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Abstract—Compressive sensing has emerged as an important
new technique in signal acquisition due to the surprising prop-
erty that a sparse signal can be captured from measurements
obtained at a sub-Nyquist rate. The decoding cost of compressive
sensing, however, grows superlinearly with the problem size. In
distributed sensor systems, the aggregate amount of compressive
measurements encoded by the sensors can be substantial, and the
decode cost for all the variables involved can be large. In this
paper we propose a method to combine measurements from dis-
tributed sensors. With our method we can transport and store a
single combined measurement set, rather than multiple sets for all
sensors. We show that via source separation and joint decoding, it
is possible to recover an approximate to the original signal from
combined measurements using progressive reconstruction which
focuses on individual sensors. This results in a reduction in the
number of variables used in decoding and consequently a reduced
decoding time. We show that the computed approximation to the
signal can still have sufficient accuracy for target detection. We
describe the combining approach and the associated progressive
reconstruction, and we illustrate them with image recovery for
simple target detection examples.

I. INTRODUCTION

A compressive sensing encoding system can be described
as follows [1]:

y = Φx

where x is an N -dimensional signal being sampled, Φ is an
M × N measurement matrix containing random entries, and
y is a vector of M measurements, which are random linear
combinations of components of x. Suppose that x is K-sparse
in the sense that it can be expressed as a linear combination
of K basis vectors in some basis, that is, x = Ψs where Ψ
is an orthonormal transform, and s is a vector with no more
than K nonzero coefficients. Then, if M > cK log(N/K) for
some small constant c, it is possible to decode s with high
probability, and retrieve x = Ψs. Note that the number of
measurements (M ) is commensurate with the sparsity of a
signal. If K is very small in some properly chosen domain,
then M can be much smaller than N . This implies high
compression rates. A rich volume of literature examines this
topic including the landmark work of Candès, Tao [2] and
Donoho [1].

In this paper, we address challenges concerning the use of
compressive sensing in distributed sensor systems. In such a
system, each sensor may gather compressive measurements
for a specific region of a partitioned domain. That is, these
distributed sensors perform partitioned encoding–one set of

compressive measurements per partition–rather than standard
encoding, as depicted in the middle and left sections of
Fig. 1, respectively. However, the aggregate size of all the
measurements is proportional to the number of sensors and
can result in large costs of transporting and storing these
measurements.
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Fig. 1. (Left) Standard encoding, where the given signal x covers the entire
domain. (Middle) Partitioned encoding, where partitions of x cover various
regions of the domain. (Right) Combined encoding merges the measurements
from all partitions to create a single measurement set.

To reduce the number of measurements, we consider in this
paper a combining approach, as depicted by the Combined
Encoding scheme of Fig. 1. We show that we can combine
multiple measurement sets from different sensors, by simply
adding together the corresponding measurements to form a
single measurement set. As a result, we can transport and store
a single measurement set, rather than measurement sets of
multiple subproblems as depicted in Fig. 2.

In measurement combining, we will use a single measure-
ment set to recover multiple sets of variables–one for each
sensor in the distributed system. Since there are multiple
sensors, this increases the problem size multiple times, and
leads to another issue: high decoding cost. We note that the
computational cost of the `1-minimization step in decoding
grows superlinearly with the problem size. If the signal has N
components, then `1-minimization by linear programming [2]
can yield a decoding time of at least O(N3). This means that
the decoding cost can be prohibitively expensive when N is
large. Other decoding methods such as matching pursuit [3],
[4] are less expensive, but they only guarantee weaker error
bounds in the recovered solution, and provide less stable
recovery. When these low-complexity methods fail, we still
need to resort to `1-minimization. It is therefore desirable to
divide the problem into subproblems, each focusing on just
one region at a time to reduce decoding time.



Fig. 2. A partitioned scenario of tracking targets in an area divided into
multiple regions. In the example shown, there are 9 regions. For each region,
we assume that there is one sensor encoding target information in that
region, and sending compressed measurements to a hub to be combined.
The hub combines the compressed measurements and transmits them to
the decoder over a low-bandwidth link which benefits from measurement
compression/combining.

We show that we can reconstruct an approximation to the
original signal from the combined measurements by progres-
sively decoding the subset of variables associated with just a
single sensor at a time. This can significantly reduce decoding
time in distributed sensor systems, as we will see in Section III.
Further, we demonstrate in Section IV that the reconstructed
signal resulting from progressive reconstruction can still have
sufficient accuracy for target detection tasks.

Measurement combining and progressive reconstruction to-
gether can therefore reduce both the number of measure-
ments and decoding time in distributed sensor systems, while
yielding enough decoding accuracy for target detection. The
approach is applicable to various application scenarios. For
instance, as illustrated in Section II, when an area is monitored
by multiple sensors, each sensor may monitor its own nearby
region for targets. Then we can use the method of this paper
to combine the measurements from such sensors, decode
the combined measurements progressively, and finally detect
targets from the reconstructed signal.

The measurement combining and progressive reconstruction
ideas are based on some of our earlier theoretical work [5].
There we showed that via source separation and joint de-
coding, it is possible to separate out distinguished signal
components in subproblems from combined measurements.
The current paper focuses on applications of these ideas
in distributed sensor systems, and illustrates the combining
approach with some simple image recovery examples for target
detection.

II. DESIGN SPACE ON DECODING FOR PARTITIONED
COMPRESSIVE SENSING

In this section, we describe the measurement combining
method in detail using an illustrative scenario. Suppose we
want to detect K targets from compressed measurements
taken over α regions, as depicted in Fig. 2. Each sensor
obtains a source signal vector xi of length N from its own
region, and then applies an M × N measurement matrix Φi
where M � N , to obtain a compressed measurement vector
yi = Φixi of length M . The sensor then sends yi to a hub
node where the measurements may be combined.

Let us next describe a design space of methods that our
system could use to reconstruct the signals of all regions. The

first two are conventional methods that will serve as baselines
for comparison, while the last one is the focus of this paper.

• Conventional Decoding. Suppose measurement matrices
Φi are all chosen independently at random. Furthermore,
suppose the hub computes a sum, y, of the measurements
yi before sending them out; then, we can write the sum
as follows:

∑
yi =

[
Φ1 Φ2 ... Φα

]

x1

x2

...

xα

 (1)

We can let y =
∑
yi, use x to denote the column vector

on the right-hand side of Eq. (1), and let Φ be an M×αN
matrix which is the column concatenation of M × N
matrices Φ1...Φα. Then we have

y = Φx

This is in the conventional compressive sensing form.
Thus, we can decode x using the standard formulation

y = ΦΨs (2)

with a transform Ψ operating on an αN -size vector
of coefficients s. While this formulation requires a low
number of measurements, cK log(αN/K), it has a high
decoding time. For example, if `1-minimization is used,
there can be an α3-fold increase in the decoding time for
each subproblem, yi = Φixi, due to an α-fold increase of
the problem size from N to αN . The increase of variables
is an issue we will address in this paper.

• Partitioned Decoding. A simple way to avoid solving an
αN -size problem instance is for the hub not to sum up
the measurements yi, but instead forward them directly
to the decoder. Thus, the decoder ends up with α size-N
compressive sensing problems

yi = Φixi

which can be decoded much faster using the form

yi = ΦiΨisi

where the transform Ψi now operates on size-N vectors.
However, this formulation requires that the hub transmit
a larger amount of data; specifically, the total number of
measurements to be transmitted is αcK log(N/K). (Note
that if fewer than cK log(N/K) measurements are used
per region, then the signal may not be decodable if all K
targets happen to be in the same region.)

• Progressive Reconstruction. This is the decoding
method we propose in this paper. As in conventional
decoding, the hub will again compute the sum of mea-
surements y =

∑
yi as in Eq. (1). How can we decode it

faster than solving a size-αN problem? To answer this,



let us consider the following decoding setup:

y =
[

Φ1 ... Φα
]


Ψ1

...

Ψα



s1

...

sα


This is, again, a size-αN problem with a high decoding
cost; however, note that each Ψi here is α-times smaller
than the one used in Eq. (2). We decode si separately
using the constraint

y = ΦiΨisi

Note that this constraint is approximate since it ignores
nonzero contributions of sj 6=i to y [5]; nevertheless, in
certain applications such as our target detection scenarios
with sparse clusters, it is expected that these ignored
contributions will be relatively small. Furthermore, as
soon as larger si’s are decoded for a region, we can use
them to represent the entire region. This reduces the total
number of variables in the subsequent decoding of other
regions. The quality of each decoding step improves as
more regions are decoded and represented with a reduced
number of variables. Thus we call the method progressive
reconstruction.
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Fig. 3. (Left) Reconstructing all regions of the combined measurement at
once will incur a high decoding cost, due to a large number of variables.
(Middle) Decoding each partition separately will result in a lower decoding
cost, but at the expense of lower compression rate. (Right) Progressive recon-
struction focuses on a single region at time while considering contributions
from a few most significant variables in previously decoded regions. It has
a low decoding cost, and requires substantially fewer measurements when
compared to partitioned decoding.

Fig. 3 depicts the three approaches described in this Section.
We note that conventional decoding involves high decoding
cost. Partitioned decoding has a reduced cost, but at the
expense of a poor compression rate. So, we propose the
third solution—progressive reconstruction. Our method has
relatively high compression rate and low decoding cost, while
achieving a decoding accuracy sufficient for target detection.
In the rest of the paper we describe progressive reconstruction
in detail, and evaluate its performance.

III. PROGRESSIVE RECONSTRUCTION ON COMBINED
MEASUREMENTS

For simplicity, we describe our progressive reconstruction
method for a partitioned problem involving only α = 3
subproblems. Note that the description generalizes to any
number of subproblems. Suppose that the signals for the three

Select columns 
associated with 
large coefficients

Fig. 4. Forming a reduced basis for region 1.

regions are: x1, x2, and x3. As described in Section II, we
encode them with the measurement matrices Φi to yield three
measurement sets, yi = Φixi, for i = 1, 2 and 3. We combine
the yi’s to form y:

y = y1 + y2 + y3 (3)

In our scenario we assume that the targets are clustered,
meaning that the large variables are concentrated in only a
few of the regions.

The first step of the reconstruction method is to identify the
region that contains the largest number of targets. This region
can be chosen according to prior knowledge; for example,
we might be able to predict the targets’ location based on
past observations. In other applications where no such side
information is available, the best region can still be determined
by observing preliminary decoding results. A generic method
works by decoding the combined measurements as follows:

s?i = arg min |si|`1 subject to y = ΦiΨisi (4)

for each region i. In the best region, by definition the energy
will be more concentrated on a few coefficients, allowing us
to find a sparser solution. Given sufficient measurements, we
will have enough constraints so that a sparse solution for other
regions is unlikely. Therefore, we identify the region with the
smallest |s?i |`1 to be the best region.

Finding this region is important because y has contributions
from all three xi’s, and each s?i may contain interference from
other regions. Of these, the signal xi corresponding to a region
that has most targets will experience the least interference from
other sources, and will have the best reconstruction result.

We can now begin the progressive decoding stage. Suppose
we find that the targets are concentrated in region 1 from the
result of the first step. We then identify the basis associated
with the largest variables in the reconstructed s?1, denoted as
ŝ1, and use it to represent x1 in the subsequent steps. Specif-
ically, we form Ψ̂1 by keeping only the columns associated
with the larger coefficients, as shown in Fig. 4.

We continue the progressive decoding by reconstructing s2
in the second round as follows:

s?2 = arg min

∣∣∣∣∣
[
ŝ1

s2

]∣∣∣∣∣
`1

subj. y =
[

Φ1Ψ̂1 Φ2Ψ2

] [ ŝ1

s2

]
Since ŝ1 includes all the large variables in s1, there is little
or no interference from x1 when we reconstruct s2. Similar to
the first round, we find the most important basis for s2, and
proceed to decode s3 in the same fashion.



In each round, we slightly increase the number of variables
to decode by including the basis vectors that are deemed to
be important from all previous rounds. If no round misses
important basis columns for the regions in question, then at
the end of this process we will be solving an interference-free
signal.

Compared to the progressive reconstruction process, con-
ventional decoding which decodes signals from all regions in
one shot exploits the sparsity better, as it represents the signal
with a larger selection of basis vectors (a larger dictionary).
However, in a real-world application like target tracking, we
might have knowledge about the locations of the targets from
a previous state. For example, if we know that most targets
are in region i at a previous time, it is reasonable to assume
that region i and its surrounding regions are more likely to
contain the targets. In the progressive reconstruction method,
we could take advantage of such knowledge by having early
rounds focus on these regions.

IV. AN ILLUSTRATIVE APPLICATION EXAMPLE

We present a simple example in distributed sensor systems
to demonstrate the idea of measurement combining and pro-
gressive reconstruction.

Suppose we want to track K targets across 9 regions, as
depicted in Fig. 2. The sensors compress the sensed images
xi by computing yi = Φixi. A hub gathers the measurements
yi and performs a simple summing operation to get y = y1 +
y2 + ...+ y9, and then transmits y back to us.

In this example, we detect one or more copies of the same
bee-like target as shown in Fig. 5. To identify targets, we
build a dictionary where each basis function represents the
target at a distinct position in the region, as shown in Fig. 5.
More precisely, in the dictionary matrix, each column is a
vector representation of the input image with the target at a
distinct location. We can view the input signal x as the sum
of those images each containing a single instance of the target
at a distinct location. Recovering x means finding these image
components, or a vector s such that

x = Ds

where D is the dictionary matrix defined above. When there
are just a few targets present in the signal, s is sparse and this
problem will be solvable by compressive sensing decoding
using the dictionary as the basis Ψi described in Section III.
This is similar to finding parameterized shapes in images as
described in [6]. For simplicity, we assume the background
can be subtracted from the measurements.

D

Fig. 5. Each column in the dictionary matrix represents the target at a
different location. An image with k targets can be represented by k coefficients
in this dictionary.

As described in Section III, we perform a reconstruction for
each region under some noise model and determine where the
targets are most concentrated. Then, by progressively decoding
one of the remaining regions at a time, we gradually improve
the reconstruction until all regions are decoded. The whole
process takes at most 9 + 8 + 7.. + 1 decoding steps, where
there are roughly N variables to solve each step. Suppose
that `1-minization is used in decoding. Then, the total cost is
45CN3, for some scaling constant C. In contrast, if we were
to decode the entire image (9N ) at once, the cost would be
C(9N)

3
= 729CN3.

V. EXPERIMENTS AND PERFORMANCE RESULTS

We examine the performance of progressive reconstruction
in four cases:

1) Four targets spread across two regions;
2) Five targets spread across three regions;
3) Five targets spread across three regions with Gaussian

noise (SNR ≈ 13);
4) Three targets in a real-world satellite image.

The size of each region is 30 × 30 pixels. The first three
cases each have 8100 pixels in total, whereas the last case has
5400 pixels. 60 measurements are used for the first two cases
(compression ratio < 1%), 405 measurements are used for the
third case (compression ratio = 5%), and 1200 measurements
are used for the last case. We use `1-magic as the decoder for
the first three cases, and CoSaMP [4] for the last example.

A. Case 1

(a) Reconstructed image (b) Magnitude of reconstructed
coefficients for 9 regions

Fig. 6. First decoding round for Case 1. Each region is decoded inde-
pendently. The center region has the least interference from other regions,
resulting in a better reconstruction. (a) The reconstructed images for each
region. Only the center region displays pronounced targets. (b) The sorted
magnitude of reconstructed coefficients for 9 regions. One can observe that
the `1-norm of the best region is smaller.

To begin progressive reconstruction, we must first find a
region to start with. In the first round, we decode the nine
regions independently. Fig. 6(a) shows the decoded results for
each region. The center region has the smallest `1-norm under
the dictionary basis, so we start the second round based on the
reconstruction of the center region. In the second round, we
reconstruct the signal in two regions together using a reduced
basis for the center region as described in Section III. We
continue to recover other regions until all signals are decoded.
Fig. 7 shows three snapshots of the decoding process. The



Fig. 7. Progressive reconstruction for Case 1. The first decoding round
reveals that the targets are most concentrated in the middle region. The
second round of decoding uses the information from the first round to
improve the reconstruction. Since there are no targets left in other regions,
the reconstruction in the second round is exact.

second round gives an exact reconstruction because there is
no interference from other regions.

B. Case 2

Fig. 8. Progressive reconstruction for Case 2. As in Case 1, the first decoding
round reveals that the targets are most concentrated in the center region. The
second round of decoding uses the information from the first round to improve
the reconstruction. Since there is interference from a target that has not been
detected yet, one can see that the reconstruction in the second round is still
noisy. The reconstruction is improved again in the third round, and in this
case it is exact.

Here we use the same decoding method as Case 1, but now
there are three regions that contain targets. Fig. 8 shows the
first three rounds of the decoding process. The reconstruction
in round 1 is worse than the previous case, beacuse now there
is interference from two other targets instead of one. However,
similar to Case 1, the interference is progressively reduced
until it falls to zero, and the reconstruction becomes exact
after the third round.

C. Case 3

In this case the signal is corrupted by noise. Fig. 9 shows
the results from each round of the progressive reconstruction.
The recovery in the first round is heavily distorted, but the
three targets in the center region are still distinguishable. We
only keep the bases associated with the largest 2% coefficients
(refer to Fig. 4). Note that distortion is most significant in the
newest regions being solved; this is because we used reduced
bases to represent the signals for regions that have already been
processed, whereas the latest region added to the decoding is
represented with a full dictionary.

The results of progressive reconstruction and standard de-
coding are compared in Fig. 10. Both approaches locate the
targets successfully, but the error from noise is distributed

Fig. 9. Progressive reconstruction for Case 3, a noisy image. Decoding
progress of all 9 rounds is shown. We focus on one region each round.

Fig. 10. Comparison between progressive decoding (right) and decoding all
regions (left) at once.

in a different way. While providing comparable results, the
progressive reconstruction process is 10 times faster, assuming
O(N3) decoding time.

D. Case 4

We consider a satellite image of three boats. Fig. 11(a) is
the original image. For this example we use a down-sampled
gray level version of the original image. Color gradients are
applied to visually enhance the contrast in the intensity images.
The ships are the targets that we want to identify in the
reconstructed image. The background can be represented by
a relatively small basis because its characteristics are known.
In our experiment, we took the first 100 columns of a DCT
matrix as the basis for the background.

We use basis Si to represent the ships, and basis Bi to
represent the background in region i. The decoding sequence
is predetermined based on some side information so that we

(a) Original image (b) Downsampled

(d) Round 1 (e) Round 2 (f) Round 3

Fig. 11. (a) The original image. (b) Down-sampled image with gradient color.
(d), (e) and (f) are the reconstructions after round 1,2 and 3. The decoding
sequence is determined by side information (starting from the region with
highest probability of containing a target). Reconstruction in the third round
finds all targets and the background.



can decode the region with most targets first. For the first
round, we decode with the basis Ψ1 =

[
B S1

]
where

B =
[
B1 B2 ...

]
.

Then, we use the reduced basis Ψ2 =
[

Ψ̂1 S2

]
for

round 2, where Ψ̂1 contains only the columns corresponding
to larger variables. Similarly, for round i , i > 1, we use
Ψi =

[
Ψ̂i−1 Si

]
as the decoding basis.

In the first round (Fig. 11(d)), there is some high frequency
noise due to the error caused by two missing targets. The
missing targets cause false positive detection of large coeffi-
cients in the frequency domain, so when we form the reduced
basis for the second round, some unimportant columns still
remain. However, the new basis for the second round will
now include S2, which will change the outcome and give
us another chance to get rid of the unimportant columns.
The amount of noise decreases in the second round as there
is only one target causing distortion. We can see that the
target represented by S2 is detected (lower left), and the
background is smoother because most of the unimportant
frequency coefficients have been discarded correctly. In the
third round, all targets are revealed and represented by the
suitable basis, and the background becomes very similar to
the original image.

VI. DISCUSSION

In the experiments, the reconstruction process can take
advantage of additional side information. If we know the
targets are clustered in a small set of regions, then our method
can first identify the most populated region, and improve
the reconstruction progressively at a low cost. Furthermore,
if we know where these targets are most likely to be, this
information can help us find a better reconstruction sequence
and thus save more time. This can be a reasonable assumption
for some surveillance systems where the targets are constantly
monitored. When a number of measurements used is relatively
small, there could be blocking artifacts resulting from the
progressive reconstruction. In this case we can further apply
methods such as those described in [7] to ensure that the
recovered signals for neighboring partitions will be compati-
ble. Compressive sensing for distributed sensor systems is also
studied in the context of collaborative decoding at a central
node, such as a UAV, where the decoded results for one sensor
can enhance the decoding for other sensors [8].

There are other approaches that also directly benefit from
side information. Reweighted approaches [9], [10] can use
side information to guide the decoding process to a more
desirable solution. However, these methods only improve the
reconstruction quality but not the decoding time.

VII. CONCLUSION

In this paper, we take a perspective that an approximate sig-
nal reconstructed from compressive measurements just needs
to be accurate enough for the target detection problem in
hand. To this end, we presented a method of combining
measurements in compressive sensing in order to lower the
number of measurements, or equivalently to improve the

compression ratio. In addition, we presented a progressive
reconstruction method that can decode multiple signals from
combined measurements with reduced decoding cost. We vali-
date these results with target detection test cases involving both
synthetic and real-world images. Our approach can reduce both
measurement and decoding costs, while producing decoding
results with sufficient accuracy for target detection. Results
of this paper are applicable to target-detection applications
based on compressive sensing for which problem partitioning
is desired and distributed sensing systems where compressive
measurements from multiple sensors can be integrated.
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