
ABSTRACT
Unicasting video streams over TCP connections is a challenging
problem because video sources cannot normally adapt to delay and
throughput variations of TCP connections. This paper points out a
direction on how TCP can be modified such that TCP connections
can carry hierarchically-encoded layered video streams well, while
being friendly to other competing flows. The method is called
Receiver-based Delay Control (RDC). Under RDC, a TCP connec-
tion can slow down its transmission rate to avoid congestion by
delaying ACK packet generation at the TCP receiver based on
notifications from routers. The paper presents the principle behind
RDC, argue that it is TCP-friendly, describe an implementation
that uses 1-bit congestion notification from routers, and give our
simulation results.

1.   INTRODUCTION
It would be desirable if video and audio streams could be carried
over TCP connections to take advantage of TCP’s congestion con-
trol capabilities. However, it is well recognized that current TCP
implementations are not suited for this purpose [8] because TCP
connections can significantly increase delay and throughput varia-
tions.

There have been many proposals on new transport protocols (see,
e.g., [20]), for the purpose of solving this video transport problem.
These protocols need to be TCP-friendly [8,15], to ensure that they
will not cause network collapse. However, proving a new transport
protocol to be TCP-friendly is fundamentally difficult, because of
the high complexity of TCP dynamics.

In this paper, we take a different approach: we modify TCP to
make it suitable for transporting video, without modifying TCP
congestion control algorithms. In particular, we do not change the
TCP sender code that governs TCP’s behavior in the slow start and
congestion avoidance phases. The only change we make is on the
TCP receiver side. In fact, our change is no more than extending
the delayed ACK feature in the current TCP implementation, so
that a longer delay can be imposed to avoid network congestion.
For these reasons, we believe that our approach is, by design, TCP-
friendly. We call this method “TCP with Receiver-based Delay
Control” (RDC), or, in short, TCP RDC.

The paper is organized as follows. In Section 2, we describe the
concepts and properties of a pure form of RDC (“exact RDC”) that
uses exact delay notification from routers, as well as an approxi-
mate version of RDC that uses 1-bit congestion notification from
routers (“1-bit RDC”). Exact RDC is useful in explaining the prin-
ciple behind RDC, and serving as an ideal design point for perfor-
mance comparison purposes. 1-bit RDC represents a practical
implementation of RDC. Simulation results which establish the
basic properties of RDC are given in Section 3. Design and imple-
mentation of a source algorithm for transporting layered video
streams [26] over TCP are described in Section 4. Finally, in Sec-
tion 5 we show our simulation results demonstrating the perfor-
mance of TCP RDC i n carrying layered video streams. Discussions
on related work and concluding remarks are given in Section 6 and
Section 7, respectively.

The two main contributions of this paper are summarized as fol-
lows:

• We demonstrate that TCP RDC connections can behave like
constant bit rate (CBR) pipes in the steady state, and, as a
result, can be well-suited for video streaming.

• We describe a method of controlling the add/drop of video
layers in streaming video over a TCP connection based on the
buffer occupancy level of the TCP sending buffer. Our simu-
lation results show superior performance of this layered
streaming method when it is used together with TCP RDC
connections.

2.   TCP RDC CONCEPTS
We first introduce the basic concepts and properties of exact RDC
by comparing it with traditional TCP. We then describe two useful
properties of RDC. Finally, we describe 1-bit RDC that requires
network support similar to that of Explicit Congestion Notification
(ECN) [7].

2.1.   Exact RDC
Consider a traditional FIFO-based router with incoming and out-
going links. As depicted by Figure 1 (a), each outgoing link has a
FIFO buffer. Packets arriving on incoming links are forwarded to
the FIFO buffer of an outgoing link via some routing or forwarding
mechanisms. Packets are removed from that buffer and sent on to
its outgoing link at the link rate. The occupancy of the FIFO buffer
in Figure 1 (a) will build up when the arrival rate exceeds the
departure rate. In the congestion avoidance phase of traditional
TCP, a connection grows its sending rate gradually until the router
buffer is exhausted and a packet is dropped.
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In contrast, exact RDC depicted in Figure 1 (b) is able to keep the
occupancy of the FIFO buffer in the router low. The router will
calculate a delay for each arriving packet using a token-bucket
based mechanism, and append a delay notification to the packet
when it is forwarded to the next hop.

After receiving a data packet with a delay notification, the TCP
receiver will forward the payload of the packet to the application
immediately, but will impose a delay on the ACKing (generation
of ACK packets for the data packet) according to the received

delay notification. However, if the data packet arrives out-of-order,
an ACK packet will be sent immediately. Thus, duplicate ACK
packets, triggered by out-of-order packets, are not delayed. This is
essential for the proper working of fast retransmit and fast recov-
ery [1]. 

The token bucket in the router of Figure 1 (b) computes a delay for
each arriving packet as follows. The objective is that the computed
delay for the packet should be the same as the delay the packet
would experience if it was delayed in a FIFO buffer of a traditional
router of Figure 1 (a).

More precisely, for each packet arriving at the router, a token is
inserted into the token bucket. The token bucket drains tokens at a
rate (in tokens per unit time) smaller than the rate (in packets per
unit time) that the outgoing link drains packets. The drain ratio ? is
expressed as the ratio of the token bucket’s drain rate (in tokens
per unit time) over the link’s output rate (in packets per unit time).
??is?always smaller than 1.

For each packet arriving at the FIFO buffer of Figure 1 (b), a delay
D-local is computed as follows: 

D-local = Packet_Transmission_Time over outgoing link
* (Token_Bucket_Level in Tokens

- FIFO_Buffer_Occupancy in Packets) (1)

Suppose that the arriving packet already has a delay notification D-
incoming. A delay notification D, which is: 

D-outgoing = maximum (D-incoming, D-local) (2)

is appended to the packet before it departs from the router.

After receiving the data packet with delay notification D, the TCP
receiver will delay the ACKing of the data packet by D. A TCP
connection under exact RDC behaves the same as the traditional
TCP connection when the router has a large FIFO buffer and the
outgoing link runs at a reduced speed of ? times the original. The
only difference is, instead of delaying data packets in the FIFO
buffer, the ACK packets are delayed at the receiver. Exact RDC,
therefore, behaves like traditional TCP and thus is TCP-friendly.

Token bucket level can grow without bounds, if the input rate is
higher than the output rate for a long period of time. To prevent the
calculated delay from growing unbounded, we limit the size of the
token bucket (tb_size).  When the token bucket level exceeds
tb_size, the incoming packet is dropped.

Choosing the ?  value is a matter of balancing regarding a trade-off
between link utilization and buffer occupancy. As we will show
later in the paper, when ?  is 90%, the FIFO buffer occupancy
under exact RDC o f Figure 1 (b) can normally be kept below a few
packets. However, because the utilization on the outgoing link is
bounded above by ? , we normally should not set ? to be below
90%. Although, for our simulation results reported in this paper, ?
is set to be 90%, we have observed that basically the same perfor-
mance level can also be obtained if ?  is set to be 95%. Thus, when
higher bandwidth utilization is required, we could choose a higher
value for ?.

Figure 1: Compare RDC with traditional TCP. (a) In tradi-
tional TCP, packets are delayed in the FIFO buffer in the
router; (b) in exact RDC, the router computes the delay of each
arriving packet using a token bucket method, and notifies the
TCP receiver to impose the delay on the ACKing of the packet;
and (c) in 1-bit RDC, the FIFO buffer in the router sets the
Congestion Experienced bit (CE bit) with some marking prob-
ability determined by the calculated delay.
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2.2.   RDC Properties
RDC possesses two properties that make RDC connections suit-
able for transporting video streams. First, the number of time-outs
is reduced by allowing a larger congestion window size, resulting
from extended RTT via the RDC mechanism. Second, packets
experience smaller network queueing delays in routers.

2.2.1.  Reduced Number of Time-outs
We note that during the congestion avoidance phase, the rate of a
TCP flow is determined by CWND/RTT, where CWND is the
congestion window size and RTT is the round-trip time. Thus,
when the number N of competing TCP flows for the same network
link increases, each flow must either decrease its CWND or
increase its RTT.

Recall that CWND cannot be smaller than one packet. In fact, to
avoid TCP time-outs, CWND needs to be larger than five or six
packets to allow TCP fast retransmit and fast recovery to work
[23]. To be truly “non-fragile,” that is,  resilient to TCP time-outs,
CWND in fact needs to be a few packets larger than five or six
packets [14].

Since it is undesirable to reduce CWND below certain limit as
noted above, increasing RTT becomes necessary when the number
N of competing flows is sufficiently large. The RDC approach pro-
vides a way of extending RTT without introducing queueing
delays in routers. That is, RDC delays the ACKing of packets at
the TCP receiver to increase RTT.

2.2.2.  Small Network Queueing Delays
As stated above, under RDC a network does not build up queueing
delays, and average queueing delays in a router can be kept below
a few packets. This ensures low latency of packet delivery and
allows the network to be responsive to congestion and flow con-
trol. Both of them are important for streaming applications. Keep-
ing network queueing delay low is generally regarded as a good
practice, as is often pointed out in the literature [2,6,10].

2.3.   1-Bit RDC
To simplify the router requirements, we suggest that RDC imple-
mentation use 1-bit Congestion Experienced (CE) notifications
from routers, rather than notifications containing actual delays as
in exact RDC described above. The CE bit is placed in an IP
packet. The CE bit for 1-bit RDC is similar to that for Explicit
Congestion Notification (ECN) [7,19].

Recall that under exact RDC of Figure 1 (b), the router calculates
and appends delay for each packet, so the receiver can delay the
ACK packet accordingly. The delay is calculated by the router
using the token-bucket based mechanism. An advantage of this
approach is that the delay calculated reflects exactly the current
congestion level at the router, so the receiver can quickly adjust to
it. A disadvantage, however, is that there are no natural places in
the TCP/IP headers to include the multi-bit delay information. We
could use a header option field or the 16-bit ID field in the IP
header as discussed in [21] for this purpose, but these are not stan-
dard methods.

As shown by 1-bit RDC of Figure 1 (c), RDC could be imple-
mented using the CE bit in the IP packet header. The router could
still employ a token bucket and update token bucket levels. But
instead of appending each outgoing packet with the calculated
delay, it only sets the CE bit in the IP packet header with a certain

marking probability determined by the difference between token
bucket level and FIFO buffer occupancy. That is, instead of using
Equations (1) and (2) to calculate D-local  and D-outgoing, the
router first calculates the difference between token bucket level in
tokens and FIFO buffer occupancy in packets to determine a mark-
ing probability. Then, if the incoming packet does not have the CE
bit set, the router will set the bit with that marking probability. The
marking probability increases linearly from 0 to 1, as the differ-
ence of token bucket levels and buffer occupancy increases from 0
to a configured threshold, tb_threshold. When the difference is
larger than tb_threshold , the CE bit is always set to the incoming
packet. (As noted in Section 7, the CE bit can also be generated by
RED-like algorithms without using the token bucket.)

The receiver can adjust the delay that is imposed on ACK packets
based on the percentage of received packets that have the CE bit
set. The receiver estimates the round-trip time and uses it as a
period over which the percentage is computed. We use two param-
eters, ?  and ?, to denote the high and low thresholds, respectively.
These thresholds are used to increase or decrease delay. For exam-
ple, for ?  = 0.9 and ???  0.1, if 90% or above of the packets
received in a period of time are set with the CE bit, the receiver
will increase the delay for every future ACK packet. On  the other
hand, if only 10% or less of the packets received in a period of
time are set with the CE bit, the receiver will decrease the delay.

To adjust the delay, the receiver uses an additive decrease and
multiplicative increase strategy analogous to that used in the TCP
congestion window update algorithm [3,9]. Initially, the receiver
imposes no delay for ACK packets. When the observed percentage
of packets with CE bit set is higher than the threshold ? , the delay
will be set to be the estimated round-trip time. The observation
period is then updated to be the sum of the estimated round-trip
time and the new delay. The receiver continues to observe packets
and calculate the percentage for the next period of time. If the
observed percentage is higher than the threshold ? , the delay will
be doubled. That is, , where  and  are
new and old delays, respectively. On the other hand, if the
observed percentage is lower than the threshold ? , the delay will be
reduced according to the following equation:

(3)

As shown in Equation(3), the decrease in the delay is inversely
proportional to the congestion window size (CWND) plus 1. Thus,
our delay update follows the principle of “Additive Increase, Mul-
tiplicative Decrease” (AIMD) [3]. 

For methods that the TCP receiver can use to estimate both the
round-trip time and congestion window size, see [18]. Section 3
describes the particular methods we used for the simulation imple-
mentation of this paper. 

3.   SIMPLE SIMULATION FOR RDC
To study the basic properties of RDC, we have performed ns [25]
simulations for a simple network configuration. Figure 2 depicts
the configuration, which is based on one of the configurations in
[6]. Two flows, originating from two sources with 100Mbps links
and having the same end-to-end round-trip delay of 4 2ms, compete
for the bottleneck link with a bandwidth of 45Mbps. The gateway
5 has a buffer of 140 packets. The maximum window size of both

Dn 1+ 2 Dn?= Dn 1+ Dn

Dn 1+
CWND

CWND 1+
---------------------------? ?

? ? Dn?=



flows is set to be 240 packets (packet size is fixed at 1,000 bytes),
which is slightly more than each flow’s bandwidth-delay product
(236.25 packets). 

Note that if only one of the two flows is running, the flow’s con-
gestion window (CWND) could reach the maximum window size
of 240 packets. This is because some packets can be queued at the
router, gateway 5. There will be no loss of packets, since there is
no buffer exhaustion. However, when the second flow starts run-
ning and competing for the bottleneck link, some packets will be
dropped due to buffer exhaustion.

In the simulation, we start flow A at time 0 and flow B one second
later. One second is long enough for flow A to grow its congestion
window to the maximum window size. Thus the rate of flow A sta-
bilizes before flow B starts.

We compare four methods: DropTail, ECN, exact RDC and 1-bit
RDC. We run simulations with their queue management algo-
rithms implemented in the gateway and corresponding setups
implemented in senders and receivers. For RED, the parameters
used in ECN gateway are min_th = 40, max_th = 120, w = 0.002,
max_p = 0.1 and gentle = true. For ECN, senders and receivers
process CE bit following the proposal in [19]. For both exact RDC
and 1-bit RDC, tb_size is set to be 6400 packets, and drain ratio ?
equals to 0.9. For 1-bit RDC, the thresholds ?  and ? ?are 0.9 and
0.1, respectively. The value of tb_threshold is set to be 500.

For 1-bit RDC, we also need to estimate both round-trip time and
CWND for each flow. For round-trip time, we use the interval
between the arrival times of the first two data packets as an esti-
mate. For CWND, we use the TCP sender’s maximum window
size as an estimate. Other methods, such as using the timestamp
option for round-trip time as mentioned in [18], could be used to
provide a more accurate estimation. We note that the use of maxi-
mum window size makes 1-bit RDC less aggressive, due to the
reduced rate in decreasing delays based on Equation(3).

Figure 3 shows the number of packets sent by each flow in 84ms
periods. (We note that 84ms is twice of the 42ms end-to-end
round-trip delay.) Under DropTail and ECN, both flows A and B
continue exhibiting large throughput fluctuations even after 10
seconds. In contrast, under exact RDC and 1-bit RDC, the flows
stabilize in less than 0.5 and 10 seconds, respectively. 

The superior performance of RDC can be explained as follows.
DropTail and ECN rely on TCP senders to control throughput by
performing the AIMD control on CWND. The throughput fluctu-
ates between available bandwidth and half of the available band-
width. In contrast, exact RDC adjusts the sending rate with a

Figure 2: The configuration for a simple network
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continuous function by controlling the delay to be imposed on the
ACKing of data packets by the TCP receiver. 1-bit RDC approxi-
mates the behavior of exact RDC.

Moreover, as shown in the figure, the second flow in DropTail,
ECN, and 1-bit RDC suffers from at least one time-out during the
slow-start phase. This is caused by the fact that the router does not
have a large enough buffer to absorb packet bursts introduced by
the slow-start process. As a result, some packets are dropped. Also
in ECN, due to its use of average queue occupancy, packets from
both flows are dropped, and this results in traffic phase effect [5].
Exact RDC does not seem to exhibit phase effect, although 1-bit
RDC sometimes does.

From Figure 3 (c) and (d), we see that exact RDC and 1-bit RDC
can transport data with a relatively steady rate. In addition, we
expect that they will experience only few or no time-outs, as dis-
cussed in Section 2.2.1. These properties are desirable for trans-
porting video streams.

4.   LAYERED VIDEO STREAMING
In this section, we describe our video encoding model and the
design and implementation of the streaming application. In addi-
tion to providing maximum available bandwidth for video delivery
while remaining friendly to other flows, our goals also include
minimizing the playback latency.

4.1.   Hierarchically-Encoded Layered Video
We use a simple model for hierarchically-encoded layered video,
[13,16,17,24,26]. A video stream is hierarchically encoded into
several layers, with every layer requiring the same delivery band-
width. Data of a layer can only be played by the receiver when all
data from its lower layers is received. The playback quality
increases when data from additional layers is received. Streaming
more layers delivers better quality of video, but requires more net-
work bandwidth to deliver the video. Videos are encoded offline,
with each layer stored separately.

4.2.   The Use of TCP as the Transport 
Protocol
An advantage of using traditional TCP in transporting video is that
the transport will be friendly to other flows sharing the same net-
work and will not cause network collapse. However, it is not easy
to use traditional TCP as is for streaming purposes, because it is
designed for reliable data communication, not for real-time appli-
cations.

Another major obstacle for using TCP in streaming applications, in
addition to bandwidth variation and delay jitter, is retransmission
time-outs. TCP will cease transmission and wait for a retransmis-
sion time-out to expire, if sufficiently many packets are lost.
Retransmission time-out can take seconds to expire, and this can
stop video playback for seconds. A solution is for the receiver to
buffer a large amount of data before it can start playback. How-
ever, this can increase the playback latency significantly. When
time-outs happen frequently, even the buffering cannot help. TCP
RDC addresses these obstacles as discussed in the previous sec-
tions.

4.3.   Video Source Streaming Algorithm
When streaming video over a TCP RDC connection, the multi-
layer video source decides dynamically when to add or drop a
layer of encoded video. The video source’s decision of adding or
dropping a layer will be based on the observed occupancy of the
TCP sending buffer. 

Because network paths to receivers may experience different net-
work conditions, the source needs to determine the highest layer N
the network will allow for a given stream at any time. We say a
streaming is at layer N if the source decides it is appropriate to
send video of N layers to the stream’s receiver. Different streams
may use different values of N at a given time, depending on their
network condition. For each stream, the video source will monitor
the TCP’s sending buffer to detect network condition. 

We extend the TCP agent in ns to support two additional variables:
sending buffer size and sending buffer occupancy . Sending buffer
size is defined to be the sending TCP agent’s maximum window
size. The sending buffer occupancy changes whenever the applica-
tion writes data to the agent or the agent sends a data segment to
the receiving agent.  At any given time, the amount of data the
application can write to the sending buffer is bounded by the send-
ing buffer size minus the occupancy. The application can read both
variables. Although this is only done in the simulator at present,
we believe it could be easily implemented in real-world systems.

The source application is implemented as follows. The application
is executed periodically when streaming video. If the TCP maxi-
mum segment size is MSS bytes, and the bandwidth requirement of
each layer is B bytes/second, then the period is set to be 
seconds. If a stream is currently at layer N, then the application
will insert N segments to the buffer in each period, one from each
of the N layers. The application monitors the buffer occupancy
continuously to decide whether a layer should be added or
dropped. If all the observed buffer occupancies over a  predeter-
mined interval are lower than a threshold , an additional layer
will be added to the stream. If an observed buffer occupancy is
higher than a threshold , a layer will be dropped from the
stream.

Figure 4 illustrates sending buffer occupancy over time. The buffer
occupancy decreases in the beginning, because the network can
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provide higher bandwidth than the streaming requires. At point 1,
because all the observed occupancies are lower than the threshold

 in the period of , an additional layer is added to the
stream. The additional layer adds more data than the available
bandwidth of the network can transport, so the buffer occupancy
starts increasing. At point 2, the network is congested and many
packets are dropped, so the streaming over the network is stopped
because of retransmission time-out. As a result, the buffer occu-
pancy increases rapidly. Later, at point 3, the buffer occupancy
exceeds the threshold , so a layer is dropped from the stream.
However, since the stream is still waiting for time-out to expire,
some additional layers are dropped from the stream. When the
time-out eventually expires and the TCP connection’s congestion
window opens up again, the network resumes transmission, and
the buffer occupancy decreases. At point 4, three layers are added
to the stream, one at a time.

The number of layers for a stream can be as low as 0, when the net-
work is severely congested and no data can be delivered in time. In
other words, the application can skip data for some streams during
network congestion. This is necessary because once data are
inserted into TCP’s sending buffer, the source cannot cancel its
delivery.

Note that our algorithm drops a layer immediately after one obser-
vation of high buffer occupancy, rather than several observations.
This provides a rapid way of reducing the rate at which the source
inserts data into the buffer when n etwork congestion develops.

On the other hand, the predetermined observation period before
adding a layer is set to be more than several seconds long. Since
frequent fluctuation in the number of layers for a stream can cause
the corresponding fluctuation in the playback quality, the purpose
here is to minimize this fluctuation so as not to be annoying to
users.

5.   SIMULATIONS OF VIDEO 
STREAMING
In this section, we run two sets of simulations to demonstrate the
performance of RDC connections in streaming video. One set has
10 streaming connections, while the other has 100 ones. We first
describe our simulation setup for both cases, and then present
results of each of the simulation sets in a subsection.

Using the 10-stream simulation, we demonstrate that ECN, exact
RDC, and 1-bit RDC have better stability than DropTail, and exact
RDC and 1-bit RDC have smaller router buffer occupancy than
DropTail and ECN. Using the 100-stream simulation, we demon-
strate that 1-bit RDC performs better than ECN when there are
many flows.

5.1.   Simulation Setup
Both sets of simulation use the network configuration depicted in
Figure 5, a configuration also used in [20]. In this network, the bot-
tleneck link is the central link connecting routers G0 and G1 . G0
and G1  have side links connecting to sender nodes (Si) and
receiver nodes (Ri), respectively. For each i, there is a TCP con-
nection from node Si to Ri. The variable n is the number of stream-
ing connections, so it is either 10 or 100. The bottleneck bandwidth
is set to Mbps for reasons to be explained below. Both G0
and G1 have a FIFO buffer of 100 or 200 packets for the 10 or 100
connection setup, respectively.

Our video data is multi-layer encoded as described in Section 4,
with each layer requiring 20KByte/s for delivery. Each Si is a
source and delivers a stream to the corresponding Ri. For a 4-layer
stream, a total of 80KByte/s, or 0.64Mbps, is required. Thus, to
achieve the best streaming quality for all connections and maintain
fairness, the source should continuously stream 4 layers of video
on each connection. The period that the streaming application uses
is 50ms. The threshold  is set to 0 packets, while  is set
to 20 packets, half of the TCP’s maximum sending buffer size. The
observation period for  is 15 seconds.

Four methods, DropTail, ECN, exact RDC, and 1-bit RDC, are
compared in the 10-stream simulation, but only ECN and 1-bit
RDC are compared for the 100-stream simulation. (For the 100-
stream case, DropTail performs poorly.) When simulating with
RED, we have min_th equal to  of the FIFO buffer size
(16.67, 33.33, respectively, for 10-stream and 10-stream simula-
tions), max_th equal to  of the FIFO buffer size (50 and 100,
respectively), w = 0.002, max_p = 0.1, and gentle = true. For simu-
lations with both exact RDC and 1-bit RDC, we use the same
parameters as those used in simulations of Section 3, except that
for the 100-stream simulation, tb_threshold is increased from 500
to 5,000.

We set all the data packets to have a fixed size of 1,000 bytes, and
all TCP senders to have a maximum window of 40 packets. To
reduce synchronizations among flows, we start all flows randomly
in the first 20 seconds. We run the simulation for 800 seconds.

5.2.   10-Stream Simulation
In this subsection we show that both exact RDC a nd 1-bit RDC can
provide a relatively steady streaming quality, compared with Drop-
Tail and ECN. We also show that the packet delivery delay is sig-
nificantly reduced for exact RDC and 1-bit RDC, because the
FIFO buffer occupancy of the outgoing link from G0 to G1  are
kept low in both cases.

In Figure 6, results on achieved throughput in number of layers are
presented. For each connection, the change in the number of layers
for each stream is shown. We note that the higher the number of
layers, the better the quality of transported video. As expected,
DropTail in Figure 6 (a) exhibits severe unfairness in the number
of layers for different streams, and ECN in Figure 6 (b) also exhib-
its some fluctuation and unfairness.

In contrast, both exact RDC and 1-bit RDC perform better in terms
of fluctuation and fairness in the number of layers. However, since
the throughput is bounded above at 90%, due to our choice of drain
ratio ?  = 0.9 in the simulation, the average number of layers for
both of them are lower than that of ECN’s. The utilization will be
increased accordingly if a larger value of ?  such as ? = 0.95 is
used.
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In Figure 7, results on the FIFO buffer occupancy are presented.
The buffer occupancy is sampled at every 50 FIFO buffer enqueue
or dequeue events. The results show that exact RDC (Figure 7 (c))
has the lowest buffer occupancy of only a few packets. 1-bit RDC
(Figure 7 (d)) has a lower occupancy and less fluctuation com-
pared with both ECN and DropTail. These results imply that both
delay and delay jitter are smaller with exact RDC and 1-bit RDC.

Finally, we note from our simulation that DropTail exhibits many
packet loss and time-outs, while both ECN and 1-bit RDC exhibit
only a few packet drops and time-outs. Exact RDC does not have
any packet loss or time-out at all.

5.3.   100-Stream Simulation
In this subsection, we increase the number of streams from 10 to
100. We also increase G0’s FIFO buffer size from 100 to 200, and
adjust RED’s parameters accordingly. The parameters for 1-bit
RDC remains the same. ECN and 1-bit RDC are compared, since
the two methods depend on similar network support such as 1-bit
congestion notification from routers. It is instructive to compare
the performance between sender-based congestion control used by
ECN and receiver-based delay control used by 1-bit RDC. The
results presented in this subsection demonstrate that 1-bit RDC
performs well even when the number of streams increases from 10
to 100, while the performance of ECN degrades.

(a) (b)

(c) (d)

Figure 6: 10-stream simulation. Number of layers for each connection over time for (a) DropTail, (b) ECN, (c) exact RDC, and (d)
1-bit RDC. Only flow 10 is highlighted with a thick solid line, while the others are in thin dashed lines.

(a) (b)

(c) (d)

Figure 7: 10-stream simulation. Sampled FIFO buffer occupancy of the outgoing link from G0  to G1 for (a) DropTail, (b) ECN, (c)
exact RDC, and (d) 1-bit RDC. Y-axis of the figures are in the log scale.



Figure 8 examines performance results of 10 randomly selected
streams among the 100 simulated streams. In the first row of Fig-
ure 8, we show the number of layers for each of the 10 streams
over time. We also present the sampled FIFO buffer occupancy in
the second row of the figure. The left column contains the results
for ECN, while the right column contains those for 1-bit RDC. For
the number of layers, both ECN and 1-bit RDC show slightly
increased fluctuation compared with the 10-stream case. However,
larger fluctuation in buffer occupancy is only observed under
ECN.

The increased fluctuation in buffer occupancy of ECN connections
is partly due to their relatively high packet loss rates and large
numbers of time-outs. Table1 shows the packet loss rate and the
total number of time-outs during the lifetime of the 100 connec-
tions for both the ECN and 1-bit RDC cases. ECN exhibits signifi-
cantly more time-outs than 1-bit RDC.

5.4.   Performance Summary
We have shown , by simulation, that the proposed multi-layered
streaming can work well under ECN, exact RDC and 1-bit RDC.
Traditional TCP with DropTail routers, on the other hand, per-
forms poorly and is not appropriate for this purpose.

Exact RDC generally outperforms ECN and 1-bit RDC. However,
as noted in Section 2.3 for easy implementation and deployment,
1-bit RDC, which is an approximation of RDC, can be more attrac-
tive than exact RDC. 

When ECN and 1-bit RDC are compared, we note that when the
number of competing streams is small (see the 10-stream simula-
tion results of Figures 6 and 7), 1-bit RDC performs better than
ECN, but not by much. The performance difference becomes sig-
nificant when the number of competing streams increases (see
100-stream simulation results of Figure 8 and Table1). This is
because the RDC approach can reduce the number of time-outs as
explained in Section 2.2.1.

6.   RELATED WORK AND DISCUSSION
To support RDC, a router manages the FIFO buffer by dropping
packets and sending out delay notifications based on the buffer
occupancy and the token bucket level. Thus, it is an instance of
active queue management (AQM) [2] as opposed to scheduling
algorithm [4] that applies different treatments to different classes
of packets in order to improve performance. Token-bucket based
marking schemes similar to ours in Section 2.3 seem to have
gained some popularity recently in the literature; see for example
[12].

ECN [7] is a framework for sending explicit congestion signal
from routers to TCP senders and receivers. Routers with AQM,
such as RED, implemented as their queue management algorithm
detect persistent high buffer occupancy and notify the senders of
congestion with a signal. This signal can be carried out by forward
signals such as the CE bit in the IP packet. In response to the pres-
ence of congestion signal, senders reduce their sending rates by
half. In contrast, routers in the RDC framework notify the receiv-
ers the need for delaying the ACKing of data packets. Receivers
delay ACK packets accordingly, and can reduce senders’ sending
rates by increasing the ACKing delay.

(a) (b)

Figure 8: 100-stream simulation. The first row is the number of layers for each connection over time for (a) ECN, and (b) 1-bit
RDC. 10 connections are randomly selected for presentation, but only one is highlighted with a thick solid line. The second row is
the sampled FIFO buffer occupancy of outgoing link from G0 to G1 over time.

Table 1 : Packet lost rate and number of time-outs in the 
lifetime of the 100-stream simulations 

ECN 1-bit RDC

Packet lost rate
(number lost)

8.5E-4
(5076)

3.5E-6
(17)

# Time-outs 675 2



ECN and RDC use different approaches in dealing with conges-
tion. Under ECN, TCP senders adjust congestion window size to
avoid congestion; under RDC, TCP receivers control the delay of
ACK packets. Other receiver-based congestion control methods
manage advertised window size, such as those discussed in [22]. 

Kanakia [11] studied the use of feedback information from the net-
work, such as the router buffer occupancy, to modulate the source
rate of a video encoder. The congestion control scheme they used
is optimized for video quality and does not consider the friendly
requirement when there are other competing streams. In this paper,
we consider not only the problem of optimizing video playback
quality, which is achieved by reduced time-outs, steady delivery
rate and layered encoding, but also the interactions with other com-
peting streams.

7.   CONCLUDING REMARKS
We have demonstrated by simulation that TCP connections with
Receiver-based Delay Control (RDC) works well for carrying lay-
ered video streams. We have described an implementation, called
1-bit RDC, that uses 1-bit congestion notifications generated by
routers. 

For 1-bit RDC, accurate delays are actually not important for set-
ting the Congestion Experienced (CE) bit in a packet header. A
randomized algorithm for detecting congestion, such as RED, can
generally achieve the same effect. We have preliminary results that
validate this claim. In a future paper, we plan to demonstrate the
use of RED-like methods in generating CE bits, without using the
token bucket method of Section 2.3. 

In this paper, because we wanted to focus on comparing TCP RDC
with other schemes such as ECN and traditional TCP, we did not
address their interaction when they co-exist in the same network.
However, our empirical results have shown that when competing
with 1-bit RDC flows, traditional TCP flows can usually gain more
bandwidth than RDC flows, because they don’t impose delays to
ACK packets. It is our belief that by assuming a properly random-
ized AQM scheme in routers, such as RED, and by tuning the
delay control at the TCP receiver, 1-bit RDC will be able to handle
this unfairness problem.

In addition to RDC, in this paper we have described a method for
streaming hierarchically-encoded layered videos over TCP con-
nections. The method includes an algorithm for a video streaming
source to add or drop layers dynamically based on the buffer occu-
pancy of the TCP sending buffer. Our simulation results show that
the method works well with TCP RDC connections.  

Thus the combination of our TCP RDC and layered video source
algorithms offers an attractive approach to streaming video over IP
networks. The approach can provide maximum available band-
width for video delivery, while being friendly to other competing
streams and minimizing playback latency.

Although it is not clear how RDC can become part of current stan-
dards, the proposed framework does provide a new direction for
the design of future TCP-like transport protocols suitable for video
streaming.
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