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ABSTRACT

We consider the task of using one or more Unmanned Aerial
Vehicles (UAVs) to relay messages between two distant ground
nodes. For delay-tolerant applications like latency-insensitive
bulk data transfer, we seek to maximize throughput by having
a UAV load from a source ground node, carry the data while
flying to the destination, and finally deliver the data to a
destination ground node. We term this the ”load-carry-and-
deliver” (LCAD) paradigm and compare it against the conven-
tional multi-hop, store-and-forward paradigm. We identify and
analyze several of the most important factors in constructing
a throughput-maximizing framework subject to constraints on
both application allowable delay and UAV maneuverability.
We report performance measurement results for IEEE 802.11g
devices in three flight tests, based on which we derive a
statistical model for predicting throughput performance for
LCAD. Due to the nature of commercial off-the-shelf systems,
this methodology is of essential importance for allowing better
flight-path design to achieve high throughput.

I. INTRODUCTION

The low cost and high performance of commercial, off-the-
shelf (COTS) wireless equipment, such as the IEEE 802.11
wireless LAN (“Wi-Fi”), make it now practical to use in small,
low-altitude Unmanned Aerial Vehicles (UAVs). This new
capability has enabled many applications in UAV networking.
For example, UAVs can act as relays between ground stations
that could not otherwise communicate due to distance or
obstructed line of sight. Multiple UAVs could simultaneously
detect, record and track wildfires. Last but not least, UAV
networks can be deployed on demand to create an instant
communication infrastructure. This can be useful in emergency
situations, such as following a hurricane, or even in everyday
scenarios, such as during a major sporting event.

There are uncertainties with these UAV-based networks that
go beyond the usual capacity and quality-of-service concerns
found in wireless mobile networks. There are UAV-specific
issues, such as rapid changes in link quality due to UAV’s
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banking and traveling at relatively high speeds, as well as
the relatively low tolerance of the 802.11 receivers to radio
interference [1][2].

Here, we consider a new type of networking paradigm,
called “load-carry-and-deliver” (LCAD), that is specifically
tailored to the task of using one or more UAVs in relaying
messages from a source to a destination ground node. Under
LCAD, a UAV will load data from the source ground node,
carry it while flying towards the destination, and finally deliver
it to the destination ground node.

LCAD is similar to previously proposed data ferrying
schemes. However, in this paper we consider for the first time
the throughput maximization of basic loading and delivery
steps using realistic link models and validate with field exper-
iments. Most previous works use simplified communication
models, such as the ideal unit-disk network model, that are
considered to be inadequate for practical COTS radios [3].
Our results are complementary to the works on message
ferrying [4][5][6] by Zhao et al., which examine how the non-
randomness of mobility, or even controlled mobility, can im-
prove network-wide message delivery and energy consumption
under simplistic link models.

A second unique result of our work is the link models we
derived from empirical measurement data, which will allow us
to construct and characterize actual flight paths that the UAVs
can execute. This is unlike previous works that only consider
finding an “abstract path,” that is, a sequence of nodes to visit
or a representative path defined by simple way points. For
example, the latter is the approach that Brown et al. [7][8] used
for roaming UAVs to deliver packets via controlled mobility.

Although the LCAD paradigm incurs a longer data delivery
delay than conventional store-and-forward, LCAD does have
a number of important advantages. First, LCAD can achieve
high throughput performance by ensuring that UAV’s com-
munication with the source and destination ground nodes is
free of interference from other nodes in the same networking
system. In contrast, other 802.11-based multi-hop networks
usually suffer from severe interference problems [1][2]. Sec-
ond, LCAD can scale its throughput by using multiple relaying
UAVs in a pipelined fashion for data delivery, while other ap-
proaches often cannot due to interference and medium sharing
constraints [9][1]. For these reasons, LCAD is attractive for
those delay-tolerant applications that demand high networking
bandwidth, such as bulk data transfer.

This work represents a step towards an optimization-
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Fig. 1. An illustration of LCAD networking with four UAVs. All UAVs
fly along the same oval-shaped path between the source ground node
(SGN) and the destination ground node (DGN). The three stages of
communication, load, carry, and deliver, are highlighted.

work. We will present analysis on fundamental necessary
conditions of optimality and put forward a perspective through
which we can design practical protocols and UAV flight paths
to achieve such optimality. Furthermore, our work includes
protocol provisions specifically designed for efficient loading
and delivery of data in practical settings.

The rest of this paper is organized as follows. In Sec-
tion II, we will provide a detailed description of the
LCAD paradigm, along with an analysis leading towards a
throughput-maximizing framework based on empirical link
performance modeling. In Section III, we will describe the
methodology we have used for our UAV flight experiments. In
Section IV, we will report the measurement results from these
experiments, based on which we will construct a statistical
performance model. We will then conclude this paper in
Section V.

II. THROUGHPUT-MAXIMIZING LCAD NETWORKING

In this paper, we focus on the use of IEEE 802.11 radios,
and we will assume a fixed data transmission rate in the
following analysis. Although 802.11 radios can change the
transmission rate dynamically in response to changes in the
channel condition, we believe the performance may not be
as good in a rapidly changing environment due to lack
of efficient channel information feedback mechanisms. For
example, several of the current rate adaptation algorithms
select transmission rate by sending packets at different rates to
probe the channel and observing their packet error rates [10].
In a rapidly changing environment such as a UAV network,
the observation is likely to be noisy and will soon become
obsolete, resulting in poor rate adaption performance. For
similar reasons, we also exclude the use of transmission power
adaption techniques and assume the use of a fixed transmission
power.

LCAD is a communication paradigm for delivering a stream
of packets from one fixed ground node to another. Under
LCAD, a mobile UAV node buffers packets received from a
source ground node (SGN), carries them while flying towards
the destination, and finally delivers them to the destination
ground node (DGN). Figure 1 illustrates the working of the
LCAD paradigm.

Communication in LCAD networking is divided into three
stages. The first is the load stage, where SGN transmits
to UAV. The second is the carry stage, during which no
one transmits. The third is the deliver stage, in which UAV

transmits to DGN those packets it received from SGN. The
important design decisions in LCAD networking include the
time allocation for each stage, as well as the design of the
UAV trajectory.

When a UAV cyclically flies along the same path, such as
the oval-shaped flight path shown in Figure 1, the achieved
long-term throughput T can be expressed as Pktdlvd/Tcycle,
where Pktdlvd is the total number of packets delivered to
DGN by UAV in one cycle, and Tcycle is the flight time for
one cycle.

Let us decompose Tcycle into Tload, Tcarry, and Tdeliver,
each denoting the time that UAV spends in the respective
LCAD stage. For simplicity, Tcarry includes the time on the
return leg from DGN to SGN. When necessary, we will use
Tidle to refer to the time spent in this return leg.

A first necessary condition for achieving maximal through-
put is that Tcarry must include only the time during which the
UAV is out of communication range of either SGN or DGN.
Otherwise, the system is wasting transmission opportunities.
Thus, Tcarry is determined by UAV speed, the distance
between the two ground nodes, and the communication range
of the wireless devices used.

Let D be the transit delay budget the application imposes on
packet delivery. The transit delay is defined to be the amount
of time a packet spent in transit through the network—the
time between when the packet is first enqueued at SGN and
when the packet is delivered to DGN. The worst case transit
delay is Tcycle +Tcarry−Tidle, experienced by the first packet
after a load stage, and so the combined time allocated for the
load and deliver stage must satisfy the following condition:
Tload + Tdeliver < D − 2Tcarry + Tidle.

Another necessary condition for achieving maximal
throughput is that the load stage does not overrun or underrun
the subsequent delivery stage. In either of these cases, the
time for the two stages could have been better allocated.
Suppose that the single-hop throughput is constant during both
Tload and Tdeliver. Then to achieve the maximal end-to-end
throughput, UAV must spend an equal amount of time in the
two stages, i.e., Tload = Tdeliver = (Tcycle −Tcarry)/2. If the
single-hop throughputs, Rload and Rdeliver, are unequal but
are constant, then Tload = Rdeliver

Rload+Rdeliver
(Tcycle−Tcarry) and

Tdeliver = Rload

Rload+Rdeliver
(Tcycle − Tcarry).

In reality, the single-hop throughput is likely neither con-
stant nor symmetric. A popular, more realistic path-loss
model assumes that the single-hop throughput is a monotonic
function of distance—it increases monotonically as distance
decreases until it reaches the full rate. In this case, it is
straightforward to design a flight path and the associated
schedule to maximize the overall throughput. An example is
to have the UAV flying around SGN in the smallest-possible
circular path during the load stage. Under this model, the
single-hop throughput is higher than that when the UAV is
moving towards or away from SGN. As a result, the average
single-hop throughput for the period of Tload increases with
circling time. Consequently, to achieve maximal throughput,
the UAV must fly a cycle with maximum Tcycle that satisfies
the delay constraint, and allocate the time for Tload and



Tdeliver according to the average single-hop throughput in
the respective stages. One can also trade delay for throughput
because T increases as D increases.

We conclude that a good single-hop throughput model is
key for throughput-maximizing LCAD networking because it
allows for optimal stage-time allocation and flight-path design.
It also provides better insight into the delay-throughput trade-
off. However, even a distance-based model described above is
too simplistic in the face of real-world factors such as relative
angles and polarization between the transmit and receive
antennas, perturbations in the UAV positions and attitudes,
and Doppler effects associated with UAV speed. We will report
our evaluation of more detailed model including some of these
factors in Section IV-A.

We may use multiple UAVs in a pipelined fashion, as
illustrated in Figure 1. We can schedule these UAVs such that a
UAV’s load stage always overlaps with the other UAVs’ carry
or deliver stages, and that its deliver stage always overlaps
with the other UAVs’ load or carry stages. However, when the
number of UAVs exceeds a certain threshold, there could be
some complications. For example, two adjacent UAVs could
be so close to each other, in either the load or deliver stage,
that there could be contention and interference between their
transmissions. The use of LCAD with a large number of UAVs
merits further investigation.

III. NETWORK TESTBED AND FLIGHT EXPERIMENTS

In this section, we describe our testbed setup and some
flight experiments with LCAD. The testbed was built for the
purposes of evaluating LCAD throughput performance and
characterizing the wireless links.

Fig. 2. (a) A custom-made dipole antenna installed on a ground node;
(b) a dipole antenna installed beneath a UAV wing (inside a cardboard
bracket); and (c) a GPS receiver mounted on a UAV wing.

Our networking testbed consisted of a UAV node and two
ground nodes—SGN and DGN. These nodes were made up
of single-board x86 computers made by Thecus, and were
equipped with Wistron CM9 802.11a/b/g adapters (Atheros
chipset) with 18dBm transmit power. We used a custom-made
2-dBi dipole antenna on all the nodes. The dipole antenna on
the ground node was vertically placed and elevated to about
25 inches above ground (cf. Figure 2 (a)). The dipole antenna
on the airplane was vertically placed beneath the wing (cf.
Figure 2 (b)). The UAV was built from a Senior Telemaster
model airplane kit [11], and the computer equipment was
installed inside its body compartment. The two ground nodes
were placed on the opposite ends of the runway, separated by
550 yards.

The UAV had an on-board GlobalSat BU-353 GPS receiver
(cf. Figure 2 (c)), which provided position information at the

Fig. 3. A sample UAV path in the flight experiments projected onto
a U.S. Geological Survey (USGS) satellite map showing the locations of
SGN and DGN. The small squares show the per-second positions of the
UAV as reported by its GPS. The light-colored horizontal band in the
center of the map is an airport runway approximately 25 yards wide
and 700 yards long.

resolution of 1 Hz. We had performed a coarse calibration of
the GPS, and we found that errors in its reported coordinates
were normally within 5 meters. The UAV’s GPS trace and the
stationary ground nodes’ coordinates allowed us to analyze
various performance parameters as functions of distance and
elevation angle.

The UAV flew in an oval-shaped flight path at an average
altitude of 80 yards. An example of such path is shown in
Figure 3. The airplane was operated by a human operator on
the ground through radio control. Even though the operator
tried to follow a predetermined path, there were inevitably
noticeable variations in the actual path traversed.

The results reported in Section IV are based on the traces
collected in three flight runs that took place on two days one
week apart. The first run lasted for 712 seconds on the first day.
The second (380 seconds) and the third (637 seconds) runs
took place on the second day. During these runs, the airplane
completed a total of 20 round trips between the two ground
node sites. Although we tried to keep the testbed configuration
identical for both days, the weather conditions in terms of
wind speed and direction, as well as the airplane operators
were different.

A. A Lightweight LCAD Protocol

Since the speed of the aircraft and the distance between
SGN and DGN were known, we only needed to measure
the achieved single-hop throughput for the load and deliver
stages in order to compute the overall achieved throughput.
Thus, in our experiments, we used an empty carry stage and
kept the UAV either in load or deliver stage. To decide the
current stage of the UAV node, a daemon process on the UAV
node computed the distances from its current GPS coordinates
to those of SGN and DGN, respectively. If the UAV was
closer to SGN than DGN, it would put itself in the load
stage. Otherwise, it would be in the deliver stage. The UAV
constantly broadcast beacons at a fixed interval (200 ms) to
indicate which one of the two stages it was currently in.

When the UAV is in deliver stage, it sends data packets at
full rate to DGN until it enters load stage. If the SGN receives
beacons indicating that the UAV is in load stage, it transmits
data at full rate to UAV. SGN stops data transmission either
when it receives beacons indicating that UAV is no longer
in load stage, or after not receiving beacons for 3 consecutive



intervals (600 ms). It is important that SGN stops transmission
outside of load stage because its transmission could contend
with that of UAV or interfere with reception at DGN. We note
that the LCAD protocol here uses a relatively small number
of beacon packets so as to minimize the pollution introduced
on packet-error measurement and link characterization.

B. Trace Collection

In our experiments, all nodes used channel 11 of 802.11g,
with the link-layer transmission rate fixed at 6 Mbps. All data
packets (1,500 bytes, including IP/UDP headers) and beacon
packets (64 bytes, including IP/UDP headers) were generated
with sequence numbers. In addition, all packets were sent
to a network broadcast address, so there was no link-layer
retransmission. As a result, we will report the raw packet error
rate at the physical layer without ARQ (Automatic Repeat-
reQuest). To shorten the control loop between UAV and SGN,
we reduced the madwifi driver’s transmission queue size to
4 packets and the Linux socket buffer size to 3 packets. These
settings reduced queueing in the operating system and avoided
excessive delays for both beacon and data packets.

We also collected the timestamp and sequence number of
each data or beacon packet sent and received. The timestamp
of a sent packet is generated when the socket function call
sendto() returns, while that of a received packet is gener-
ated when recvfrom() returns. In addition, UAV’s positions
were logged along with timestamps for interpolating distance
between transmitter and receiver when a particular packet is
received.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we will begin with a summary of LCAD per-
formance measured during 20 complete cycles performed over
three runs. A detailed list of the results and time breakdown
for each stage is available in Table II of the Appendix. We
will then continue with link characterization and construction
of statistical packet error models.

We first summarize the throughput utilization for the three
runs. The throughput utilization for each cycle is the ratio
of the total number of packets delivered to DGN divided
by cycle time. The total number of packets delivered is
computed by taking the minimum between the number of
packets received by UAV and that by DGN—at most that
many packets sent by SGN eventually reached DGN. The
result shows that the average throughput utilization for the
first run is 0.2283 ± 0.0369, 0.2837 ± 0.1345 for the second
run, and 0.3176 ± 0.0278 for the third run.

From our earlier experience with 802.11g, we learned
that the maximum distance between two ground nodes with
similar configurations cannot exceed 50 yards if they need
to communicate at a reasonably low packet loss rate using
802.11g. In this testbed, it would take additional ten ground
nodes to form a relay chain connecting SGN and DGN. Li and
et al. reported that the throughput utilization of a 7-node relay
chain using 802.11b radios is about 0.25 [1]. The throughput
results from the three runs show that LCAD can perform better
than the traditional multi-hop ground relay chain.

We observe that the utilization is lower than the average
packet error rate (PER) suggests. The average PER for the
first run is 0.4223 for load stage and 0.3001 for delivery stage,
0.105 and 0.3389 for the second run, and 0.1147 and 0.2426
for the third run. These error rates should allow an even higher
throughput than measured. However, there is an additional loss
of efficiency due to buffer underruns or overruns. Figure 4
shows the histogram for the buffer occupancy of the 20 cycles.
Negative buffer occupancy indicates that a buffer underrun
occurred, and the UAV node could have sent that many more
packets if the buffer were not empty. Positive buffer occupancy
is the number of packets left in the UAV’s queue at the end of a
cycle. These packets will be discarded. The average number of
packets delivered in a cycle is about 7000 packets, so the buffer
occupancy values in the figure indicate a serious imbalance
between LCAD stages, which leads to a significant loss in
utilization.

The average length of the cycles was 63 ± 8.7 seconds.
Within these cycles, the time devoted to load and deliver
stages of LCAD was slightly biased toward the load stage.
The average ratio of Tload/Tdeliver was 1.23 ± 0.16.
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Fig. 4. Buffer occupancy histogram constructed from the 20 flight
cycles. Negative values represent an idle, underutilized cycle, while the
magnitude indicating the extent of the underutilization.

Figure 5 shows the details of the third cycle in the second
run (labelled as “2-3”). The performance results are reported at
1-second intervals for the purpose of investigating correlation
at a finer granularity than the numbers reported in Table II.
Among the six rows, the fifth row compares efficiency loss
and modeled path loss. Efficiency loss incorporates packet
errors and halted SGN transmission due to lost beacons. The
modeled path loss is the amount of signal attenuation in dB,
normalized with respect to the maximal observed attenuation
in the experiments. Such attenuation is predicted by a free-
space propagation model plus an approximate antenna gain
pattern, which we will describe in more detail in the following
section.

The fifth row shows the correlation between the efficiency
loss and modeled path loss. We do notice that there are dis-
crepancies in some samples. For example, while the modeled
path loss does not change as much, PER increases sharply
around 370 second in load stage and 402 second in deliver
stage. We believe the discrepancies mainly result from an
effect of antenna cross-polarization when the UAV banks while
making a turn. There are other minor effects, such as velocity
and ground reflection, that may contribute to efficiency loss.
We will construct a statistical model to better quantify the



Fig. 5. Details of cycle 2-3. The left column contains results from load
stage, whereas the right column contains results from deliver stage. The
X-axis of the first five rows represents time offset into the run, and Y-axis
shows either the measured performance or the settings of the flight path
in the stage. The first row shows the number of packets sent and lost at
one second intervals. The second row plots the packet error rate at one
second intervals. The third row plots the distance between transmitter
and receiver, along with the UAV’s altitude above ground over time. The
fourth row depicts the UAV’s elevation angle relative to the ground node
over time. The fifth row compares efficiency loss and modeled path loss.
Lastly, the sixth row plots the UAV’s trajectory during the stage viewed
from the top. The diamond marker indicates the location of the ground
node. The circles give the UAV’s locations projected onto the ground
at the resolution of 1 Hz. The circles are drawn in increasing sizes as
time progresses. The color represents PER during that second—red for
highest and blue for lowest PER.

correlation in the next subsection.

A. Link Characterization

In this subsection, we present an empirical model for
link performance prediction. Link performance models are
of essential importance to throughput-maximizing flight-path
design. In order to help flight-path design, these models can
only use information that is available at design time. This
may include characteristics of system components such as
wireless transceiver and antenna. It may also include trajectory
of UAV, which can be obtained at the output of the flight-
path design and used in the next design iteration. It can not
use, for example, instantaneous signal strength because that
information is not available prior to flight. Because of this, our
model will predict link performance for the particular system
at hand solely based on UAV trajectory information.

From trajectory, we first derive two important factors that

influence link performance. The first one is the distance
between the UAV and ground nodes. In many models, distance
is the only factor considered. The second factor is the elevation
angle φ of the UAV, as seen by the ground node, which plays a
role because we use vertical dipole antennas. Specifically, φ is
defined as the angle between the direction of the antenna and
the incident direction of the radio waves from the UAV. For
example, φ = 0 when the UAV is directly above the ground
node. In this case, the link performance is usually very poor
because the UAV and ground nodes are in the antenna “null”
of each other [12]. We can confirm this by looking closely
into the visualization of one of the cycles in Figure 5.

We will combine the effect of these two factors into a
variable called the “modeled path loss.” First, because the
UAV usually maintains a line of sight to the ground node that
it intends to communicate with, the free-space propagation
model should give a good prediction on the propagation loss.
On top of that, we will add the signal loss due to the elevation
angle φ perceived by the ground node, computed as follows.
The magnitude of the electrical field due to radiation from
a half-wavelength dipole antenna at an elevation angle φ is
approximately proportional to cos(π

2 cos φ)/ sin φ [12], which
can be further approximated to |E(φ)| = sinφ. Combining
these two losses together, we will have the modeled path loss:
L = 20 log10 f+20 log10 d−20 log10 (|E(φ)|)−147.56, where
f is the central frequency of the channel [12].

We will use efficiency loss instead of packet error rate as our
performance metric because the latter tends to underestimate
the true packet error rate when SGN is not transmitting due
to lost beacons. We will seek a complete statistical charac-
terization of the relationship between modeled path loss and
efficiency loss using the multivariate kernel density estimation
technique [13].

Recall that a multivariate kernel density estimator with
kernel k and window width h is defined by

f̂(x) =
1

nhd

n∑
i=1

k

(
1
h

(x − xi)
)

,

where xi ∈ Rd,∀i = 1, 2, . . . , n, are the observations, n
the number of observations, d the dimension of x, and f̂
an estimate of the joint probability density function of x =
(x1, x2, . . . , xd). We will use the multivariate Gaussian kernel:

k(x) =
1

d
√

2π
e−

1
2xT x.

The choice of the window width h for the multivariate
Gaussian kernels will follow the rules of thumb described by
Silverman [13].

We briefly give our intuition behind the density estimation
technique. We assume that the observed samples are drawn
from an unobserved distribution. We could use a multi-
dimensional histogram to approximate the density function.
However, due to error and noise in observation and measure-
ment, each sample may have actually been contributed by
the probability mass from its vicinity regions. The histogram
will need to be “smoothed” somehow to properly take into
account such erroneous offsets. Also, in the case of continuous



random variables such as path loss and efficiency loss, there
are numerous “gaps” between samples. We will need a way
to “interpolate” the histogram for the values that are missing
from the observations. The kernel density estimate technique
provides a way to smooth and interpolate histograms. The
kernel function serves as the weighing function in averaging
the contributions from neighboring samples for predicting the
probability density for a particular point. The choice of width
is important because it determines the size of the neighbor-
hoods for averaging and thus will influence smoothness and
fidelity of the resulting density estimate. As pointed out by
Silverman [13], there does not appear to be a universally
good way of choosing this width. All methods are making
certain trade-offs in one kind or another. In our case, we have
experimented with several different ways of width choosing
before we eventually settled down to our decision. Our choice
appears to be able to produce reasonable results that agree with
our experience with and understanding of the testbed system.

We are now ready to state our modeling approach. For
each run, we randomly select about half of the cycles as the
training set. We use the multivariate Gaussian kernel density
estimation technique to produce an estimate for the joint
probability density of modeled path loss and efficiency loss in
this training set. Based on this estimated density, we compute
the conditional mean efficiency loss conditioning on modeled
path loss and use it as the predictor for efficiency loss given
modeled path loss. Figure 6 shows a few example predictors
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Fig. 6. The estimated mean efficiency loss, derived from different training
sets chosen randomly from the measurement data, as a function of
modeled path loss for the load (left) and deliver (right) stages in the
third run in Table II. The different colored curves in each plot represent
different training sets. The similarity in these curves shows that our
approach is rather robust to the choice of training sets.

produced by this approach. We show the mean efficiency loss
obtained using different training sets from the third run in
Table II. We note that first, predictors obtained using different
training sets are very similar, so our approach is robust in the
sense that it is rather insensitive to the choice of training sets.
Secondly, we tend to have a higher efficiency loss when the
link quality is poor in the load stage. This is because loss of 3
consecutive beacons can result in efficiency loss of 1 for the
next beacon period. It could also be because the source and
destination ground nodes are not symmetric in terms of their
relative positions with respect to the UAV flight trajectory,
as well as the difference in hardware components of these
two nodes due to inevitable variations in manufacturing and
deployment.

Figure 7 shows several samples of estimated probability
densities of efficiency loss for various modeled path losses.

Training set Our model Distance Fixed
Cycle 1–5 6.42% 14.88% 56.75%
Cycle 6–10 2.50% 4.56% 36.21%
Cycle 1,2,5,6,8 5.50% 1.32% 14.82%

TABLE I

The percentage errors between predicted and measured average buffer
occupancies for the three models using different training sets from the
third run in Table II. Our model not only produces predictions with
smaller error, but also has a robust performance that is insensitive to the
choice of training sets. Distance-based model can also perform quite
well sometimes, showing that distance is indeed the most important
performance determining factor.

These plots shows that the general quality the prediction based
on modeled path loss is reasonably good. If the conditional
density under a particular modeled path loss is highly con-
centrated around a certain value, then the prediction error in
this case will be small. Contrarily, if the density spreads out
across a wide range of modeled path losses, like the curves
corresponding to the higher path losses in the load stage in
Figure 7, the prediction can not be very accurate.

We further quantitatively evaluate the effectiveness of our
approach by measuring how good it is in predicting buffer
occupancies. For each training set, we use the efficiency
loss predicted by our model to compute the average buffer
occupancy for the remaining cycles. We then compare the
prediction with the measured buffer occupancy. We also make
similar predictions using two other straightforward models that
employ a number of commonly used techniques for predicting
the packet loss rate. The first one is solely based on distance.
Specifically, we divide distance into ten fixed-sized bins and
use the average efficiency loss in each bin obtained from the
training set to predict the efficiency loss in the rest of the
cycles. We call this model the “Distance” model. The second
model is even simpler—we just predict that the efficiency loss
in the rest of the cycles will be the same as the average
efficiency loss in the training set. We call this model the
“Fixed” model. Table I shows the error percentage between
predicted and measured average buffer occupancies for the
three models using different training sets from the third run in
Table II. We can see that our model significantly outperforms
the simple Fixed model in that the errors are much smaller.
The performance of the Distance model, on the other hand,
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Fig. 7. The estimated conditional probability densities of efficiency loss
under several different modeled path losses for the load (left) and deliver
(right) stages. The general quality of the prediction is fairly good, as can
be seen from the high concentration of probability mass around the
peaks in most curves. However, the precision of the prediction does drop
as modeled path loss increases.



is fairly close to that of our model. Furthermore, although
our model usually performs better, we do see a situation as
shown in the last training set where distance does a better job.
This conforms with the wide-accepted intuition that distance
is the most important factor in determining the performance
of a wireless link. However, its performance is less robust
across different training sets. The error can be quite significant
sometimes, as shown by the first training in Table I. We believe
that this is because of its failure of taking elevation angles into
accounts in this case.

V. CONCLUSION

In this paper, we presented the load-carry-and-deliver
(LCAD) networking paradigm that is specially designed for
maximizing the throughput of UAV-relaying networks. One
necessary condition for throughput maximization in such
networks is having no overruns or underruns in the UAV
node’s buffer. To achieve throughput maximization in practice,
we will need a performance model for the communication
channel, so that we can adjust flight paths in order to minimize
the surplus or deficit. This is especially so for our case because
the COTS radios we used are not designed and engineered for
the rapid changing UAV networking environment.

By using model airplanes and IEEE 802.11g radios, we
performed several sets of experiments for the purpose of
evaluating LCAD performance, as well as collecting data for
deriving an empirical link performance model. The measured
performance suggests that the proposed LCAD paradigm can
be used to provide high throughput communication between
two ground nodes, as compared with the conventional multi-
hop, store-and-forward relay chain. The reason for such a
result is that we can schedule UAV’s transmissions to avoid
interference and medium access contention. The trade-off is
the higher packet delivery latency. We also showed that the
model we derived from several randomly selected training
subsets can predict the buffer occupancy of the rest of the data
set with small errors. This is an encouraging result because
it suggests COTS radio can potentially be used in LCAD
application scenarios.

In summary, the contributions we made in this paper in-
clude: (1) the design of a light-weight LCAD protocol; (2) the
analysis on a few fundamental necessary optimality conditions;
(3) UAV flight experiments and throughput measurements
for LCAD; (4) demonstrating LCAD’s throughput advantage
over conventional wireless multi-hop relay protocols; (5) an
empirical performance model for predicting the achievable
LCAD throughput for UAV networks; and (6) the feasibility of
using low-cost COTS radio for UAV networking applications.
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APPENDIX

In Table II, we report the performance and time duration for
each individual stage, as well as the UAV’s buffer occupancy
for each cycle, the cycle time Tcycle, and the overall through-
put. The packet error rate (the PER column) is computed
from number of packets sent and received in each stage.
The length of the stage in seconds is reported in the Tload

and Tdeliver columns. The dist column reports the average
distance in meters between transmitter and receiver during the
stage and is computed from the GPS log and ground nodes’
locations. lost and sent columns report the total number
of lost and sent packets in that stage. The last four columns
record the total number of packets delivered by the UAV
under LCAD (dlvd), the UAV’s buffer occupancy at the end
of the cycle (BO), the cycle time Tcycle, and the utilization.
The total number of packets delivered is computed by taking
the minimum between the number of packets received by
the UAV and that by DGN. Buffer occupancy records the
number of packets left in the buffer at the end of the cycle.
A number inside parentheses means that the UAV could have
sent that many more packets if the buffer were not depleted.
In other words, buffer underrun has occurred, and the number
quantifies the degree of underrun. To get a better sense of
throughput performance, we report the utilization in addition
to the packet delivery rate of the cycle. From the analysis of
collected traces, the average send rate from the transmitter
is at most 398 packets per second. For these reasons, the
reported utilization is calculated as packet delivery rate divided
by 400 packets per second. An average row is inserted into
the table after each run to report aggregated average distances
and the average utilization of all cycles in that particular run.



load stage deliver stage overall
cycle PER Tload dist. lost sent PER Tdeliver dist. lost sent dlvd BO Tcycle utilization (pkt/s)
1-1 0.4756 40.815 200 5340 11227 0.3445 32.192 168 4367 12675 5887 (2421) 73.007 0.2016 (80.636)
1-2 0.4143 40.819 198 4421 10672 0.3906 36.040 165 5518 14126 6251 (2357) 76.859 0.2033 (81.330)
1-3 0.4486 39.012 194 4351 9700 0.3081 35.014 165 4280 13890 5349 (4261) 74.026 0.1806 (72.259)
1-4 0.3891 41.016 191 4869 12514 0.1828 28.970 155 2103 11503 7645 (1755) 69.986 0.2731 (109.236)
1-5 0.4264 40.028 176 4840 11352 0.3808 29.980 169 4522 11875 6512 (841) 70.008 0.2325 (93.018)
1-6 0.3797 43.059 196 4987 13135 0.1939 29.995 163 2297 11845 8148 (1400) 73.054 0.2788 (111.534)
average 198 164 0.2283 ± 0.0369
2-1 0.1133 42.015 144 1870 16498 0.2486 28.963 140 2840 11422 8582 6046 70.977 0.3023 (120.912)
2-2 0.0658 38.026 130 970 14752 0.2771 24.981 122 2670 9635 6965 6817 63.008 0.2764 (110.542)
2-3 0.1186 33.009 122 1503 12675 0.4790 36.019 126 6766 14126 7360 3812 69.029 0.2666 (106.623)
2-4 0.1223 25.855 138 1245 10182 0.3509 22.130 149 3005 8563 5558 3379 47.985 0.2896 (115.829)
average 144 134 0.2837 ± 0.1345
3-1 0.2050 29.006 128 2126 10370 0.2572 22.038 149 2070 8048 5978 2266 51.044 0.2928 (117.115)
3-2 0.1273 30.008 117 1389 10908 0.1959 28.014 136 2022 10320 8298 1221 58.022 0.3575 (143.015)
3-3 0.0572 32.077 129 694 12135 0.2353 29.014 138 2502 10632 8130 3311 61.091 0.3327 (133.081)
3-4 0.0813 36.820 146 1140 14022 0.1885 27.041 142 1873 9938 8065 4817 63.861 0.3157 (126.289)
3-5 0.0606 32.070 133 735 12128 0.2985 24.065 135 2589 8673 6084 5309 56.135 0.2710 (108.382)
3-6 0.1180 31.833 128 1368 11597 0.2027 26.010 138 1940 9570 7630 2599 57.843 0.3298 (131.910)
3-7 0.0995 29.076 126 1057 10627 0.1856 28.010 132 1902 10250 8348 1222 57.086 0.3656 (146.236)
3-8 0.1544 30.009 131 1695 10980 0.3432 30.011 120 3767 10975 7208 2077 60.020 0.3002 (120.093)
3-9 0.1444 25.855 123 1379 9548 0.2564 22.020 149 2061 8039 5978 2191 47.876 0.3122 (124.865)
3-10 0.0995 31.009 126 1146 11512 0.2622 25.024 145 2381 9081 6700 3666 56.032 0.2989 (119.574)
average 129 138 0.3176 ± 0.0278

TABLE II
Performance summary of the 20 cycles from 3 test runs. The “cycle” column indicates the run and the sequence of the particular cycle in that run.
The “PER” column shows the overall packet error rates. The “dist.” column is the average distance between the UAV and ground nodes. The “lost”
and “sent” columns show the total number of packets lost and sent during that cycle, whereas the “dlvd” column is the total number of packets
delivered from SGN to DGN via UAV during that cycle. The “BO” column shows the UAV’s buffer occupancy at the end of that cycle (number in
parenthesis is deficit), and the “utilization” column is the normalized throughput based on the number of packets delivered and the length of the
cycle. The three “average” rows summarize the average distance and the average utilization for that particular run.
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