
Parallelization Primitives for Dynamic Sparse Computations

Tsung-Han Lin
Harvard University

Stephen J. Tarsa
Harvard University

H.T. Kung
Harvard University

Abstract

We characterize a general class of algorithms common
in machine learning, scientific computing, and signal
processing, whose computational dependencies are both
sparse, and dynamically defined throughout execution.
Existing parallel computing runtimes, like MapReduce
and GraphLab, are a poor fit for this class because they
assume statically defined dependencies for resource al-
location and scheduling decisions. As a result, chang-
ing load characteristics and straggling compute units de-
grade performance significantly. However, we show that
the sparsity of computational dependencies and these al-
gorithms’ natural error tolerance can be exploited to im-
plement a flexible execution model with large efficiency
gains, using two simple primitives: selective push-pull
and statistical barriers. With reconstruction for com-
pressive time-lapse MRI as a motivating application, we
deploy a large Orthogonal Matching Pursuit (OMP) com-
putation on Amazon’s EC2 cluster to demonstrate a 19x
speedup over current static execution models.

1 Introduction

Mainstream applications, including data mining at web
scale, unsupervised machine learning, and high perfor-
mance computing, often require deploying massive par-
allel computations in shared computing facilities like
Amazon’s EC2 cluster. Optimizing scheduling and load
balancing decisions on these platforms is a challenge be-
cause available resources are dynamically constrained by

This material is based on research sponsored in part by the Intel
Corporation, and by the Air Force Research Laboratory under agree-
ment number FA8750-10-2-0180. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and con-
clusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of Air Force Research Laboratory,
the U.S. Government, or the Intel Corporation.

x1	

a12	 	 	 …	

Orthogonal	 Matching	 Pursuit	 (OMP)	

1.	

2.	

3.	

x2	 x3	 x4	 x5	 x6	 x7	 x8	

y2	 y3	 y4	

…	 	 	 a46	

y1	

Figure 1: Orthogonal Matching Pursuit (OMP) is an iterative algorithm
whose computational dependencies are bipartite, sparse, and dynami-
cally determined throughout execution. As indicated by the red lines,
only a subset of variables xi computed by Stage 1’s matrix multiply are
used in the least squares and residual calculations of Stages 2 and 3. In
this illustration, these active variables have indices 2, 4, and 6.

runtime conditions such as fluctuating customer demand,
node failures, and network congestion, which can slow
workers and cause “stragglers” to occur regularly [1].

Consequently, parallel programming models like
MapReduce [2] and GraphLab’s Gather/Apply/Scatter
[3] are popular. These models enable users to leverage
parallelism by abstracting away complicated schedul-
ing, recovery, and load balancing issues. For example,
MapReduce exploits data parallelism in two conceptu-
ally simple phases, map and reduce, for tasks like data
summarization. In contrast, Gather/Apply/Scatter is de-
signed for data with a known graph structure, and cap-
italizes on subgraph parallelism by processing disjoint
vertex neighborhoods concurrently. This latter approach
fits algorithms like PageRank on large graphs, where dis-
tributed variables are updated in an uncoordinated man-
ner, and parallel asynchronous execution is a natural fit.

We seek a program abstraction appropriate for paral-
lelizing dynamic sparse computations in machine learn-
ing, scientific computing, and signal processing applica-

tions. Consider Orthogonal Matching Pursuit (OMP) [4]
as a representative example. OMP solves an undercon-
strained linear system y = Ax, when the n× 1 vector x
has at most k nonzero components, with k� n. OMP
iterates over three basic stages:

Stage 1 (Outer loop) Find potential nonzero components in
the current iterate x, by computing correlations between
the columns of an m× n measurement matrix A = (ai j)

and the associated residual vector y−Ax.
Stage 2 (Inner loop) Select the largest k components in x

found by Stage 1, exclude others, and estimate x by least
squares from the resulting over-constrained system.

Stage 3 (Update) Compute the new residual using the esti-
mated x; Iterate.

This algorithm’s dependencies can be expressed with a
bipartite graphical model whose vertices represent vari-
ables y j and xi, and whose edges have values ai j, as in
Figure 1. While all variables are used for the matrix-
vector multiplication in Stage 1, only a subset of these
are carried into Stages 2 and 3. As the computation pro-
ceeds and OMP’s estimate is iteratively refined, the pre-
cise set of variables needed by Stage 2 changes, so we
say these variables and their dependencies are dynamic.

This structure, in which an outer loop identifies a small
number of important variables, and dependencies to an
inner loop are sparse and dynamic, appears in many al-
gorithms, like K-SVD [5], CoSaMP [6], StOMP [7],
SMP [8], SuPrEM [9], etc. The algorithms themselves
underlie applications in machine learning and signal pro-
cessing, like sparse feature extraction for deep learning
and hierarchical inference, and compressive sensing sig-
nal recovery, respectively. In the former application, A
represents an overcomplete dictionary matrix, and in the
latter, a compressive sensing measurement matrix. We
call attention to the fact that this dynamic sparsity is in-
trinsic to the algorithm, and is not a property of the ap-
plication data structure, as in traditional sparse matrix or
PageRank computations operating under a static compu-
tational model.

Both MapReduce and Gather/Apply/Scatter are sub-
optimal abstractions for dynamic sparse computations.
Though only a few values from Stage 1 are needed
by Stages 2 and 3, MapReduce asserts dense all-to-all
communication between mappers and reducers, and en-
forces a rigid synchronization barrier on all variables.
Similarly, Gather/Apply/Scatter partitions graph edges
among workers and assumes a static graph throughout
execution, leading to extra work when nodes pull data
from their entire neighborhood, instead of the small sub-
set associated with active variables. GraphLab also re-
quires all synchronization barriers to be fully specified at
the outset, and, like MapReduce, is not malleable enough
for the dynamic dependencies of our algorithms.

Dynamic sparse computations mandate a more flexible
execution model. For instance, an efficient implementa-
tion of OMP should compute and synchronize only on
those values necessary for computation. This is difficult
when the identities of these variables are unknown at the
outset. However, we will exploit both the limited num-
ber of active variables, and the natural error tolerance of
iterative sparse estimations, to implement a flexible exe-
cution model.

We accomplish this using two simple primitives: se-
lective push-pull and statistical barriers. Selective push-
pull isolates computations to active variables involved in
the inner loop by using a vertex-initiated “ping-pong”
execution flow, eliminating the need to track active dy-
namic edge sets. Meanwhile, statistical barriers use a
statistical metric to relax synchronization requirements.
They exploit the fact that a large fraction of task comple-
tion (e.g., in OMP Stage 1) is often sufficient to capture
k of n important values, when k � n. Should a value
be missed in one iteration of the algorithm, it can be
picked up in subsequent iterations. These two primi-
tives work together to dynamically focus computations
on small portions of a much larger, densely connected
dependency graph, realizing major efficiency gains.

With reconstruction of compressive time-lapse MRI
images as a motivating application, we extend GraphLab
to implement selective push-pull, deploy a large OMP
computation on Amazon’s EC2 cluster, and demonstrate
a 19x speedup over the current static runtime system. We
then use an event-driven simulation and straggler statis-
tics from the literature to show that statistical barriers im-
prove both average and worst case computation times,
despite the possibility of additional OMP iterations. Fi-
nally, we use our EC2 implementation to scale previous
OMP-based image reconstruction for compressive time-
lapse MRI applications with additional processors.

This paper is organized as follows: in Section 2, we re-
view GraphLab and MapReduce; Section 3 presents our
motivating application, compressive-sensing based time-
lapse MRI reconstruction; Section 4 discusses our strat-
egy for parallelizing sparse estimation algorithms and
describes the two supporting primitives; finally, Section
5 presents performance results.

2 Review of Parallel Program Abstractions

To provide background information on parallel program-
ming abstractions, we first consider two popular exam-
ples.

2.1 GraphLab
GraphLab consists of both a low level runtime system for
distributing and executing parallel jobs, and a high level

2

program abstraction called Gather/Apply/Scatter. The
runtime provides interfaces for loading, distributing, and
computing on data with a static graph structure, and uses
MPI for inter-processor communication.

Users define generic “vertex programs” that are bound
to each vertex, which implement Gather/Apply/Scatter.
At initialization, GraphLab first constructs a graph and
associates input data values with vertices and edges.
Then, the edge set is partitioned, and edge and vertex
data is distributed to workers, where it is held in main
memory. Partitioning the edge set load-balances oper-
ations in dense vertex neighborhoods, but means that
vertices can be “split” when their edge sets are spread
across workers. When this happens, workers running a
vetex program will compute partial results using their
local edge sets, and the runtime system will merge and
synchronize values. Throughout, computation is driven
forward by signaling vertex programs to execute Gather/-
Apply/Scatter, while distributed locks ensure that one
vertex per neighborhood executes at a time.

Gather/Apply/Scatter’s three phases proceed as fol-
lows: a vertex program gathers, or pulls values from its
neighbors, then applies an update to its local value, and
finally signals neighbors to begin execution, scattering
the computation. Subgraph parallelism is realized when
vertex programs in different neighborhoods execute con-
currently. The gather phase pulls values toward the active
vertex, as opposed to pushing them from neighbor ver-
tices, as a straightforward way to assert that all updates
are received before the apply phase.

2.2 MapReduce
MapReduce is another popular program abstraction
for parallelization, supported primarily by the Hadoop
MapReduce distribution, and also by GraphLab. The
map phase organizes inputs into key/value pairs using
multiple parallel mappers. The reduce phase computes
on sets of values in a key-parallel fashion. All-to-all
communication occurs between mappers and reducers.

2.3 Execution Models
Both abstractions assume statically defined variables and
dependencies. In the case of MapReduce, a dependency
graph is implied by the arrangement of mappers and re-
ducers: mappers are independent of each other, as are re-
ducers, and dependencies exists from all mappers to all
reducers. For GraphLab, the graph is also static, but is
user-defined, based on known interrelationships in input
data.

Both abstractions allow limited synchronization flex-
ibility in their execution models. MapReduce assumes
that full synchronization is needed between map and

reduce stages, and requires all mappers to check in
at a barrier. GraphLab provides three modes: fully
synchronous, fully asynchronous, and partially asyn-
chronous (i.e. “asynchronous serializable” in GraphLab
terminology). This allows users to impose barriers on
all, none, or subsets of vertices, but requires that these
choices be made prior to execution. To respond to run-
time conditions that cause stragglers, both systems pro-
vision additional idle machines to recompute straggling
tasks.

3 Motivating Application Scenario: OMP
for Compressive Time-Lapse MRI

Our application vehicle is image reconstruction for com-
pressive time-lapse MRI [10], a technique that applies
compressive sensing theory to reduce sampling rates dur-
ing clinical image acquisition. Results include finer
temporal resolution for time-lapse MRI scans [11], and
lower procedure time for patients [12]. After acquisition,
full resolution images are reconstructed using a compres-
sive sensing decoding algorithm such as OMP. In the
past, researchers have pursued faster decoding in this
specific context to yield more “clinically useful” patient
procedures [12], so we adopt the goal of reducing de-
coding time in this work. In Section 5.2, we use signal
dimensions and sampling rates from data in [11] to com-
pare results.

OMP’s formula is shown in Figure 1. The algorithm
solves the minimization:

min‖y−Ax‖2 s.t. ‖x|0 ≤ k

where y is an m× 1 measurement vector, A an m× n
measurement matrix, and x a sparse signal vector with
at most k non-zero entries. OMP iteratively refines an
estimate of x’s support to reduce residual error, termi-
nating after satisfying an error threshold or exceeding
an iteration cap. OMP’s original form greedily selects
one component per iteration over exactly k iterations. It
has since generalized, e.g., in [6], to select and update
multiple components per iteration. In this paper, we use
“OMP” to refer to this more-general form. As noted per-
viously, OMP’s outer loop computes matrix-vector mul-
tiplications, and its inner loop computes least squares so-
lutions for the support set; this structure, where an inner
loop computes on a small set of variables dynamically
selected by an outer loop is also present in [7], [8], [9].

4 Dynamical Primitives

We use two primitives that work together to focus com-
putations on dynamically determined subgraphs of our

3

x1	 x4	 x2	 x3	

y1	 y2	

x1	 x4	 x2	 x3	

y1	 y2	

2.  yj’s	 compute	 using	 received	 values	 3.   Pull:	 xi’s	 collect	 values	 from	 yj	 	

x1	 x4	

1.   Push:	 xi’s	 compute	 and	 send	 values	 to	 yj	

x2	 x3	

y1	 y2	

Gather	
Apply	
Sca=er	

Gather	
Apply	
Sca=er	

Gather	
Apply	
Sca=er	

Figure 2: An illustration of selective push-pull, which excludes inactive variables and performs computations only on a selected subgraph (de-
noted by solid arrows and bolded nodes) to minimize unnecessary work. This primitive is equivalent to three rounds of the Gather/Apply/Scatter
abstraction of GraphLab, with an additional “self-signaling” phase.

algorithms’ full dependency graphs. In the outer com-
putational loop, where nonzero variables are identified,
statistical barriers drive execution forward when a por-
tion of tasks reach the barrier. Synchronization is based
on a statistical criterion, such as percent completed, that
captures when those few important values are likely to
have been computed. In the inner loop, where computa-
tion involves only these selected variables, we use selec-
tive push-pull to dynamically compute on the associated
subgraph.

4.1 Selective Push-Pull

Selective push-pull constrains computation to a subgraph
associated with k active vertices from the original set of n
vertices, temporarily eliminating the other n− k inactive
vertices. During computation, subsets of variables are
activated by comparing their values to some criterion,
such as a threshold that is predefined or broadcast by a
master machine. For OMP, we use this latter method,
and update the threshold to be the vertex value of the kth

largest xi.
Selective push-pull is a general primitive that can natu-

rally express commonly-applied “ping-pong” operations
over bipartite graphs. In these operations, computations
flow from one side of the bipartite graph to the other, and
then back. For instance, referring to Figure 2, selective
push-pull is used to implement two matrix-vector multi-
plications, computing i+1st iterates of vectors x and y:
y(i+1) = Ax(i) and x(i+1) = ATy(i+1), with the entries of
matrix A as edge values. The primitive is initiated on the
xi denoted in red. For every connected edge, an xi multi-
plies its vertex value with the edge value, and sends the
result to neighbors y j. The y j’s will then sum received
products and use the result to update their vertex values.
Finally, xi’s pull in neighbors’ values, multiplying them
by the associated edge values. Using this simple prim-
itive, the entire conjugate gradient least squares method
can be expressed, which implements OMP’s inner loop.

Runtime efficiency of dynamic subgraph selection is
improved using selective push-pull because it does not
functionally require edge selection in the graph. Under

the normal Gather/Apply/Scatter model, a “pull”-only
paradigm, dynamic subgraph selection must index active
connected edges for every yi vertex. This solution is not
scalable to large graphs due to storage and computation
costs. The key idea of selective push-pull is to avoid ini-
tiating edge computations from the yi, so yi’s do not need
to maintain and compare against lists of activated xi’s.

We implement selective push-pull on top of GraphLab
with only minimal modifications. A selective push-pull
can itself be expressed with three rounds of Gather/-
Apply/Scatter, as shown in Figure 2. The first round
executes on the xi’s, where Gather and Apply are
passthrough functions, and Scatter is used to push a value
to y j’s and signal them for execution. The second round
executes on y j’s, where Apply is used to update the ver-
tex value based on pushed values, while Gather and Scat-
ter are passthrough functions. In the third round, xi’s ex-
ecute normally, pulling values from y j’s to update their
vertex values using Gather and Apply. Our implementa-
tion uses barrier synchronization to guarantee the execu-
tion order of the three rounds, and the only modification
to GraphLab is to allow the xi’s to schedule themselves
for the third round, at the end of the first round. We there-
fore add a “self-signaling” phase into the programming
abstraction after Scatter.

4.2 Statistical Barriers

To optimally implement dynamic sparse computations,
we need a flexible synchronization method that imposes
barriers on subsets of variables, as determined during
computation. We implement this model by introducing
a statistical barrier primitive that synchronizes on a dy-
namic subset of variables at the barrier, as determined by
some statistical metric. This primitive, for instance, can
require that a user-defined portion (e.g., 90%) of tasks
complete for execution to continue, imposing synchro-
nization in a statistical sense. Fully synchronous and
fully asynchronous execution can be implemented with
special cases of the statistical barrier, using threshold val-
ues of 100% and 0% of tasks, respectively.

Our use of statistical barriers exploits iterative sparse

4

100

101

102

103

104

104 105 106

O
M

P
 in

ne
r

lo
op

co

m
pu

ta
tio

n
tim

e
(s

ec
)

Problem size n for sparse recovery with k=40

1 machine
2 machines
4 machines
8 machines

Figure 3: Computation time of OMP’s inner loop under Gather/Apply/-
Scatter based on a static graph, measured as the number of machines
on EC2 is scaled from 1 to 8, for different problem sizes. Running time
scales with the graph size, reaching 181 seconds for 8 machines when
n = 500,000.

estimations’ partial resilience to out-of-order execution.
When the portion of completed tasks specified by the
barrier is enough to capture all active variables, correct
execution order is realized; when some values are erro-
neously excluded, errors can be corrected in subsequent
iterations of the algorithm. For example, after the OMP
Stage 1 outer loop, the estimated signal can be refined us-
ing an incomplete list of nonzero components. The OMP
computation will have another chance to capture left-out
components in later iterations. Therefore, provided no
component is systematically excluded from computation,
a statistical guarantee is sufficient for proper execution
order, though the total number of iterations may increase
to meet the same accuracy objective.

This statistical barrier primitive is similar in some as-
pects to early phase termination [13], an optimization
technique used to increase overall utilization during par-
allel computations. If a set of parallelizable tasks is mis-
matched to the number of processors, early phase termi-
nation abandons unfinished tasks when utilization drops
below a threshold. Idle time is reduced, as is the total
amount of computation performed, and profiling ensures
that induced errors are within acceptable limits. Though
sharing the same objective of sacrificing some computa-
tions to improve overall efficiency, our primitive is used
to realize asynchronous execution when precise depen-
dencies are unavailable to the scheduler, but sparsity and
error tolerance can be exploited to capture them statisti-
cally.

5 Experiments and Results

We deploy our modified GraphLab runtime on Amazon’s
EC2 cluster [14] to evaluate the performance of our exe-
cution model. Selective push-pull is fully implemented,
and we measure performance on several large OMP com-
putations as the number of machines is scaled. Statis-
tical barriers require more significant modifications to
the GraphLab runtime, so we emulate performance by

 0

 2

 4

 6

 8

 10

104 105 106

O
M

P
 in

ne
r

lo
op

co

m
pu

ta
tio

n
tim

e
(s

ec
)

Problem size n for sparse recovery with k=40

1 machine
2 machines
4 machines
8 machines

Figure 4: Computation time for OMP’s inner loop using selective push-
pull, measured as the number of EC2 machines is scaled from 1 to 8,
for different problem sizes. Running time scales with the number of
active variables, which is constant in the experiment, independent of
graph size n.

combining timing measurements from EC2 with strag-
gler statistics reported in the literature, in an event-driven
simulation. Completion time is computed by implement-
ing OMP, while omitting results from straggling tasks ac-
cording to the simulated barrier criterion.

The EC2 cloud is a representative data center, from
which computing resources can be leased on-demand.
Each EC2 instance in our configuration is a 64-bit vir-
tual machine providing one 1.0 GHz core to GraphLab,
with 7.5 GB of memory per virtual machine, and a 500
Mbps ethernet link connecting instances. Instances can
be requested within a specific geographic region, though
physical node location is transparent to the user.

5.1 Selective Push-Pull

Figures 3 and 4 compare the running time of OMP’s least
squares inner loop using both selective push-pull and a
baseline static GraphLab runtime, as the number of pro-
cessors is scaled from 1 to 8. We vary the input signal
size from n= 10,000 to 500,000, while keeping m= 200
and k = 40 constant throughout experiments. This means
that the number of active xi’s is always 40, and the least
squares problem has the same size regardless of the input
signal size n. This relationship is true to sparse coding
used in feature extraction, and in compressive sensing
recovery, wherein k and n are generally independent pa-
rameters.

With GraphLab’s static graph, the computation time
for the inner loop grows linearly with n due to the growth
in graph size. Although completion time can be reduced
by using multiple machines, it is still a function of n. As
shown in Figure 3, the computation spans 181 seconds on
8 machines for n = 500,000. In contrast, with selective
push-pull, the computation is focused on a much smaller
set of active variables. As shown in Figure 4, it takes
less than 2 seconds to complete, and the running time is
constant relative to n. This shows that selective push-
pull succeeds in only triggering necessary computation,
and can be essential for large scale sparse computation

5

101

102

103

104

 1 2 3 4 5 6 7 8

O
M

P
 c

om
pu

ta
tio

n
tim

e
fo

r
on

e
fu

ll
ite

ra
tio

n
(s

ec
)

Number of machines

Selective push-pull
GraphLab static graph

Figure 5: The computation time for running a full iteration of OMP
when n = 500,000. With selective push-pull, the computations are
focused on active variables, therefore outperforming the baseline
GraphLab implementation, which assumes a static graph structure.

problems.
In Figure 4, we note that the inner loop computa-

tion time is higher when we use more machines in this
case, because inter-machine communication cost domi-
nates. Since communication overheads may vary greatly
on EC2, we also see a bump for the 8-machine curve
at n = 100,000. This suggests that, for problem sizes
where selective push-pull drastically reduces the amount
of computation, the inner loop should be migrated to a
smaller number of machines. For simplicity in the exper-
iments reported in this paper, we kept the same number
of machines, despite a minor performance hit.

Figure 5 shows the time to compute a full iteration of
OMP for n = 500,000. With selective push-pull, the in-
ner loop cost is greatly reduced. As a result, the outer
loop computation, which involves all variables, domi-
nates. This means that computation time is decreased
as the number of machines increases. Overall, selective
push-pull improves our baseline GraphLab implementa-
tion with a static graph structure by 19x on 8 machines.

5.2 Evaluation for Compressive MRI
Next, we compare our GraphLab implementation of
OMP with selective push-pull enabled, to the results re-
ported for compressive time-lapse MRI in [11]. With di-
mensions n = 35,000, m = 7000, and k = 2333, we re-
port a decoding time of 334s using 8× 1.0 GHz cores.
This compares to previous results of 534s on a dual-core
2.4 GHz processor. Though we use more compute cores,
Figure 5 shows that we can scale the computation to fur-
ther reduce reconstruction time, possibly by leasing ad-
ditional virtual machines on-demand. This contrasts with
the implementation of [11], which is limited by the per-
formance of a single platform.

5.3 Statistical Barriers
Finally, using an event-driven simulation and the strag-
gler statistics reported from a year’s worth of MapRe-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 5 10 15 20 25 30 35 40 45

C
D

F

OMP Completion Time (sec)

p=100%
p=95%
p=75%

Figure 6: Completion times for n= 10,000,m= 200 OMP using statis-
tical barriers that require p% of tasks to complete. By trimming strag-
glers without invoking many additional iterations, a p = 95% statistical
barrier saves 2.5x time at the median, and 4x in the worst case.

duce tasks in a production data center [1], we evaluate
statistical barrier performance. We run a large number of
OMP computations to termination based on a fixed ac-
curacy criterion (residual≤ 0.01). During each iteration,
a statistical barrier is used to push the outer loop com-
putation forward once a user-specified percentage of xi’s
have completed. We measure overall completion time,
which includes savings from straggler mitigation, as well
as costs due to possible additional OMP iterations.

In [1], researchers report 25% of all parallel compu-
tations experiencing a high proportion (15+%) of strag-
gling tasks, defined as 1.5x median completion time. Of
these stragglers, 80% complete in 2.5x the median, while
10% require more than 10x median completion time,
showing just how bad the straggler problem can be in the
wild. Using these statistics, we fit the median completion
time to that measured on a single EC2 instance. Maxi-
mum completion time is capped to 15x the median, and
we adopt a pessimistic rate of 30% computations affected
by stragglers. Tasks are assigned to w = 10 machines,
and are load balanced. We assign the slowest tasks to
a single machine. This not only makes the gains from
statistical barriers easily understood, but reflects slow-
downs that cause machine-specific performance anoma-
lies, such as location-related network delays. Finally, we
randomize task execution order so that the computation
is not systematically biased.

Figure 6 shows the empirical cumulative distribution
functions (CDFs) of OMP completion times using sta-
tistical barriers requiring p = 75%,90%, or 100% tasks
to complete for an outer-loop computation size of n =
100,000, and k = 40. All computations achieve the same
decoding accuracy, though some require more iterations
as a result of the statistical barrier. The baseline method
uses a rigid barrier (p = 100%) and has a median com-
pletion time of 17s, roughly matching the 16s comple-
tion time observed using 8 machines on EC2. However,
stragglers hurt, and slow the OMP computation by 10x
in the worst case. In comparison, both statistical barri-
ers have better median completion times of 6 seconds.

6

We see the effect of extra iterations with the aggressive
p = 75% barrier, which performs worse in general than
the p = 95% barrier, due to extra computations. How-
ever, by trimming the worst stragglers, the 95% barrier
realizes a 2.5x improvement in the average completion
time, and a 4x improvement in the worst case. This sim-
ulation shows that, when a small number of stragglers
affect the computation, most of the gains from statistical
barriers can be captured by setting p to a large value such
as p = 90%.

6 Conclusion

In this paper, we describe a class of iterative algorithms,
which exhibit a sparse set of active variables and de-
pendencies during computation. We showed that this
class is suboptimally served by current programming ab-
stractions, whose assumptions of statically defined vari-
ables and dependencies lead to a huge performance hit.
Exploiting the dynamic sparse structures in these algo-
rithms, we defined two new primitives – selective push-
pull, and statistical barriers – that work together to re-
gain lost efficiency by implementing a flexible execution
model. Performance gains were then demonstrated in bi-
partite graphs of practical importance. Although these
primitives were described in this paper for this specific
class of computations, we believe that they will prove
useful to a wider range of applications in which effi-
ciency can be gained by dynamic, sparse graph compu-
tations, or by optimistic straggler mitigation.

References
[1] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,

Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in
map-reduce clusters using mantri,” in Proceedings of the 9th
USENIX conference on operating systems design and implemen-
tation (OSDI’10), USENIX, 2010.

[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural
graphs,” in Proceedings of the 10th USENIX conference on oper-
ating systems design and implementation (OSDI’12), USENIX,
2012.

[4] J. A. Tropp, “Greed is good: Algorithmic results for sparse ap-
proximation,” IEEE Transactions on Information Theory, vol. 50,
no. 10, pp. 2231–2242, 2004.

[5] M. Elad and M. Aharon, “Image denoising via sparse and re-
dundant representations over learned dictionaries,” IEEE Trans-
actions on Image Processing, vol. 15, no. 12, pp. 3736–3745,
2006.

[6] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples,” Applied and Computa-
tional Harmonic Analysis, vol. 26, no. 3, pp. 301–321, 2009.

[7] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse so-
lution of underdetermined linear equations by stagewise orthogo-
nal matching pursuit,” IEEE Transactions on Information Theory,
vol. 58, no. 2, pp. 1094–1121, 2012.

[8] P. Indyk and M. Ruzic, “Near-optimal sparse recovery in the l1
norm,” in IEEE 49th Annual Symposium on Foundations of Com-
puter Science (FOCS’08), pp. 199–207, IEEE, 2008.

[9] M. Akcakaya, J. Park, and V. Tarokh, “A coding theory approach
to noisy compressive sensing using low density frames,” IEEE
Transactions on Signal Processing, vol. 59, no. 11, pp. 5369–
5379, 2011.

[10] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The ap-
plication of compressed sensing for rapid mr imaging,” Magnetic
Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195, 2007.

[11] M. Usman, C. Prieto, F. Odille, D. Atkinson, T. Schaeffter,
and P. Batchelor, “A computationally efficient OMP-based com-
pressed sensing reconstruction for dynamic MRI,” Physics in
Medicine and Biology, vol. 56, no. 7, p. N99, 2011.

[12] S. Vasanawala, M. Murphy, M. Alley, P. Lai, K. Keutzer, J. Pauly,
and M. Lustig, “Practical parallel imaging compressed sensing
mri: Summary of two years of experience in accelerating body
mri of pediatric patients,” in 2011 IEEE International Symposium
on Biomedical Imaging: From Nano to Macro, pp. 1039–1043,
IEEE, 2011.

[13] M. C. Rinard, “Using early phase termination to eliminate load
imbalances at barrier synchronization points,” in ACM SIGPLAN
Notices, vol. 42, pp. 369–386, ACM, 2007.

[14] http://aws.amazon.com/ec2/.

7

