delays
are 353 ms, 1,270 ms, and 82 ms, respectively.

Figure 10 (b) shows that after long-lived greedy ftp
transfers (“put file” sessions) are introduced into the
network, the short-lived Web transfers can only achieve 122
KB/sec bandwidth in aggregate, which is much smaller than
their fare share (1200/3 KB/sec). The mean delay,
maximum delay, and the standard deviation of the delays
increase greatly and become 1,170 ms, 11,170 ms, and
1,161 ms, respectively. This means that the short-lived Web
transfers are very fragile (the reasons are discussed in [12])
and encounter more time-outs than before. As a result, they
cannot receive their fair share of the bandwidth of the
bottleneck link when competing with long-lived greedy ftp
transfers.

Figure 10 (c) shows that when a TCP trunk is used for
each site to carry the site's aggregate traffic, the bandwidth
used by the short-lived Web transfers increases to 238 KB/
sec. The mean delay, maximum delay, and the standard
deviation of the delays also improve greatly and become
613 ms, 2,779 ms, and 274 ms, respectively.

Figure 8. Achieved bandwidth of the two level-1 trunks.
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7.4. Experiments Suite TT4: Protecting TCP
Flows against UDP Flows over a Ring

This experiments suite shows that TCP trunks can help
protect TCP flows against UDP flows. We use a ring testbed
network of Figure 11, on which TCP connections will expe-
rience multiple bottlenecks. As depicted in the figure, the
testbed has five routers on the ring, five edge routers where
the senders and receivers of TCP trunks are implemented,
and five hosts where senders and receivers of user TCP or
UDP flows reside.

All the experiment runs last 300 seconds. We config-
ured each of these routers to have a buffer of 50 packets,
and each trunk sender a buffer of 100 packets. All the links
on the testbed have negligibly small propagation delays.
The maximum window size for user TCP flows is 64KB.

In case (a) of Figure 12, there are only small TCP trans-
fers with no competing traffic. In case (b), there is a
competing UDP flow from node 3 to node 4. This is an on-
off UDP flow with each on or off period lasting 10ms. The
source of the UDP flow will try to send as many 1024-byte
UDP packets as possible during each on period. In case (c)
there are two trunks: one trunk carries small file transfers
from node 2 to node 1, and the other carries UDP traffic
from node 3 to node 4. In case (d), there are two additional
greedy long-lived TCP transfers from node 4 to node 5, and
from node 5 to node 2.

Table 1 shows average throughput and delay statistics
for the small file transfers from node 2 to node 1. From the
experimental results, we see that these small transfers suffer
when they compete with UDP traffic. Their throughput is
reduced from about 380 KByte/s to about 53 KByte/s. Their
mean, standard deviation, and maximum delay are
increased. With TCP trunks, the situat ion is much
improved. The throughput for small transfers increases to
about 270 and 252 KByte/s for case (c) or (d), respectively.
The delay statistics are also improved.

10 Web servers send
8KB Web pages

50 Pkts

453 KB/s
[mean: 353 ms, std: 82 ms]

Link_BW

max: 1,270 ms

=1200 KB/s

Figure 10. TCP Trunking Experiments Suite TT3. Web site
throughput: (a) under no competing ftp traffic and (b) under
competing ftp traffic. (c) Web side performance for load (b)
when three TCP trunks, one for each site, are used.
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Figure 11. A ring testbed network for TCP trunking exper-
iments TT4. The testbed consists of five hosts, five edge
routers which are used as TCP trunk senders or receivers,
and five routers on the ring.
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8. Related Work

The approach of using management packets for TCP
trunks is similar to that of using resource management cells
[14] for ATM ABR virtual circuits. These management
packets or cells are independent of user traffic in the sense
that they are injected into and removed from the network
without modifying the user packets and they do not have to
be aware of the user data protocols.

Being the dominant congestion control protocol used in
the current Internet, TCP has received much attention from

many researchers (e.g., [15, 16, 17]). The TCP trunking
approach can incorporate advanced TCP congestion control
results when they become available.

Explicit congestion notification methods [18, 19, 20]
such as ECN mark user packets to indicate congestion in
routers. These marked packets will then signal their source
to reduce their sending rates. Although ECN methods
potentially can provide the “lossless” property for user
packets, there are some problems with them. Marking
packets in routers alone does not automatically achieve the
“lossless” property. That is, traffic sources must also reduce
their sending rates when receiving marked packets. It is not
clear how a traffic source’s congestion control should
respond to these marked packets to make the traffic TCP-
friendly. Marked packets may be dropped or remarked when
they are on their way to the destination or back to the
source. These problems are difficult and require much
further investigations. In contrast, the TCP trunking
approach uses the well-established TCP congestion control
to regulate the sending rate of a traffic flow, and is 100%
TCP-friendly.

9. Conclusions

TCP trunking is a novel way of applying TCP conges-
tion control to bandwidth management of aggregate traffic.
It appears to be one of the few techniques that could provide
dynamic congestion control for traffic aggregates. As the
Internet usage continues to scale up, traffic aggregation
becomes increasingly important, so does their bandwidth
management tools such as TCP trunking.

Traditionally, TCP has been the dominant protocol that
provides dynamic congestion control for individual flows
between end hosts. The TCP trunking work of this paper has
shown that TCP is also suited in providing dynamic conges-
tion control for aggregate flows between network nodes.
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