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Abstract

MapReduce job execution typically occurs in se-
quential phases of parallel steps. These phases can
experience unpredictable delays when available com-
puting and network capacities fluctuate or when there
are large disparities in inter-node communication de-
lays, as can occur on shared compute clouds. We
propose a pipeline-based scheduling strategy, called
speculative pipelining, which uses speculative prefetch-
ing and computing to minimize execution delays in
subsequent stages due to varying resource availability.
Our proposed method can mask the time required to
perform speculative operations by overlapping with
other ongoing operations. We introduce the notion
of “open-option” prefetching, which, via coding tech-
niques, allows speculative prefetching to begin even
before knowing exactly which input will be needed.
On a compute cloud testbed, we apply speculative
pipelining to the Hadoop sorting benchmark and show
that sorting time is shortened significantly.

1. Introduction

The drive to provide large-scale computing and
storage resources as well as lower data center oper-
ating costs has led to cloud computing infrastructures,
where big compute jobs belonging to different users
can be statistically multiplexed to maximize resource
utilization (see, e.g., [1], [2]). As these services have
come online, new programming models tailored to
the compute cloud have evolved in tandem. Appli-
cations using MapReduce [3], a programming model
for parallel data processing on large-scale commodity
computing clusters, have formed a significant category
on compute clouds like Amazon’s Elastic Compute
Cloud (EC2), where data center resources can be
rented by the hour. For the defense and intelligence
communities, compute cloud programming models like
MapReduce may be a cost-effective way for processing

the extremely high volume of sensor data streaming
from the tactical edge [4].

In MapReduce, work is decomposed by the appli-
cation developer into map and reduce tasks, which
are executed in several sequential phases of parallel
steps (Figure 1). While this is an elegantly simple
way to perform processing of arbitrary big data, exist-
ing implementations of MapReduce are predicated on
being hosted in private data centers (e.g., Google’s),
where a single administrative authority manages all
resource needs and consumption of computing and
network resources by unplanned competing applica-
tions can be minimized by fiat. As a result, some
fundamental design choices and assumptions on the
underlying resource pool in these implementations are
a mismatch for public shared compute clouds (e.g.,
Amazon EC2), where the resource availability can be
highly unpredictable due to varying competing loads.

First, in such cloud environments, resource shar-
ing among different users is the norm. MapReduce
implementations like Hadoop do not consider CPU
or network load due to other, exogenous applications
when scheduling tasks on worker nodes. This is a
problem in environments like EC2 because a vary-
ing number of virtual machines (VMs), belonging to
different users and encapsulating unknown workloads,
may be assigned to the same physical node over time.
Momentary spikes in CPU load from exogenous VMs
could result in uncontrollable and unpredictable varia-
tions in the performance of MapReduce tasks sharing
the same node. Across heterogeneous nodes, these
effects may even be magnified (e.g., if the load spike
occurs on a node with slower or already overloaded
hardware). This can lead to straggler MapReduce tasks
that can severely impede job progress [5]. Currently,
Hadoop identifies stragglers with a simple heuristic and
then starts a copy of the offending task on another node
in a process called speculative task execution. Timely
execution of such speculative tasks is critical to the
completion time of MapReduce jobs.



Second, data center network topologies are com-
monly multi-rooted trees [6]. These topologies are
intended to statistical multiplex traffic but have aggre-
gate bandwidth that may not scale proportionally as
the number of nodes increases. For instance, cross-
rack network capacity between Top-of-Rack (TOR)
switches, is usually lower than the bandwidth required
for peak cross-rack traffic, i.e., such links are oversub-
scribed. In general, the bisection bandwidth of such
topologies is limited by the bandwidth of core and
aggregation switches [7], and the available bandwidth
can vary, depending on competing traffic load. With
inadequate network bandwidth, I/O-intensive parallel
computations (e.g., some classes of jobs, such as
sorting) are I/O-bottlenecked, rendering them sensitive
to even slight variations in available network resources.

We seek to address these two issues. To mitigate
problems due to varying and unbalanced resource
availability in computation and I/O, we speculatively
execute future tasks using otherwise idle resources.
First, during compute-intensive phases of a MapRe-
duce job, we utilize an idle network to perform spec-
ulative prefetching of input data, overlapping com-
putation with I/O. Thus, in future pipeline stages, a
task’s input will be readily available as a result of
the prefetching. This is in contrast to the present
MapReduce approach of reactive data fetching [3],
which is limited in that the fetching occurs at arbitrary
points in time, causing an input delay for the associ-
ated computation. This delay can be substantial when
network resources are unavailable or severely limited.

Second, we wish to minimize the amount of cross-
rack traffic that is on the critical-path of a MapRe-
duce computation. During I/O-intensive phases of a
MapReduce job, we perform speculative computing to
increase the likelihood that map outputs will be rack-
local to subsequent reducers, thus decreasing cross-
rack network traffic. In other words, we trade addi-
tional computation, performed on otherwise idle CPUs,
for reduced cross-rack traffic. This optimization is
orthogonal to speculative prefetching, which hides I/O
time rather than reduces 1/O.

The optimization principles we present here are nei-
ther limited to the Hadoop implementation nor specific
to the MapReduce programming model and can be
considered as general optimization primitives. Taken
as a general speculative pipelining model, they can be
systematically and automatically used when compiling
programs written in higher-level languages, such as Pig
Latin [8], Sawzall [9] and LINQ [10], down to their
constituent distributed tasks.
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Figure 1: Hadoop job progress occurs over multiple nodes
in sequential phases: map, shuffle, sort+merge, reduce, and
commit.

2. MapReduce on Public Compute Clouds

Amazon EC2 is a public shared compute cloud,
where users can dynamically scale the number of
virtual machines (or “EC2 instances”) according to
their needs. Its infrastructure is organized into several
availability zones (AZs), each corresponding to a geo-
graphically distinct data center. The Amazon Elastic
MapReduce (EMR) service dynamically instantiates
EC2 instances within an AZ to form a Hadoop cluster
on-demand. Users can elect to start instances in a
specific AZ, but have no control over whether these
instances are physically located on the same machine
or rack. Within the EC2 environment, we performed
the following measurements to determine the extent to
which CPU and network resources fluctuate.

First, we show the frequency and severity of
stragglers by repeatedly running a compute-intensive
Hadoop job and logging completion time per task
on EMR clusters of 20 EC2 instances; the tasks are
computationally identical, so an instance that takes
longer to complete is easily identified as a straggler.
We create 20 new EC2 instances at the beginning of
each run and perform multiple runs in order to measure
different subsets of physical nodes within the same
data center, as EC2 instance placement is not directly
under user control. Over 10 trials conducted during
regular business hours, we discovered that 80% of tasks
took an average of 12.25 minutes to complete. The
remaining 20% were stragglers, taking an average of
18.42 minutes to complete — a 50% increase in task
completion time. The relatively frequent appearance
and severity of stragglers provides a clear case for our
speculative prefetching strategy.

Second, we evaluated the likelihood of stragglers
caused by network outages by repeatedly running
simultaneous TCP flows between 10 sender-receiver
pairs picked from a pool of 20 EC2 instances. As in the
compute-intensive experiments, at the start of each run,
we created 20 new EC2 instances. Each TCP flow was
offered unlimited load and lasted for 20 minutes; we



logged the reception progress every 100ms. Thus, over
100 runs we ran a total of 1000 TCP flows, and out
of those identified “straggling flows” as those where
the average throughput over some 60-second window
is smaller than a percentage « of that in the preceding
60-second window. We found that for o« = 50%, there
were 31 straggling flows, for o = 33% there were 3,
and for o = 25% there was 1, spread across 29 runs, 3
runs and 1 run, respectively. These figures demonstrate
a high likelihood of straggling events (e.g., 29 out of
the 100 runs experienced a 50% or greater slowdown
in one of their flows) which could be mitigated through
our speculative techniques.

3. Speculative Pipelining Overview

Here, we introduce the notion of speculative pipelin-
ing and describe in detail how the speculative pipelin-
ing approach is useful in cloud implementations of
MapReduce. In general, the goal is to use idle re-
sources, noticed at present or anticipated in the future,
to shorten the overall job completion time. We support
the case with two canonical MapReduce scenarios.

Speculative pipelining exploits the concept of over-
lapping I/O with computation. Consider a MapReduce
job whose map phase is much longer than the shuffle
phase, i.e., the job is compute-intensive. Such jobs
might perform statistical analysis, natural language
processing, or machine learning. Due to the process-
ing requirements, however, these jobs are sensitive to
slow nodes with overloaded CPUs; thus, speculative
execution will likely be invoked to re-run any slow
map tasks on different nodes.

Since the number of mapper tasks is usually many-
fold larger than number of nodes, only a fraction of
map tasks actively run at any given moment, while the
rest are enqueued. Any time a new “wave” of map
tasks starts executing, a mapper must fetch input from
a remote node whenever the data does not happen to
be on its the local disk, thereby incurring a delay.

A simple way to avoid the remote fetch delay con-
sists of using the idle I/O capacity during one wave of
map tasks to prefetch inputs for future map tasks. This
way, the cost of fetching the inputs can be masked by
nodes performing other useful compute tasks. Prefetch-
ing of this type can always shorten the job completion
time with or without variations in resource availability.
While Hadoop does not currently prefetch map inputs,
the technique has been studied previously [11]. Here,
we extend the notion of prefetching for the next wave
of map tasks to speculative prefetching and computing.

Straggler speculation

(a) Map phase without speculative prefetch

—~"_
Straggler speculation

(b) Map phase with speculative prefetch

Figure 2: A comparison of a map phase without (a) and with
(b) speculative prefetch.

3.1. Scenario 1: Speculative Prefetching for
Reducing Input Delay

Suppose that input data for the MapReduce task
is not stored redundantly. This is a common practice
when the MapReduce job is one of many in a chain
of jobs, so that its input data is ephemeral and the
previous job opts to store its output unreplicated for
performance reasons. As a result, in recovering from
a straggler, a speculative copy of a map task requires
input from a remote file system node, incurring a fetch
delay in addition to the re-execution time.

How could we avoid the fetch delay? Note that
the network during the CPU-heavy map phase is idle.
Thus, nodes can proactively create redundant copies of
input blocks for map tasks which are likely to become
stragglers, in anticipation of a speculative re-execution.
We call this operation speculative prefetching. If a
straggler node does appear, the re-executing node will
more likely have the input already on its local disk,
thus avoiding waiting for a fetch. However, should a
straggler not materialize, speculative prefetching does
not necessarily represent an additional time cost, pro-
vided that it overlaps with the node’s computation.

Information obtained from profiling, scheduling in-
formation, virtual machine load characteristics and
placement, etc. can be used to determine which nodes
are likely to become stragglers. Knowing this, we can
designate likely stragglers for speculative prefetching
and unlikely ones as re-execution nodes, thereby im-
prove the speculative prefetching hit rate.

3.1.1. Analysis. We demonstrate the advantage of
speculative prefetching via a simple analysis. Suppose
we have M map tasks across N compute nodes, and
e of these nodes are reserved for speculative task
execution. Suppose we also have S straggler map
tasks, which can only be identified as stragglers after



7 seconds (in Hadoop, 7 = 60 by default). We make
the following assumptions:

Al. M < N —, i.e., all map tasks are scheduled in
one wave and started simultaneously.

A2. S < ¢ ie., all stragglers are detected after 7
seconds and scheduled simultaneously.

A3. Input size is uniform across map tasks.

Without speculative prefetching, the map phase
completion time with S stragglers is Tstandard =
7+ 7T.+T,,, where T, is the time needed to copy the
input for the speculated tasks and 7, is the time for a
normal, non-straggling map task to finish (Figure 2a).
In contrast, with speculative prefetching, the map phase
completion time is

T+ T, ifT.<rt
T

prefetch =
T, +T, ifT.>r

as shown in Figure 2b. To completely overlap compu-
tation with I/O and to achieve full network utilization,
we set 7 = T,. Thus,

Tstandard 27 + Zrm
TpTefetch = T+ Tm-

For small 7,,, we can at most reduce the map
completion time by 50%. For compute-intensive tasks,
e.g., when 7 < T}, < 27, the reduction is by 25% to
33%, a smaller but still substantial improvement.

3.1.2. Open-option Speculative Prefetching. Let us
expand upon Scenario 1, in the context of a MapRe-
duce system with ¢ nodes, ni,no,...,n;, hosted on a
public shared compute cloud. Consider two map tasks:
t1, which operates on input data d;, and ts, which
operates on ds. Since it prefers data locality, the task
scheduler assigns ¢; to m; because it stores dy. For
similar reasons, to is assigned to ns.

If ny and ny experience some slow-down (e.g., due
to load external to MapReduce), ¢; and ¢y become
candidate stragglers. Under our speculative prefetch
strategy, we prefetch d; and ds to two other nodes,
where t; and ¢, will be speculatively re-executed. Now,
if ny recovers from the slow-down because its load
subsides, there is only one true straggler, ¢;. In this
situation, prefetching d» was a waste of bandwidth.

Ideally, we would like to prefetch only d;. However,
we cannot determine what to prefetch because we do
not know which task will turn out to be the true
straggler. Even when ¢; emerges as the true straggler,
since n; is a slow node, fetching d; from it may also
be slowed. The problem is thus two-fold: (1) how do

we ensure that we do not prefetch from a slow node;
and (2) can we prefetch something that is always of
benefit no matter which task is the true straggler?

Our solution, called open-option speculative
prefetching, derives inspiration from erasure coding
techniques used in RAID [12]. Briefly, if an erasure-
coded disk array contains d raw data blocks and k
coded blocks, then it can reconstruct the d raw data
blocks from a subset of the d + k blocks. For example,
using Reed-Solomon codes [13], if any k of the d + k
blocks are lost, the remaining blocks can be used to
reconstruct the d raw data blocks.

In our scenario, suppose in addition to having data
blocks d; and da, we also had a coded block c; 2 =
d1@®ds on node n3. Since ny turns out not to be a slow
node, ng can fetch ds quickly. With ds, ng can decode
c1,2 to yield dy, allowing it to run t;. This property
is symmetric: had ¢, been the true straggler instead,
c1,2 could be decoded with d; to obtain ds, allowing
to to run on n3. The coded block c; 2 on n3 has left
the option open for n3 to speculatively execute either
tq or to with reduced prefetching overhead. Hence, we
term this open-option speculative prefetching.

A simple alternative is to create replicas of each
data block, as is done in the Hadoop Distributed File
System (HDFS). This is reasonable if we are only con-
cerned with a few simultaneous stragglers. However,
to guard against k£ simultaneous node slow-downs,
we would need to maintain k replicas per block,
totaling d(k + 1) blocks. Clearly, this is impractical
as k increases. In contrast, open-option speculative
prefetching can protect against k£ slow-downs while
storing just d + k blocks using Reed-Solomon codes.
Note, however, that there is a trade-off between the
amount of data that needs to be fetched to decode
and the storage overhead of the encoding. For instance,
Reed-Solomon encodings require relatively little stor-
age (d + k blocks), but require d blocks to be fetched
to decode. We will explore efficient codes that strike
a balance in future work.

3.2. Scenario 2: Speculative Computing for
Reducing Cross-Rack Traffic

Suppose that a MapReduce input data set is stored
using triply redundant blocks—a common default
value in Hadoop installations. Furthermore, assume
that the MapReduce job is large enough to run on
nodes located in multiple racks. During the shuffle
phase, such groups of nodes will need to communicate
across shared links between Top-of-Rack switches,
causing them to act as bottlenecks.
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Figure 3: A two-rack network topology from Scenario 2. Two
groups of N/2 nodes each connect to a non-blocking switch
via rate R links. The inter-switch link runs at a different rate,
aR, where « is a constant typically greater than 1.

The shuffle phase can be sped up by eliminating
some traffic across the bottleneck link as follows.
Suppose that a reducer r requests intermediate data
from some mapper m in a remote rack. We assume that
this could not be avoided by running the reducer in the
remote rack, as r is likely to request data from multiple
racks. To eliminate this cross-rack traffic, we can take
advantage of any file-system replicas of m’s input in
r’s rack and run a speculative redundant mapper m’
there. After the map phase finishes, » will be able to
fetch its input from m/' in its local rack, while leaving
the output of m intact.

3.2.1. Analysis. We conduct a simple analysis of the
job completion time improvement due to redundant
mappers. Consider a topology where N nodes, each
assigned one map and one reduce task, are split into
two N/2-node racks. As shown in Figure 3, suppose
that the N/2 nodes within each rack are attached to a
non-blocking rack switch, to ports operating at rate R.
Further, suppose that the two switches are connected
by a single link operating at rate a R, where v > 1 lets
us model scenarios where links between Top-of-Rack
switches are faster than local ones (e.g., using 10 Gb
Ethernet interconnects). Lastly, for the job’s data flow
pattern, suppose that the output of each mapper has
the same size, and is partitioned uniformly such that
an equal size slice is assigned to each reducer. Such a
balanced pattern could occur, for example, in sorting
uniformly distributed keys, or where sampling is used
to create balanced partitions.

We make the following simplifying assumptions for
an I/O-intensive scenario:

Al. Map-Reduce CPU demands are negligible com-
pared to I/O.

A2. All tasks start at the same time.

A3. Flows fairly share network links without incurring
any overhead.

A4. Flows from mappers to reducers on the same node
pass through that node’s network link, sharing it

N/2 flows from rack-local nodes

%. r

Bottleneck

Flows from
remote racks to
other nodes in

N/2 flows from remote rack r's rack

Figure 4: Diagram accompanying the analysis for Scenario 2.
The flows shown correspond to the baseline case without
speculative redundant computation.

with any external flows.

Let us consider just one of N reducers, r;. As shown
in Figure 4, there are two classes of flows going to 7;:
the rack-local ones, coming from N/2 nodes on the
same rack, and remote ones, coming from N/2 nodes
on the remote rack. Of these, the remote flows are
constrained by the bottleneck link between racks; given
that (N/2)? flows pass through this link, they will
share the link at bottleneck rate Rp = aR/(N/2)2.
We will focus on the case where Rp is not larger than
the fair sharing rate of a rate R link among N flows;
that is, Rg < R/N, which is satisfied for N > 4a.
In this case, the total completion time will be equal to
the completion of any of the remote flows.

In computing the completion time, consider that
given a total data size D, and given our balanced data
flow pattern, reducer r; receives a D/N amount of
data. Since this data consists of equal-sized outputs
of N mappers, we see that each mapper contributes
a D/N? amount of data to reducer 7;. The flows
run in parallel, so to find the overall completion time
TaserLINE, We just find the completion time for a
single remote mapper-to-reducer transfer:

D/N?> D
aR/(N/2)*  4aR’

TBASELINE =

Let us next rearrange the remote flows by creating
X, where 1 < X < N/2, redundant mappers on r;’s
rack, leaving N/2 — X mappers outside. Now, there
will be a total of (N/2)(N/2 — X) flows crossing the
bottleneck cross-rack link, leading to the bottleneck
rate of

aR

Rp=——Fcr——
BT N/2(N/2=X)
Again the remote flows will dominate the comple-
tion time as long as they take up no more than the
fair share of r;’s link, that is, R < R/N. Such a



Figure 5: Our Hadoop cluster testbed of 46 nodes.

condition holds if
N

The completion time based on Rz and D/N? units
of data delivered per flow is now:
D(N/2-X)

2aNR

We can see that the completion time is smallest for
X = N/2 — 2a, where it becomes a factor of 4a/N
smaller than the baseline. The order of N-fold speedup
may be counter-intuitive at first sight but it can be
easily understood by recognizing that cross-rack traffic
is proportional to (N/2) % (N/2 — X). Thus the traffic
decreases from (N/2)? when X = 0 to aN when X =
N/2—2q. Furthermore, note that when the cross-rack’s
bottleneck becomes severe, i.e., when « decreases in
value, the speedup increases as N/4q, as expected.

TREDUNDANT =

4. Experiments with Speculative Pipelin-
ing Applied to Sort

We built a 46-node cluster of commodity machines
powered by VIA VB8001 motherboards and VIA Nano
1.6GHz CPUs. Each board is connected to a switch
via a 100Mbps Ethernet link. Lastly, each board is
equipped with 1GB of RAM and 8GB of flash storage.
Figure 5 shows photos of the cluster.

We used either one or two switches to configure a
one- or two-rack system, respectively. By using two
switches we can create cross-rack bottleneck links
typical in large data centers (see Figure 3). Each switch
was a Cisco Catalyst 3500 Series XL non-blocking 48-
port switch, with all ports set to a fixed, 100 Mbps bit
rate. Where we used two switches, the switches were
bridged via a 100 Mbps Ethernet link.

The nodes ran Hadoop v0.20.2. One node in the rack
is designated the master and runs both the Hadoop and
HDFS master daemons, but does not execute any map

or reduce tasks or store any HDFS data blocks. All
other nodes run both Hadoop and HDFS slave daemons
and are responsible for running computation tasks as
well as storing HDFS data blocks. This arrangement
is consistent with that of Amazon EMR clusters.

In the experiments below, we use the existing
MapReduce sort implementation found in the Hadoop
code base, and previously used as a benchmark [14].
We apply speculative pipelining principles to improve
its performance in Scenarios 1 and 2 above.

4.1. Experiments on Speculative Prefetching

We first consider Scenario 1, where an unexpected
exogenous CPU load spike causes one node in our
rack to slow down and where speculative prefetching
can improve map phase completion time.

We configured the cluster to be a single rack with
one master and 44 worker nodes. The sort application
is asked to sort 5.6GB of random binary data stored on
HDFS. We modified the default block size in HDFS
to 128MB so that each node has exactly one 128MB
data block stored locally. We set the HDFS replication
factor to 1, forcing Hadoop to assign a single data-local
map task to each node, i.e., each map task’s entire input
split is on its local disk.

Before starting the sort job, we created an artificial
CPU workload on node n; such that the Hadoop
processes on this node would receive only ~1% of
CPU time. As a result, Hadoop triggers speculative
execution of task 1, originally assigned to n;, on some
node n,. Since n, does not have a local replica of
t1’s input split, it is forced to reactively fetch from n;.
Because n; is heavily loaded, this fetch is slow.

First, we demonstrate map phase behavior when no
speculative prefetching is done. Figure 6a shows the
map task completion time distribution in a control
experiment where no exogenous CPU load was in-
troduced on n;. The spread of map completion times
is fairly narrow (22s to 33s). In contrast, when we
introduce exogenous CPU workload to n; and ¢
is speculated to m,, t1’s completion time inflates to
213s. This is due to Hadoop’s 60s straggler detection
threshold and the time needed to fetch the input split
from n, to n,. Note that the longest map task bounds
the duration of the entire map phase, meaning this
single straggling task impedes the entire job.

Next, we emulate speculative prefetching by increas-
ing the replication factor in HDFS such that any node
chosen to speculatively re-execute t; will have a local
copy of its input split. This is an indirect measurement
method but accurately reflects our scenario, where the
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Figure 6: Map tasks duration distributions. The total number of map tasks is 44 in all the plots. (a) Baseline case, with no
exogenous CPU load on node n;. (b) With exogenous CPU load on n1, but without speculative prefetching. (c) With exogenous
CPU load on n; and with speculative prefetching, the overall map phase completion time is reduced from 213s to 89s.

speculative prefetch time is completely masked by the
map computation, and is thus equivalent to having
a local replica of ¢;’s input split available at n, at
the time of task speculation. Figure 6¢ shows the
map task completion time distribution with speculative
prefetching enabled. Note that ¢; now only takes 8§9s
(60s straggler detection time + 29s map computation
time) to finish, clearly demonstrating the advantage of
speculative prefetching.

4.2. Experiments on Speculative Computing

As discussed earlier in Section 3.2, we can alleviate
some of the cross-rack network load by performing
extra computation on rack-local replicas of the input
data. For example, in the sorting application, as shown
in Figure 7, mappers send their output to reducers in
both racks. This involves cross-rack flows, as depicted
in Figure 8a. However, suppose that the input data has
two replicas per block, one on each rack. For such
blocks, instead of running one mapper, we can run
one mapper per replica, making the results available on
both racks without transferring them across the inter-
rack link. Figure 8b shows how redundant mappers can
avoid sending data between racks.

We demonstrate the potential performance gain due
to redundant mappers by running the unmodified
Hadoop Sort application with parameters tuned to
emulate a real implementation of speculative redundant
computing as follows. First, we divide our testbed
into two 22-node worker groups, each connected to a
separate non-blocking switch. The switches are bridged
with one 100Mbps link. An additional node, serving
as the master, is also connected to one of the switches.
We create input data such that each worker holds a
512MB slice, saved as four 128MB blocks. Then, we
run Sort in two configurations:

o Configuration A: Baseline. Using all 44 workers;

Mapper
1

Rack 1

Rack 2

Figure 7: Data-flow diagram for a MapReduce sort run.
Thickest arrows represent the fastest, node-local flows where
no network is used. Medium-thick arrows represent fast,
rack-local flows. Thin arrows represent slowest, cross-rack
flows.

Figure 8: Map task assignment with (a) no redundant map-
pers, and (b) redundant mappers. Redundant mapper of
primary mapper m; is indicated as m;. The dotted line
represents the rack boundary. In both cases the same total
amount of data, D, is moved to reducers. Note that in (b),
no flows cross the rack boundary.

this results in a standard MapReduce sorting run
on a 22GB data set.

o Configuration B: Emulated Speculative Com-
putation. Using only one 22-worker group, sort-
ing a 11GB data set.

We argue that the traffic pattern of the shuffle phase
of Configuration B is equivalent to that of one rack



Configuration A | Configuration B

Map phase 185 s 215 s
Shuffle phase 597 s 199 s
Sort+Merge phase 1s ls
Overall 646 s 254 s

Table 1: Durations of map, shuffle and reduce phases in Sort.
We omit the commit phase from measurements. Note that the
overall duration is not a sum of individual phase durations,
since the phases overlap.

of Configuration A, where every mapper is run redun-
dantly, since the total amount of data transferred from
mappers to reducers in one rack is the same, and there
is no cross-rack traffic in either case. In other words,
Configuration B emulates the top half of Figure 8b.
The major difference is that the redundant mappers
shown in Figure 8b do not get run in Configuration B;
however, this does not affect the shuffle phase duration.
We show the running times of the two configurations
in Table 1, broken down by MapReduce phase. Also,
we present the progress of sort jobs of both config-
urations in Figure 9. Clearly, Configuration B gained
significant speedup from reduced cross-rack traffic.

5. Related Work

Several related approaches to optimization in com-
pute cloud programming have recently been proposed
in the context of MapReduce/Hadoop. Zaharia et
al. [5] tackled deficiencies in Hadoop’s speculative task
scheduler in heterogeneous environments such as com-
pute clouds, where resource availability is dependent
on exogenous factors. A major weakness in Hadoop
is that its straggler detection mechanism permits false
stragglers, causing excessive task speculation and tak-
ing away resources from regular tasks. To remedy
this, the authors propose a speculative task scheduling
mechanism called Longest Approximate Time to End
(LATE), in which the task that is predicted to finish
last is speculated first, since this will give the best odds
of the speculated task overtaking the original. LATE
estimates completion time by tracking task progress
rate instead of percentage of work completed. LATE
is complementary to our proposed optimizations; in
fact, we can use the progress rate tracked by LATE to
inform what to speculative prefetch (e.g., input splits
of slow tasks) and where to place the prefetched data
(e.g., nodes that consistently make good progress or
that have or are about have free CPU cycles).

Seo et al. [11] present related ideas on prefetching
in MapReduce. In their High Performance MapReduce

(HPMR) implementation, prefetching occurs on two
levels. First, while a task works on its current input
key-value pair, the idle network can be used to prefetch
the next key-value pairs. Second, during computation
of its current task, a node can simultaneously prefetch
input data for the next tasks that are in queue. While
the authors also employ pipelining to overlap compu-
tation and I/O, a key difference with our work is that
we use the opportunity to do speculative prefetching.
Condie et al. [15] propose changes to MapReduce’s
batch-oriented data processing in order to service data
streams. Their system, Hadoop Online (HOP), sets up
producer-consumer relationships between tasks, push-
ing results from producers to consumers instead of
having consumers pull results. While a push model
naturally leads to task pipelining, it must fall back to a
pull model when multiple waves of map tasks must be
scheduled before reduce tasks (i.e., when no consumers
are alive to receive the pushed results). In contrast, we
attempt to overlap computation with network I/O only
when resources permit. Furthermore, whereas HOP is
designed to recover from hard faults, we have proposed
a more general method that handles lagging tasks
caused by CPU and network load fluctuations.

6. Conclusions

In this paper, we address a frequently occurring
phenomenon in public shared compute clouds, as we
observed on Amazon EC2: unpredictable variations
in resource availability for MapReduce jobs. Further-
more, these resources may be unbalanced in their
computation and I/O capacities. Combined, these can
lead to CPU and network underutilization.

We have presented an approach, called speculative
pipelining, which can mitigate the impact of uncertain
or insufficient resource availability on MapReduce
job completion time. We have described two specific
schemes: (1) speculative prefetching to reduce input
delay when recovering from straggler tasks, and (2)
speculative computing to reduce traffic traversing the
cross-rack network bottleneck. We have shown the
effectiveness of these schemes through a sorting bench-
mark run on a lab testbed. Furthermore, we have shown
performance analyses and introduced novel ideas such
as open-option speculative prefetching.

Our speculative approach differs from current prac-
tices found in MapReduce implementations, where
input fetching takes place only when input is needed.
With speculative pipelining, we prefetch input to re-
duce future input delay, and perform redundant com-
putation to reduce future network congestion. These
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Figure 9: Progress of sort jobs on Configuration A (left) and B (right). The vertical axis shows the number of running tasks

belonging to one of the MapReduce phases.

speculative operations put otherwise unused CPU and
network resources to good use and, in principle, can
be extended to compute cloud programming models
beyond MapReduce.
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