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ABSTRACT
We consider the problem of localizing wireless nodes in an out-
door, open-space environment, using ad-hoc radio ranging mea-
surements, e.g., 802.11. We cast these ranging measurements as
a set of distance constraints, thus forming an over-determined sys-
tem of equations suitable for non-linear least squares optimization.
However, ranging measurements are often subject to errors, in-
duced by multipath signals and variations in path loss, unreliable
hardware or antenna connectors, or imperfection in measurement
models. Such potentially large, non-Gaussian errors in the mea-
surement data ultimately produce inaccurate localization solutions.
We propose a new error-tolerant localization method, called snap-
inducing shaped residuals (SISR), to identify automatically “bad
nodes” and “bad links” arising from these errors, so that they re-
ceive less weight in the localization process. In particular, SISR
snaps “good nodes” to their accurate locations and gives less em-
phasis to other nodes. While the mathematical techniques used
by SISR are similar to robust statistics, SISR’s exploitation of the
snap-in effect in localization appears to be novel. We provide
analysis on the principle of SISR, illustrate errors in real-world
measurements, and demonstrate a working SISR implementation
in field experiments on a testbed of 37 wireless nodes, as well as
show the superior performance of SISR in simulation with a larger
number of nodes.
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1. INTRODUCTION
Power-based localization, which relies on range estimation via

received signal strength of RF signals, is convenient in ad hoc net-
works of wireless nodes. First, ad-hoc Wi-Fi-based localization is
infrastructure-free. It has advantages over infrastructure-based sys-
tems such as GPS, RFID and cellular telephone localization, when
these infrastructures are unavailable, provide insufficient accuracy,
or suffer from slow response times. Second, Wi-Fi hardware is al-
ready a standard part of many mobile electronic devices. Since lo-
calization using Wi-Fi ranging can utilize any Wi-Fi transmissions
(e.g., even IBSS beacons), in a sense, location information can be
derived for free. Often, stable Wi-Fi ranging measurements can be
quickly obtained from a modest number of packets, allowing for
faster localization (under a second). This is in contrast to GPS de-
vices which may suffer from much longer bootstrap delays, while
waiting to acquire satellite locks.

In this paper, we consider the problem of using 802.11 radio
ranging to localize ad-hoc nodes in an outdoor, open-space envi-
ronment. The solution is straightforward when the terrain is flat and
nodes can all hear each other well. However, this may not be the
case in real-word applications. For example, a node in a pit, with
a faulty antenna, or at the edge of radio range to other nodes may
cause large errors in ranging measurements due to a weak signal
from the node or received by the node. In addition, heterogeneous
radio equipment may also introduce inconsistency in measurement
errors. Such errors can create asymmetric ranging measurements
between nodes and, often, are non-Gaussian in nature. Just a few
such instances can drastically affect the proper use of a measure-
ment model and accuracy of a localization solution.

We propose a technique to cope with the presence of a rela-
tively small number of possibly large, non-Gaussian errors in rang-
ing measurements. The method, “least squares with snap-inducing
shaped residuals,” or snap-inducing shaped residuals (SISR) for
short, emphasizes those computed node locations which match well
with ranging measurements, while de-emphasizing others. That
is, localization based on SISR will favor those computed locations
which represent good matches for a majority of measurement data,
even if these locations may mean a large deviation from a minority.

2. POTENTIAL APPLICATIONS
We envision that outdoor ad-hoc localization could be well-suited

for a host of applications. There are at least five broad application
areas where outdoor ad-hoc localization can be naturally applied:
coordination, monitoring, tracking, auditing, and wireless routing.
We consider these in the context of outdoor areas that are large
enough such that localization is useful, but too small for accurate
GPS resolution; an example would be an area the size of a football
field.



First, outdoor ad-hoc localization could be useful in task coor-
dination. For example, security personnel assigned to an outdoor
concert arena could use each other’s location information to coordi-
nate the appropriate coverage of the area. Similarly, robots used for
exploration of urban areas, where tall buildings make the receipt of
GPS signals difficult, could be placed in a team such that tasks are
coordinated based on each team member’s location.

Second, location information can be integral to outdoor monitor-
ing applications. For example, an elder or child safety monitoring
system deployed in a backyard or park could use ad-hoc localiza-
tion to quickly pinpoint subjects in an emergency. Third, localiza-
tion can be used in tracking. For example, a directional speaker can
send beamformed music to a homeowner walking in her backyard
by tracking her position via a Wi-Fi transmitter she wears. In a
human speaker identification application, tracking the speaker’s lo-
cation allows the system to extract audio features of high SNR [13].
Monitoring and tracking can also encompass surveillance applica-
tions, where there are no expectations that the target be cooper-
ative. We posit that SISR could be used to locate intruders via
radio tomography, since human bodies significantly reflect radio
waves [24]. Consider nodes, deployed in an outdoor field, that are
constantly engaged in SISR localization; in the absence of a hu-
man body, the localization solution for these nodes are relatively
stable. When an intruder walks across the field, the localization so-
lution of nodes near the person will change significantly since er-
rors will be introduced in their radio ranging measurements. With
sufficient node density, it could be possible to track the intruder’s
path through the deployment.

Fourth, we consider auditing applications, which are a natural
extension of monitoring applications. An example would be in
work force management, where employees working outdoors would
be required to wear radio transceivers so that managers could audit
their locations at any moment. An alternative scenario would be in
red/blue team training exercises, whether in military applications
or in more sportive pursuits such as football, where the location
of team members over the course of the exercise is key to useful
post-game analysis.

Finally, accurate outdoor localization could be useful in many
mobile ad-hoc network (MANET) contexts. MANET routing pro-
tocols that rely on signal strength or packet delivery rates can suffer
from route flapping due to transient fades in signal or traffic loads.
In an outdoor environment, physical node location provides a more
stable estimate of link quality and can be used in geometry-aware or
geographic routing protocols. Localization information can also be
used to perform self-clustering to uncover cluster structures in an
ad-hoc network, enabling cluster-driven protocols [5, 12]. In future
work, we aim to apply our localization method to ad-hoc computing
clusters, where multiple directional antennas or optical transceivers
can be dynamically steered to maximize parallel throughput, when
given accurate localization solutions.

3. RELATED WORK
There is a large body of literature on the problem of extract-

ing geometry information from a network of wireless nodes, e.g.,
self-localization in wireless sensor networks. Existing solutions fall
into two major categories: range-free and range-based localization.
Typically, range-free localization methods [16, 9, 21, 20] utilize
node connectivity and hop-count information along with geometric
constraints to determine node locations. On the other hand, aiming
at providing more accurate localization results, range-based local-
ization methods [19, 18, 2] acquire pairwise distance measurements
between wireless nodes and use this information to derive a local-
ization solution. Typical range estimation (ranging) techniques in-

clude measuring time-of-arrival (TOA) or received signal strength
indications (RSSIs).

A major issue for range-based localization schemes is error in
distance (ranging) measurements. Whitehouse et al. [23] have in-
dicated that the errors of RSSI-based RF ranging do not follow
a Gaussian distribution, implying that conventional least squares
optimization schemes are particularly susceptible to such errors.
Without properly taking this into account, localization results can
be drastically altered or biased by only a few bad measurements.

Error mitigation in range-based wireless localization has recently
received some attention in the literature, with several groups propos-
ing iterative and incremental distributed localization algorithms.
Liu et al. [14] use an explicit error management approach to pre-
vent error propagation during incremental localization, and propose
a modified least-squares objective function that includes a pertur-
bation term such that the difference in measurement data can be
minimized in an average sense, resulting in less sensitivity to er-
rors. Other research efforts have taken a different tack, focusing
on identifying and exploiting rigid network topologies to defend
against flip and discontinuous flex ambiguities in a localization so-
lution [7, 15]. In this paper, we assume a dense network with a
large number constraints, where flip and flexing ambiguities are
less likely to happen.

Like SISR, other methods such as semidefinite programming
(SDP) [2] and multidimensional scaling (MDS) [21] have taken a
centralized approach to the localization problem. Centralized ap-
proaches can be adopted in ad-hoc networks with an additional
step of collecting data to a master node, but, in comparison with
distributed methods, have advantages such as fewer information
exchanges between individual nodes and more efficient computa-
tion. Reducing inter-node communication messages is especially
significant for a wireless ad-hoc network, since wireless medium is
shared. SDP maps the localization problem to a convex optimiza-
tion problem and is able to locate nodes in the presence of errors,
but does not consider discounting the outliers. Similarly, MDS-
based techniques are robust against some forms of measurement
errors. By replacing all-pairs ranging measurements with a multi-
hop shortest path distance, some of overestimated distances are ex-
cluded or reduced in the localization process. However, this strat-
egy does not perform well for non-convex topologies, where ends
of a curved topology can be deformed due to overestimation by the
shortest path distance. We will revisit this issue later in the paper.

The SISR estimator is similar to those found in “robust statis-
tics” [8, 10], the study of outlier rejection problems and techniques.
These methods have been used in image processing and pattern
recognition, for such applications as object velocity estimation from
a sequence of images [4], anisotropic diffusion [3], and bilateral fil-
tering [6]. Ultimately, robust estimation techniques share the same
goal as outlier detection methods [14]. They both aim at reducing
the effect of bad measurements on estimates, but take different ap-
proaches. Robust estimation starts from extracting coherent good
measurements and disregarding the outliers, while outlier detection
methods try to identify and remove individual outliers first. Note
that robust estimation can also identify outliers by their relatively
large residuals. However, robust estimation has the advantage that
finding a sufficient number of good measurements is usually easier
than picking out every individual outlier [11].

Although similar, the SISR estimator differs from those previ-
ously proposed in robust statistics in some important details of how
the residual function is shaped (see Section 5). These differences
make SISR localization results more accurate for snapped-in nodes
and also make the convergence of the method more robust. To our
knowledge, SISR appears to be the first work on applying robust
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Figure 1: Two possible localization solutions of nodes A, B, C,
and D, where D has large measurement errors. Squares indicate
the ground truth location; circles, the computed localization solu-
tion. (a) Solutions for A, B, C are very accurate, but that for D
is very inaccurate (magnitude “10”), since D’s measurement error
is not amortized over the other nodes. (b) The measurement error
from D is amortized over A, B, and C, causing them to be local-
ized with decreased accuracy (magnitude “1”).

statistics to localization. Specifically, we use “snap-in” of good
nodes as a localization objective. It appears that our use of the no-
tion of “snap-in” in the context of robust statistics is novel.

4. MOTIVATION OF THE SISR APPROACH
To illustrate the goal of SISR, consider a four node scenario

where nodes A, B and C incur small measurement errors on their
links, while node D incurs large errors. Thus, A, B and C are
“good nodes”, and D is a “bad node.” A localization method could
lead to one of the following two solutions, as shown in Figure 1:

• Solution UNEVEN , which localizes A, B and C accu-
rately, but misses D by a large margin.

• Solution EVEN , which localizes D with the same order
of accuracy as A, B, and C, but achieves this at the expense
of accurately locating A, B and C.

We prefer solution UNEVEN to EVEN, since D cannot be lo-
calized accurately in any case, given that its links have large mea-
surement errors. Moreover, since A, B, and C could potentially
be localized with great accuracy, a localization method that returns
solution UNEVEN ought to de-emphasize D’s measurements in
order to avoid polluting the localization solutions of A, B, and C.
A conventional least squares method would find solution EVEN,
since it does not differentiate between good and bad ranging mea-
surements.

Developing a localization method that can accurately locate “good
nodes” by discerning “bad nodes,” is the motivation behind our
work in SISR. An assumption we make throughout is that good
nodes will represent a majority of nodes. In Section 5.3, we will
show a break-down analysis on the maximum percentage of “bad
nodes” allowed. SISR makes a key modification to the conven-
tional least squares method: the residual function is shaped. Our
resulting snap-inducing shaped residuals (SISR) method is ca-
pable of differentiating between good and bad nodes automatically
and, consequently, is able to find the desired solution UNEVEN.
Furthermore, by applying the method iteratively, SISR can achieve
greater accuracy in localization for good nodes.

The failure mode that we consider in this work—that of the “bad
node”—differs from the typical failure mode found in the literature,
where individual directional links are assumed to experience rang-
ing errors determined by an error model that is independent and

identical across links. In practice, physical effects such as multi-
path phenomena, shadowing or even faulty hardware can produce
gross error that is insufficiently captured by such a single, link-
scope error model. In addition, such effects can give rise to cor-
related ranging errors (e.g., a node that has both faulty transmit
and receive antennas) which simple, unidirectional link error mod-
els cannot capture. The effects of these types of errors are not yet
well-understood and, to our knowledge, no localization methods
prior to SISR have been developed to specifically defend against
such errors.

5. SNAP-INDUCING SHAPED RESIDUALS
(SISR)

In this section we present a new kind of residual function for use
in optimization-based localization. We will say that the residual
function is snap-inducing due to its tendency to preserve residuals
smaller than some threshold, while diminishing the effect of the
larger ones. We give a theoretical analysis of the SISR estimator
and show that the properties of SISR can be explained by the theory
of robust statistics.

5.1 The SISR Estimator
The localization problem is typically framed as a non-linear least

squares optimization, where ranging measurements are used as con-
straints, and a best fit is sought to minimize squared residuals.
In the context of localization, the residual is defined as the dif-
ference between pairwise ranging measurements and the distances
estimated by the estimator. Eq (1) shows the mathematical formu-
lation of the residual r(i, j) from a ranging measurement between
nodes i and j.

r(i, j) = bdij − dij (1)

where bdij is the distance estimated by the least-squares estimator
and dij is the ranging measurement between the two nodes.

Conventional least squares works by minimizing an objective
function, which is the sum of squared residuals over all node pairs
(i, j):

F =
X
i,j

r(i, j)2 (2)

The squared residual function is shown in Figure 2. The least-
squares estimator is not robust to extremely noisy measurements
because the squared residual grows quadratically. To solve the
problem as well as produce the snapped-in effect for good nodes,
we propose a new snap-inducing shaped residual (SISR) estima-
tor, which has a shaping function that deemphasizes the influence
of bad nodes while emphasizing the good ones. The function is
sketched in Figure 2 and has the following two properties.

1. The shaping function increases with a smaller slope when
the residual is large. In particular, the function dampens the
impact of residuals larger than a threshold τ . We call this the
wing-shaped section.

2. The shaping function has a narrow and deep well for resid-
uals close to 0. The potential good measurements can there-
fore be emphasized by growing the shaped residuals or the
"cost function" more rapidly. This is called the U-shaped
section.

For the solutions EV EN and UNEV EN described in Section 4,
Property 1 punishes the former by amplifying the residuals in A,



B and C, while Property 2 forgives the latter by diminishing the
effect of the increased residual in D. This means SISR will favor
the desired solution UNEV EN .

The general form of the SISR shaping function is shown in Eq (3):

s(i, j) =


αr(i, j)2 if |r(i, j)| < τ
ln(|r(i, j)| − u)− v otherwise

(3)

where α, τ , u, and v are parameters to be configured.
Tuning the shape of the SISR function controls its sensitivity to

errors. The parameter α is introduced to control the height of the U-
shaped section, while τ controls its width. (Note that the "U" por-
tion has its x-axis values in the range [-τ , +τ ].) The wing-shaped
section is created by taking logarithms of the residuals larger than
τ . Note that in robust statistics literature, an almost flat function
is often used to produce similar robust behaviors (see, e.g., the
Lorentzian estimator in Figure 4c [10]). However, a flat objec-
tive function with zero slope would mean an arbitrary number of
possible solutions, so it could be difficult to handle numerically.
Numerical algorithms such as Levenberg-Marquardt require a non-
zero gradient of the objective function, and therefore we choose a
slowly increasing log function instead. In addition, we note that the
use of such an increasing function rather than a flat one will allow
good nodes to have more opportunities in finding better snapped-in
locations. Another common requirement for numerical methods is
that the objective function has to be continuous and differentiable.
To make the SISR function piecewise-continuous and piecewise-
differentiable at τ , the other two parameters u and v should have
the form shown in Eq (4) and (5), respectively.

u = τ − 1

2ατ
(4)

v = ln(
1

2ατ
)− ατ2 (5)

In short, the SISR function is controlled by two tunable param-
eters α and τ . The SISR estimator operates by minimizing the
objective function as the sum of the shaped residuals over all node
pairs (i, j).

F =
X
i,j

s(i, j) (6)

Note that the function for residuals greater than τ need not be
logarithmic; for example, we have found that radical functions (e.g.,
x1/2) exhibit the above desired characteristics as well. The trade-
off is in running time performance—flatter wings will generally in-
crease the time a numerical method takes to converge to a solution
while providing a larger domain of convergence.

In the SISR estimator setting a very small τ can lead to more
accurate localization results, but will also increase the likelihood of
falling into an incorrect local minimum. On the other hand, a more
permissive τ reduces this likelihood at the expense of localization
accuracy. In the extreme when τ approaches to infinity, SISR is
reduced to the conventional least-squares estimator. We can natu-
rally exploit this trade-off by performing multiple rounds of SISR
where τ is successively reduced in each round and the localization
solution of one round is used as the initial approximation for the
next (see Section 7.1).

5.2 Effect of Measurement Errors on SISR: A
Simple Illustrative Simulation

To provide some quick insight into how SISR manages mea-
surement errors, we consider a basic example where k nodes are
randomly deployed on a square field, and k(k − 1) pairwise rang-
ing measurements are available. Suppose only one of these rang-
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Figure 2: A comparison between the standard squared residual used
in conventional least squares and our shaped residual, as in Eq (3)
with α = 4, τ = 1 and with u and v as defined in (4) and (5). Note
that the shaped residual function is shaped like a "U" near 0 and
like "wings" for values larger than τ .

ing measurements has a different magnitude of measurement error.
Figure 3 shows, in simulation, how such errors affect conventional
least-squares localization and SISR localization.

In the simulation, we placed 20 nodes on a 100× 100 unit field.
The performance of the two localization methods is evaluated using
the average pairwise distance error for the k− 2 nodes that the bad
link is not incident on. We can see that the error obtained by least-
squares continues to grow with the increasing error in the bad link.
This is the standard least-squares behavior whereby large residuals
are reduced by increasing any other smaller residuals. In effect, the
bad link is causing the computed topology to flex, and so we call
this a flexed localization. The error bars are not shown for clarity;
however, the least-sqares result does have a large variance, because
not every randomly chosen bad link has the same ability to flex the
rest of the topology.

The SISR error behaves similarly up to a point. Specifically,
as long as the distortion in any given residual is smaller than the
threshold τ , according to (3), the residual’s contribution will be
same as least-squares. However, any distortions larger than τ will
contribute diminishing residuals, leaving the topology “snapped
into” its original shape; we can see this effect in Figure 3 as the
SISR error departs from the least-squares error. In fact, as the bad
link’s error grows, its effect on the rest of the nodes decreases—
this is because the larger the bad link’s residual, the less we can de-
crease it—and thereby deform the good links—before the net cost
starts to increase.

5.3 Analysis of SISR and Breakdown Points
Here, we give a theoretical analysis of the SISR estimator and

show how the snap-in effect emerges in SISR. Recall parameter τ
is introduced to control the estimator’s error sensitivity. τ is the
residual value at which the "U" portion of the shaping function
s(r) attains its maximum. The shaped residual at τ is denoted as
s(τ). To facilitate analysis, we introduce parameter η, defined as
the maximum shaped residual we expect to encounter in a given lo-
calization scenario. By denoting the maximum residual as rupper ,
then η = s(rupper). Since the wing portion of the SISR shaping
function is slowly increasing, we assume that the ratio of η to s(τ)
is a small positive constant value c > 1. That is, η = c · s(τ).
Generally, we can assume that the value of c is 2 to 3. In our sim-
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Figure 3: A simple illustrative experiment comparing localization
performance of least-squares vs SISR under exactly one erroneous
link. Each point is an average of 100 runs. The least-squares mean
error grows along with the input error, while the SISR result re-
mains “snapped” into place. (Note that localization error starts de-
scending when measurement error is beyond a certain level, due to
the decreasing slope of the "wings" portion of the SISR shaping
function.)

ulations, where τ = 0.25 and α = 80 and the largest expected
residual is 25m, c = 2.38. Even if we increase the largest expected
residual to 100m, c = 2.65.

We use the same scenario as in Section 5.2 where k nodes are
deployed on a field. Suppose that the ranging measurements for
all the k(k − 1) links are accurate, and that all k nodes have been
correctly localized without any error. That is, all the k(k− 1) links
have zero residuals.

Now suppose that a node nk changes its ranging measurements
with the other k − 1 nodes, with the change in each ranging mea-
surement being no more than rupper . We compare the estimation
of the two different estimators: the SISR estimator, and the least-
squares estimator. We refer to the localization solution using SISR
as snapped-in localization, and that using least-squares as flexed
localization.
(a) Snapped-in localization. All k nodes are snapped into
their original locations, i.e., there are no changes in their com-
puted locations. This means that distances between node nk and
the other k − 1 nodes no longer match the corresponding changed
ranging measurements. Thus, there is an increase in each of the
(k − 1) residuals by an amount no greater than rupper . In terms of
the shaped residual for each link, each increase is no more than
s(rupper), i.e., η. Thus, the total increase in shaped residuals,
∆rsnapped, must satisfy (7):

∆rsnapped ≤ (k − 1)η (7)

(b) Flexed localization. In this solution, we assume here that
all the k nodes change their locations by at least τ in distance, in or-
der to adjust to the changed ranging measurements involving node
nk. Furthermore, we assume that the location changes are not syn-
chronized in their directions, so each pair of the k nodes will ob-
serve a change in their distance by at least τ . Recall that only node
nk has changed its ranging measurements, and the ranging mea-
surements for pairs in all the other nodes remain unchanged. Thus,
each of these node pairs incurs an increase in its residual by at least
τ . In terms of shaped residuals, the increase is at least s(τ) or η/c.
Since there are (k − 1)(k − 1) ranging measurements subject to

Table 1: Lower Bounds for Breakdown Points of SISR
c 1 1.5 2 2.5 3
Breakdown pt. 50% 40% 33% 29% 25%

change, the total increase in shaped residuals satisfies (8):

∆rflexed ≥ (k − 1)2
η

c
(8)

Note that the condition for ∆rflexed > ∆rsnapped is:

k > c+ 1 (9)

Thus, when k is sufficiently large, snapped-in localization will in-
cur a smaller cost than flexed localization. This means that the
SISR estimator has the desired property that it will find the snapped-
in localization as a local minimum.

Following the same argument, we can also show that the snap-in
effect occurs when there are multiple nodes changing their rang-
ing measurements. In the case where p nodes change their rang-
ing measurements rather than only one node nk, ∆rflexed and
∆rsnapped can be shown to be:

∆rsnapped ≤ p(k − 1)η (10)

∆rflexed ≥ (k − p)(k − 1)
η

c
(11)

Suppose that b is the value of p at which ∆rflexed equals to
∆rsnapped. Then b is the breakdown point of SISR. If there are
more than b nodes that change their ranging measurements and the
changes can be arbitrarily large, then SISR can no longer snap into
the correct location. By equating the bounds of (10) and (11), we
can solve for a lower bound on the breakdown point:

b ≥ k

1 + c
. (12)

From (12), we note that, under the model of our analysis, SISR can
snap-in to good nodes, as long as the percentage of bad nodes is
under k/(1 + c). When c is close to 1, i.e., the wing portion of
the SISR shaping function is almost flat, SISR can tolerate approx-
imately 50% nodes being bad. Since no estimator can tolerate more
than 50% bad measurements, we can conclude that in that case the
breakdown point is exactly at 50%. In our formulation with a loga-
rithmic wing portion, c is typically 2 to 3, and the breakdown point
is 25% to 33%, or higher. Table 1 gives lower bounds on break-
down points for different c values.

Above, we assume that in flexed localization, all nodes flex to
minimize the total residuals. This assumption can be relaxed. For
example, our argument still holds by requiring only a sub-linear
number f(k) of nodes to flex rather than all k nodes, as long as
f(k) is a monotonically increasing function, e.g., f(k) = log k or√
k. Further, we note that for random node placements, location

changes under least squares optimization are indeed generally not
synchronized in their directions (see Figure 3), as we assumed in
the analysis.

5.4 SISR and Robust Statistics
The SISR estimator can be viewed under the lens of robust statis-

tics, a theoretical framework concerned with the outlier rejection
problem in statistical analysis. Outliers can bias the final outcome
of an estimator, lead to incorrect conclusions, and are usually hard
to filter out—especially when different outliers of different magni-
tudes are present. Estimators which suffer in the presence of out-
liers are mean and least squares, in the sense that the estimation can
be altered without bound by an extremely noisy outlier. In contrast,



the median estimator is not as susceptible to such polluting data,
and is considered a robust estimator.

To assess the robustness of an estimator, an associated influence
function can be used to characterize the importance of individual
data samples [8]. A smaller absolute value in the influence function
means the data receives less weight in the estimation. The influence
function is proportional to the derivative of the estimator. For ex-
ample, Figures 4a and 4b show the least-squares estimator and its
influence function. The influence function grows linearly with the
residual of a sample and, as a result, a single noisy data sample
can have extreme effect on the estimator. On the other hand, the
Lorentzian estimator [8] , shown in Figure 4c, has a redescending
influence function, shown in Figure 4d. The function approaches
0 for large residuals, and thus data with large residuals have dimin-
ishing effects on the estimator. Such estimators are less sensitive to
gross errors.

The SISR estimator and its influence function are illustrated in
Figures 4e and 4f, respectively. The influence function has a re-
descending shape similar to that of the Lorentzian, and we know
SISR is also a robust estimator. SISR departs from the Lorentzian
in that SISR can take advantage of certain special assumptions on
the structure of underlying data samples. In the context of localiza-
tion, SISR works best when the pairwise distance measurements
are either close to 100% accurate or far off. To address this sce-
nario, SISR uses a residual shaping function which has a narrower
center well and flatter wings at the two ends. With such a shap-
ing function, SISR can ignore the bad data and stick with the good
measurements. The flatter wings also give SISR a higher break-
down point than the Lorentzian because of a smaller c value. Our
experimental results in Section 8 show that SISR indeed gives bet-
ter localization estimates than the Lorentzian estimator.

Applying SISR to two-dimensional (2D) node localization prob-
lems is particularly attractive because of its snap-in effect. Nodes
situated on a 2D space are constrained by geometry and thus have
less freedom to move than nodes in a higher dimensional space. In
other words, the number of good measurements needed by SISR to
produce the “snapped-in” effect in 2D is fewer. This benefit can
be seen in the theoretical analysis on SISR breakdown points. As
noted earlier, under the model used in our analysis SISR can toler-
ate as much as 50% of total measurements being in error.

6. EVALUATION METHODOLOGY
We evaluate SISR localization efficacy against that of an opti-

mized variant of multidimensional scaling—MDS-MAP(C,R) [21].
A key advance in MDS-MAP is the replacement of the ranging
measurement matrix with a “proximity matrix” P , where pij is the
shortest path distance between nodes i and j. This mitigates (a
common) ranging error where distances between nodes are over-
estimated and, in multi-hop topologies, provides a proxy ranging
estimate for node pairs that are not within communication range.
MDS-MAP(C,R) further develops this innovation by performing a
weighted least squares refinement of a classic MDS-MAP solution,
where the weights are inversely proportional to the number of hops
in the shortest path. This strategy dampens the effect of long-range
estimates, which are more susceptible to errors, but makes the blan-
ket assumption that such estimates are always less trustworthy. In
contrast, SISR can discern between good and bad ranging measure-
ments and automatically weigh down those that are bad.

In general, MDS-MAP is an effective method for multi-hop lo-
calization. However, for certain non-convex multi-hop topologies
the shortest path distance gives rise to errors in localization, which
is a known limitation [22, 1]. For example, in the “C” topology in
Figure 5a, the true distance between nodes at the ends of the “C” is
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Figure 5: (a) A non-convex “C”-shaped topology with 147
randomly-placed nodes within a 100m × 100m bounding area.
Topologies such as these were used as ground truth in simulations
described in Section 7. (b) The corresponding MDS-MAP(C,R) so-
lution. Deformation in the ends of the “C” are clearly visible. (c)
The corresponding SISR solution, which corrects for the deforma-
tion, even when ranging errors are present.

much smaller than the shortest path distance. On such a topology,
MDS-MAP causes the ends of the “C” to repel (Figure 5b), and
ranging errors further exacerbate the problem. For this reason, we
focus on these difficult non-convex topologies in our simulations.

Even for such topologies, given a reasonably good initial ap-
proximation SISR can arrive at a very accurate localization solution
for nodes that have good ranging measurements. Since the MDS-
MAP(C,R) method does not depend on an initial approximation,
its result is a good candidate for the initial approximation to SISR.
Therefore, we use it as such in our simulations.

The most natural way to evaluate the performance of these algo-
rithms is through an absolute localization error metric, i.e., the
discrepancy between a node’s computed location and its ground
truth location. However, the formulation of SISR we have pre-



sented thus far is an anchor-free, relative localization scheme; it
depends only on pairwise distance measurements and does not re-
turn its results in the same coordinate system as the ground truth.
The core MDS-MAP(C,R) algorithm is also such a scheme.

In order to report absolute localization error, we modified both
algorithms slightly to employ the ground truth locations of four an-
chor nodes. As in [21], the anchors are randomly selected. For
MDS-MAP(C,R), the solution returned by classic MDS-MAP is
first transformed (via rotation, translation and reflection) into the
ground truth coordinate system by fitting the anchors to their ground
truth locations. This provides a better-conditioned initial solution
to the subsequent refinement stage, where the anchor locations are
further used as additional, fixed-constraint equations passed to the
weighted least squares process. This forces the least squares op-
eration to respect the ground truth coordinate system. The same
technique is employed in providing constraint equations to SISR.
Note that the way we use anchor information is different from the
method in [21], where the final localization solution is fitted to the
ground truth via anchors. Since we postulate the availability of an-
chor information, it makes sense to take advantage of it during the
localization procedure.

In 2D localization, three anchors are sufficient, but their random
selection can cause ambiguities during coordinate system fitting
(e.g., if the three anchors are almost collinear). In [21], a fourth
anchor is used to reduce the ambiguity, but there is no guarantee
that this will always work. Thus, a question arises: what criteria
describe a good set of anchors? First, they must be well-separated.
Second, the angles between any pair must not be near zero. We
note that, in its anchor-free, relative localization formulation, SISR
can be used to bootstrap an absolute localization by providing hints
as to which nodes satisfy these two criteria: (1) SISR’s snapped-in
effect allows accurately localized nodes to be distinguished by their
low residuals, and (2) we can distinguish which among these low-
residual nodes are well-separated in the relative localization solu-
tion. However, for fairness in comparison with MDS-MAP(C,R),
we do not employ this method in our evaluations below.

7. SIMULATION RESULTS
In our first set of simulations, we examine how much SISR can

improve upon MDS-MAP(C,R) in non-convex, “C”-shaped topo-
logies, under various error conditions. Given a topology and set
of error conditions, we first compute the MDS-MAP(C,R) local-
ization solution. This is then used as an initial approximation for
SISR localization. Finally, we compare the accuracy of the solu-
tions from the two methods.

For each trial, we generate a topology where 147 nodes1 are
placed uniformly at random within a “C”-shaped region in a bound-
ing area of 100m× 100m. An example of such a topology is shown
in Figure 5a. Each node has a simulated radio range of 16.5m,
which results in a multi-hop topology.

Each trial is also described by two experiment conditions gov-
erning error. The first condition is the percentage of “bad nodes”
within the population (0%, 10%, 20%, 30%, 40%, 50%). A node
is assigned to either a “good” population, in which case it has no
ranging error, or a “bad” population, when it experiences ranging
error ε ∼ N(µbad, 0.2µbad). The second condition is µbad (5%,
10%, 20%, 30%, 40%, 50%). Note that a “bad node” has ranging
error only from itself to other nodes and not vice versa; this results
in asymmetric range measurements, a more realistic scenario.

1We chose 147 nodes to maintain the same node density in
the “C”-shaped region as 196 nodes placed in a regular grid
pattern in the same area.

We have 36 combinations across the two experiment conditions,
for a total of 36 simulations. Each simulation consisted of 20 trials
on distinct topologies. The average median absolute localization
errors are shown Figure 6. First, consider the results in Figure 6a,
where MDS-MAP(C,R) is shown to be relatively insensitive to all
values of ranging error, when the percentage of “bad nodes” is low
(<30%), but never gives particularly accurate results. All MDS-
MAP(C,R) solutions had at least 2m error, even when there are no
“bad nodes” in the population.

In contrast to MDS-MAP(C,R), SISR is capable of providing
much more accurate results—less than 2m error—when the per-
centage of “bad nodes” is less than 30%, as shown in Figure 6b. For
these conditions, due to (1) the “snap-in” behavior of SISR, (2) the
fact that “good nodes” have no measurement error, and (3) a good
initial approximation afforded by MDS-MAP(C,R), the resulting
localization solution is not significantly affected by the magnitude
of the ranging error. Of course, in a real setting, we cannot expect
“good nodes” to be absolutely correct in their range estimates; we
will explore one such real setting in Section 8, where we describe
our field experiments.

The simulation results above are consistent with our analysis of
the SISR estimator’s breakdown point in Section 5.3. For τ = 0.25
and α = 80, as used in our simulation, the breakdown point for a
fully-connected network should be approximately 30% or higher.
However, our simulated “C”-topologies were not fully-connected
but multihop. Thus, the calculated 30% breakdown point is an up-
per bound for our simulation scenarios, which agrees with the data
presented in Figure 6b.

7.1 Iterative Refinement with SISR
Decreasing τ can improve SlSR’s accuracy in locating good nodes,

provided that good initial approximations are available. This means
that we can perform iterative refinement by successively decreas-
ing values of τ . To evaluate the effectiveness of iteratively refining
τ , we perform the following simulation: 38 nodes are randomly
placed within a “C”-shaped topology within a bounding area of
50m × 50m (radio range is 16.5m), giving the same node density
as in our previous simulations. Bad nodes are assigned ranging
measurement error ε ∼ N(0.5, 0.1), with a different percentage
of bad nodes across three experiments (10%, 30%, 50%). τ is ini-
tially set at 5m (α = 1/τ2, so that the height of the “U”-shaped
region does not change). SISR is then run for 10 iterations, with
τ decreasing by 25% each iteration. As before, the first iteration
is given the result of MDS-MAP(C,R) as its initial approximation.
Note that with fewer nodes (as compared to the previous simula-
tions), the optimization problem is actually more difficult, since
there are fewer constraints.

Figure 7 shows the result of this simulation. Each data point is
the average median localization error in meters over 10 trials. Note
that as we decrease τ , the accuracy of the localization improves.
For 10% bad nodes, SISR already localizes with high accuracy,
even when τ = 5m. The improvement is greatest for 30% bad
nodes, where there is room for improvement by SISR and the frac-
tion of bad nodes is under SISR’s breakdown point. The improve-
ment is not as marked for 50% bad nodes, as the high number of
bad nodes places a fundamental limit on the localization accuracy.

In this simulation, we arbitrarily chose to decrease τ by 25%
per iteration for simplicity. In practice, this rate could be tuned by
keeping track of the number of low-residual nodes from iteration
to iteration (i.e., nodes that snapped-in). In the event that, from
one iteration to the next, a large number of these nodes suddenly
exhibit higher residuals, it is likely that the reduction rate of τ was
too aggressive and that it should be scaled back.
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Figure 6: A comparison of the accuracy of (a) MDS-MAP(C,R) and (b) SISR. Topologies were generated with 147 nodes placed uniformly
at random in a “C”-shape within a 100m × 100m bounding area. For each experiment, a different percentage of nodes were simulated as
“bad”, i.e., experiencing ranging errors. We vary the magnitude of the ranging error and compare the average median absolute localization
error returned by the different methods (20 trials per data point; error bars show one standard deviation). Compared to MDS-MAP(C,R),
SISR gives less error in the solution when the percentage of “bad nodes” is < 30%, due to the “snapped-in” effect.
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Figure 7: Iterative refinement of localization solutions by gradu-
ally decreasing τ gives improved accuracy. Each curve is a sep-
arate experimental condition, differing in the percentage of nodes
in the population with ranging errors of 50% (10%, 30%, 50% bad
nodes).

Similarly, in this simulation, we arbitrarily terminated the τ re-
finement after 10 iterations. In theory, we could have further re-
duced τ to produce even better results, since the “good nodes” ex-
perience no ranging error. However, in a real-world setting, the ac-
curacy of range measurements on “good nodes” establishes a lower
bound on τ (i.e., we cannot expect better performance than our best
measurements). Thus, the iterative approach provides a way of tun-
ing τ to the optimal level—when the localization solution no longer
improves (as measured by the residuals of the nodes), we know we
have reached an optimal value for τ .

8. FIELD EXPERIMENT AND RESULTS
In this section we describe a localization experiment using ac-

tual 802.11 radios in an outdoor environment. The goal of this

experiment was to validate SISR localization on measurement data
collected with real systems and radios as well as study the cause
and nature of measurement errors in real-world scenarios (see fur-
ther discussion in Section 9). We first describe our experimental
methodology and then compare the localization results returned by
MDS-MAP(C,R), the Lorentzian estimator, and SISR. To achieve
a fair comparison between the Lorentzian and SISR estimators, we
applied iterative refinement to each. As we will see, SISR effec-
tively mitigates the effect of bad nodes and achieves significant
performance gains over MDS-MAP(C,R) and the Lorentzian es-
timator.

8.1 Experimental Setup
For our experiment site, we chose a flat grass field with no major

buildings or other obstacles nearby, and only faint ambient bea-
coning traffic from some 802.11 access points in the environment.
Given the non-negligible effect of objects on link quality [12], we
ensured that the area under measurement was clear of personnel and
all items other than power cables. We deployed two types of nodes
in our outdoor testbed: 21 One Laptop Per Child (OLPC) comput-
ers, which contain an x86-compatible AMD processor, and 16 Mo-
bile Internet Devices (MIDs), which are based on the Intel Atom
chipset. Both run Linux and have Marvell 802.11b/g radios inter-
nally (SDIO-based SD8686 for MID, USB-based 8388 for OLPC).
We placed the radios into ad-hoc mode, but were unable to disable
802.11 beaconing and IBSS formation; however, the beacons were
relatively infrequent and did not pose significant interference. To
obtain ranging measurements, we modified the Linux kernel to pro-
vide Received Signal Strength Indicator (RSSI) values as metadata
alongside any received UDP packets.

We performed a series of basic one-way signal strength measure-
ment operations between pairs of nodes as follows. One node of
the pair would transmit for a relatively long period of time, broad-
casting a stream of 4-byte UDP probe packets at the 2Mbps mod-
ulation and on 802.11 channel 4. The receiver node would listen
for these probe packets, logging each packet’s transmitter address
and RSSI. Note that it is convenient to perform these basic mea-
surement operations in parallel, by having multiple receivers cap-
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ture a single transmitter’s probes. Due to environmental effects,
RSSI measurements may be subject to fading. Further, the radio
adapters’ RSSI reporting mechanism is undocumented, and may
report values which deviate from the actual received power. There-
fore, in order to obtain a more reliable RSSI estimate, we use a
simple windowing heuristic to filter the RSSI data. For node i re-
ceiving from node j, we take n total RSSI samples, divide these
into w consecutive windows, take the maximum RSSI value in the
window and then take the median of these values to be the “repre-
sentative” RSSI of transmissions from node j. The more samples
taken, the more accurate the representative RSSI. From our field
data, we have found that the RSSI heuristic converges in as few
as 1000 packets (∼ 300ms transmission time), suggesting that the
wireless ranging approach we have adopted can be done quickly.

8.2 RSSI-Distance Models
To convert RSSI into range measurements, we chose a path-

loss model based on the well-known two-ray propagation [17], and
trained it via field measurements. Since all of the links we encoun-
tered during the experiment campaign had a much smaller height
than length, they operated in the 1/d4 regime of two-ray propaga-
tion where d denotes the communication distance. Thus, we used
the following simple expression for the RSSI-distance model:

RSSI(d) = 10 log10(da) + b (13)

for some constants a and b. We trained the model separately for
the four combinations of transmitters and receivers possible with
two node types, that is, MID–MID, MID–OLPC, OLPC–MID, and
OLPC–OLPC. The height was uniform per node type, so we dropped
it from the standard two-ray model and let its effect become sub-
sumed in the parameter b. We performed the training on the same
field as the localization measurements, but in different locations;
namely, using two nodes, we placed one node (receiver) at 20 points
along a straight line, ranging in distance between 0 and 23 meters,
while keeping the other node (transmitter) static. A logarithmic
spacing was used in placing the 20 points. The resulting measure-
ments and model parameters are shown in Figure 8.

8.3 Pairwise Measurements in the Field
We arranged the 37 testbed nodes (Figure 9) into a “C”-topology,

within a 25m × 25m square region. This area is larger than the

Figure 9: Photo of outdoor testbed with 21 OLPCs (upper left)
and 16 MIDs (lower left). These nodes are configured in a “C”
topology, on a 25m × 25m open field (right).
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Figure 10: Connectivity maps of the outdoor testbed (a) amongst
only OLPCs (squares), (b) amongst only MIDs (circles), and (c)
amongst both. Generally, a “C”-topology is exhibited in these
maps.

broadcast domain of nodes placed flat on the ground (the diago-
nal, at ∼36m, is well beyond transmission range). With the nodes
placed uniformly at random, we expect that each node can only
connect to a subset of the other nodes. With the two types of nodes
used, there are four possible types of links: OLPC-OLPC, MID-
MID, MID-OLPC, and OLPC-MID.

To get a sense of the network connectivity, we plot links be-
tween node pairs, according to link type: Figure 10a shows links
between OLPCs, 10b shows links between MIDs, and 10c shows
links between both (ignoring directionality). MID-MID links are
sparser than the others, while OLPCs generally enjoy better con-
nectivity with other OLPCs. This is likely due to OLPC antennas
being vertically-oriented and 8cm above the ground, whereas MID
antennas are inside the machine enclosure and less than 2.5cm off
the ground. We can visually confirm that the network, though not
strictly a “C”-topology as depicted in Figure 5a, is indeed “C”-like
and not fully-connected.

We measured the signal strength of 1332 (= 37×36) transmitter-
receiver combinations (666 pairs, in both directions). We present
this data in Figure 11, shown separately for each link type, and
together with the corresponding link model.

8.4 Localization Experiment
The pairwise ranging measurements described above were then

fed into each of the three localization methods. First, we per-
formed MDS-MAP(C,R), the results of which were then used by
the Lorentzian estimator and SISR as initial approximations. For
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Figure 11: Pairwise signal strength measurements from a 37-node 2D localization scenario (Sec 8.3) superimposed on the RSSI-distance
model with its training data. There are four separate figures, one for each possible transmitter and receiver type combination.

these latter two methods, we performed iterative refinement to ob-
tain optimal tuning parameters, as described in Section 7.1. With
the Lorentzian (recall Figure 4c and 4d), we started with σ = 1.0
and reduced it by 25% every iteration. With SISR, we initialized
τ = 5.0m and similarly reduced it by 25% every iteration. Optimal
refinement was achieved after four iterations with the Lorentzian
and five with SISR.

Of the nodes in our testbed, we noticed that the MIDs, when
communicating amongst themselves, tended to deviate from the
MID-MID RSSI-distance model significantly. As discussed in Sec-
tion 9, this is partly due to MIDs’ low-profile antennas sitting just
above the ground. This means MID-MID connectivity is more sen-
sitive to antenna orientations and terrain variations. As a result, this
subset of MID-MID links introduce a significant amount of errors
into the ranging measurements based on the RSSI-distance model,
and represents a good test scenario in which to compare the local-
ization performance of SISR to that of MDS-MAP(C,R) and the
Lorentzian estimator. Deviations of a trained RSSI-distance model
from a specific device and application environment at hand repre-
sent a major source of ranging errors. This is an important issue
that we will discuss further in Section 9.

Figure 12 shows the ground truth locations of OLPCs (squares)
and MIDs (circles) in our field experiment. The lines emanating
from the ground truth locations are the absolute localization error
vectors. Each one terminates at the localization solution for a node
given by each of the methods, respectively: SISR (red), Lorentzian
(grey), and MDS-MAP(C,R) (blue). Figure 12 visually verifies that
nodes are, on the whole, more accurately localized by SISR. Note
that the SISR error vectors are typically shorter for OLPC nodes,
but longer for MIDs. This is consistent with our analysis of the
behavior of SISR: since the MIDs did not fit the MID-MID RSSI-
distance model well, their ranging measurements had large errors
and, as a result, SISR dampened their effect on the localization
solutions of the other “good” nodes, while allowing the MID solu-
tions to retain high residuals.

Specifically, SISR gives a median absolute localization error of
2.13m, which is lower than that of the Lorentzian (3.12m) and
MDS-MAP(C,R) (5.00m). The CDF of absolute localization er-
ror across nodes in Figure 13 shows that SISR (red) gives signif-
icantly more accurate solutions to a greater fraction of nodes than
the other two methods. For example, with SISR, roughly 67% of
nodes have 3m error or less. In contrast, only 53% and 33% of
nodes achieve the same accuracy under the Lorentzian and MDS-
MAP(C,R), respectively. Suppose we examine only the localiza-
tion performance for OLPC nodes, which incur smaller errors in
ranging than MID nodes. Then, SISR outperforms the other two
methods by even larger (relative) margins: SISR gives 0.97m me-
dian absolute localization error, whereas Lorentzian gives 1.21m,
and MDS-MAP (C,R) gives 1.96m. These results are expected,
as SISR favors nodes which have better measurements. In fact,
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Figure 12: SISR (red), Lorentzian (grey) and MDS-MAP(C,R)
(blue) localization error vectors. OLPC (square) and MID (circle)
ground truth locations were arranged in a C-like topology. The me-
dian absolute localization errors are: SISR = 2.13m, Lorentzian
= 3.13m, MDS-MAP(C,R) = 5.00m. SISR outperforms both
Lorentzian and MDS-MAP(C,R).

SISR’s performance in this case is close to the best possible, given
that OLPCs have inherent errors in ranging with a mean magnitude
of 1.91m (Figure 11a).

It is interesting to note that the Lorentzian CDF curve eventually
crosses the SISR curve. This is also expected behavior—once SISR
has snapped in all the “good” nodes, the “bad” ones will remain
bad. This results in a steep initial rise in the CDF curve, but a long
tail, just as we see in Figure 13. In contrast, the Lorentzian is more
permissive of the effect of “bad” nodes on the overall solution,
which leads to generally higher error for the “good” nodes (shal-
lowly rising curve), but relatively less error for the “bad” nodes
(hence, the cross-over point). This shows that not all robust esti-
mators solve the localization problem equally well and that SISR is
particularly suited for the task.

9. PRACTICAL CONSIDERATIONS ON
MODELING AND MEASUREMENT

Earlier we saw in Figure 11 that the pairwise measurements de-
viate in various ways from the training data sets and the derived
RSSI-distance models. The reasons for the deviations could be
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non-flat ground surface, asymmetric antenna patterns, the effect of
objects in the measurement area, or manufacturing variation. We
will discuss these in turn.

Ground Curvature. The two-ray propagation model assumes
a perfectly flat ground surface. Given our nodes’ proximity to the
ground (especially, MIDs), even small deviations from a flat surface
may have significant impact on measurements. To verify this effect,
we performed additional training measurements for a MID-MID
and OLPC-MID link, along four straight, parallel paths crossing
the field at 7.6m intervals; for each of these paths we determined
the curvature of the ground by measuring the height of a horizontal
laser beam at 16 points along each path. The resulting data sets–
omitted here to save space–turn out to exhibit a decrease in signal
strength corresponding to “hills” in the line-of-sight signal path,
and vice-versa.

The effect of curvature is less severe for the OLPC-MID link,
because the height of the hills in the signal paths—up to 7cm,
and largely around 2cm—is smaller than the height of the OLPC
antennas—8cm. Therefore, higher-mounted antennas are benefi-
cial not only for improved radio range, but also smaller modeling
errors.

Asymmetric Antenna Patterns. To gauge the effect of
antenna patterns, we repeated one of the MID-MID training runs
with both devices rotated by 90◦ in the ground plane; the resulting
data set is shown in Figure 14 together with the original one. We
see that antenna orientation has a consistent and significant effect
on the strength of a MID-MID link. For nodes deployed in a 2D
space, it is unlikely for a node with a fixed antenna orientation to
match, that is, have maximal antenna gain to all its surrounding
neighbors. This means that it is inevitable that some node pairs
exhibit deviations from the RSSI-distance model, no matter how
accurate the model is.

Consider our “C”-shaped placements of MID nodes in Figure 10b,
where all MID nodes have their antennas point to the same direction
such that horizontally neighboring nodes can receive each other’s
signal well, while vertically neighboring nodes receive each other
worse. These configurations correspond to the two orientation sce-
narios from Figure 14. Roughly speaking, each node in any specific
sub-area of the “C”-shape region of the Figure 10b, such as an end
or elbow sub-region, will have some distinct number of matching
nodes within its radio reach. The total number of these matching
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Figure 14: Two MID-MID training data sets taken for the devices
oriented as in all the rest of the measurements, and rotated by 90◦.

node pairs will be substantially less than the number of all node
pairs, which is 16 × 15 = 240. The remainder of the node pairs
are expected to have lowered RSSI values.

Figure 11b indeed exhibits these expected behaviors in the sense
that only 70 node pairs have sufficiently large RSSI values which
lead to their inclusion in the plot. (Note that some of these points
overlap in the plot. This can happen especially with the two direc-
tions of the same link.) It is also instructive to note that in Fig-
ure 11b almost all node pairs exhibit RSSI values above the model
line, unlike other scenarios depicted in Figures 11a, 11c and 11d.
This illustrates the fact that models can not be perfect in spite of a
large amount of training.
Objects in the Measurement Area. Objects near the sig-
nal path may affect the link quality by either blocking a signal, or
providing additional signal paths through reflection. For example,
it has been noted in the field that it is possible for links to operate
only in the presence of a nearby person [12]. While we kept all per-
sonnel and unnecessary items away from the experiment area, there
were still objects such as power cables, power strips, or AC/DC
power adapters needed to operate the testbed which might have af-
fected link characteristics in similar ways, and were not present
during training runs.
Manufacturing Variation. Nodes are generally not physi-
cally identical; in the case of radios, for example, the connectors
and cables between the amplifier and the antenna typically have
variation up to some tolerance specified by the manufacturer. Fur-
thermore, variations outside of that range are possible due to de-
fects. For example, one of the nodes in our testbed turned out to
have half the average radio range, but only on reception. It is appar-
ent that a lengthy calibration of individual nodes would be needed
to account for such variation; in our case, we only performed the
model training measurements with a few of the available nodes.

In general, there are various environmental factors which con-
tribute to loss of model accuracy. Based on the preceding discus-
sion it seems it is possible to account for some of the factors by
adding detail to the link models, but at the cost of loss of mod-
els’ generality and lengthier training. Note that even if exhaustive
calibration of nodes is possible, it is often impractical, especially
in the field. In these situations, it could make more sense to use
error-tolerant localization methods, such as SISR, to address the
problem.



10. CONCLUSIONS
In this paper, we present SISR, an error-tolerant localization me-

thod for wireless nodes that employ RF ranging. Via analysis,
simulation and field experiments, we have demonstrated that our
SISR localization method can automatically tolerate errors in rang-
ing measurements by de-emphasizing bad data while accentuating
more accurate readings. In particular, SISR can accurately local-
ize difficult non-convex topologies, even in the presence of non-
Gaussian errors in ranging. Moreover, SISR’s tunable τ parameter
allows even higher accuracy in localizing good nodes via iterative
refinement. The principle and implementation of SISR are appli-
cable to other ranging methods that experience gross error, e.g.,
acoustic time-difference-of-arrival (TDOA). Due to limited space,
we have not presented our TDOA results here.

We should emphasize that, often, we cannot, and do not wish
to, train "perfect" RSSI-distance models for specific application
scenarios due to the time and effort involved and the desire for
more generic models. SISR is an error-tolerant localization method
which can cope with these imperfections in model-based ranging.

That SISR can discount “bad” nodes from the localization pro-
cess suggests that SISR is also robust against malicious nodes that
purposefully report erroneous ranging measurements. “Good” nodes
remain snapped-in to their locations while the malicious nodes suc-
ceed in ruining only their own localization solutions. But, as with
similar optimization techniques, SISR can fail when malicious nodes
compromise its initial approximation such that it is placed squarely
into an incorrect local minimum at the outset; in these situations,
methods which randomize initial approximations (e.g., simulated
annealing) can help optimizers break out of such local minima.

In the future, we plan to extend SISR to distributed and cluster-
aware localization, where local, reliable clusters would be localized
first, and later stitched together by using SISR on inter-cluster rang-
ing measurements. SISR also suggests a natural way of pruning bad
nodes from the network: by comparing the unshaped (conventional
least squares) residual of nodes, outliers can be rejected. Such node
discrimination may be critical to the performance of higher-level
network applications. Finally, we will consider using SISR in other
applications beyond localization, such as those traditionally studied
in the literature by robust statistics.
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