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Introduc<on	  

§  Dynamic	  spectrum	  access	  (DSA)	  with	  cogni6ve	  radios	  
–  Alleviates	  inefficient	  spectrum	  alloca6on	  and	  licensing	  

§  Accurate	  low-‐latency	  spectrum	  sensing	  most	  important	  to	  
maximize	  DSA	  benefits	  

§  Conven6onal	  spectrum	  analyzer	  
–  Can	  be	  ideal	  spectrum	  sensor	  
–  Measures	  amplitude	  of	  signals	  over	  !me	  and	  converts	  to	  power	  

magnitudes	  across	  frequency	  
–  FFT	  at	  the	  heart	  of	  modern	  spectrum	  analyzer	  equipment	  

•  Expense	  of	  FFT	  ⟹	  true	  boYleneck	  is	  to	  keep	  up	  with	  Nyquist	  sampling	  	  
»  E.g.,	  1-‐MHz	  channel:	  2	  ×	  106	  ×	  sample	  size	  bps	  ⟶	  40	  Mbps	  (if	  20-‐bit	  sample)	  	  	  



Network-‐based	  Spectrum	  Analysis	  

§  Distributed	  spectrum	  sensing	  
–  Spectrum	  analyzer	  &	  measurers	  separate	  en66es	  but	  networked	  

§  Simple,	  in	  situ	  compression	  of	  measurement	  data	  at	  
acquisi6on	  

–  Compressive	  sensing	  encode	  

§  In-‐network	  processing	  of	  data	  
–  Combine	  mul6ple	  compressed	  measurements	  

§  Recovery	  of	  original	  data	  
–  Undo	  in-‐network	  data	  processing	  &	  compressive	  sensing	  decode	  



Case	  for	  Distributed	  Spectrum	  Sensing	  (1)	  
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Case	  for	  Distributed	  Spectrum	  Sensing	  (2)	  
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Challenges	  

§  Naïve	  FFT	  spectrum	  analysis	  boYlenecked	  by	  high	  data	  rate	  
of	  Nyquist	  sampling	  

–  Use	  of	  mul6ple	  spectrum	  sensors	  each	  monitoring	  a	  sub-‐band,	  we	  
have	  mi6gated	  this	  problem	  

§  How	  to	  minimize	  network	  communica6on	  cost	  of	  sensor	  
measurements	  propaga6ng	  network	  

§  Fine-‐grained	  spectral	  analysis	  of	  wideband	  spectrum	  



Problem	  Statement	  

What	  is	  the	  size-‐reducing	  opera<on	  θ	  that	  makes	  
network-‐based	  analyzer	  feasible?	  	  
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around the corresponding frequency index in the spectrum.
Spectrum analyzers designate resolution bandwidth b = B/N

to refer the spacing between two consecutive frequency com-
ponents. Resolution bandwidth determines the granularity of
an analysis—that is, the smaller the resolution bandwidth, the
finer the granularity.

The computational complexity of an N -point FFT is in
O(N logN) time, and a few kHz resolution bandwidth for
the 1-MHz band will result N to be as large as 512 (FFT
commonly performed in a power of 2). Sometimes, creating
a new snapshot may not require full N measurements per
every analysis cycle if some prior knowledge on a channel
or signals is given. The real challenge would be analyzing a
wideband spectrum of several orders of magnitude larger than
the 1-MHz example. A naı̈ve solution could lead to a network
bandwidth requirement as large as hundreds of Gbps, which
is much beyond what a wireless networking technology can
support in the foreseeable future.

B. Problem Statement

Imagine sensor nodes in a wireless network with base
station as illustrated in Fig. 1. We use a term “system backend”
or simply “system” to designate a control entity responsible
to run the spectrum analyzer daemon. We denote “sensor”
a node that performs sampling in the time domain and pro-
vides measurements to the system, and there are P sensors
employed by the system. Suppose that a spectrum under
analysis has a total bandwidth Btot. The system partitions the
spectrum into J subchannels with bandwidths, B1, . . . , BJ ,
such that Btot =

�J
i=1 Bi. For simplicity, assume adjacent

subchannels do not overlap. (It is relatively straightforward
to extend our framework for overlapping scenarios.) There
is a communication protocol P used between the system
and a node to administer the node as one of the sensors.
The system dispatches a measurement assignment, denoted in
(fl, Bl), to sensor node l. This means that sensor l should
tune to fl, the center frequency of the assigned subchannel,
and start sampling according to its bandwidth Bl. Assuming
equipartition of the spectrum (i.e., Bi = B for all i), sensor l
yields a vector of time-domain measurements xl periodically
where dim(xi) = N .

In this system model, the sensor measurements can be first
transmitted to the base station before delivered to the system
backend. If there are exactly P = J sensor nodes with each
measuring one of J subchannels uniquely, we have a total of
L =

�J
i=1 dim(xi) = J × N measurements constituting x

(all xi’s) for the entire spectrum. Our objective is to minimize
the total number of measurements L transmitted to the system
well under J ×N samples per each cycle.

We clarify that there are two types of nodes, a sensor or
network node, based on functionalities in the system. Sensor
nodes produce measurements in the time domain and transmit
either directly to the base station, for example, as depicted
by ‘white’ circles in Fig. 2(a) or to a network node that can
relay the measurements for others as in Fig. 2(b). We assert
that sensor nodes are end-nodes and not meant to forward

Spectrum under analysis with total bandwidth Btot 
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Fig. 1. A wideband spectrum (e.g., Btot ≈ a few GHz) under analysis
is partitioned for collective measurement efforts by multiple sensor nodes.
Spectral analysis on the measured data takes place at the potentially distant
system backend.

other nodes’ measurements. On the other hand, network nodes
can forward the measurements received from others, using
multi-hop relays to the base station as represented by ‘black’
circles in Fig. 2(b). Network nodes play a role that helps save
the uplink bandwidth to the base station by combining or
encoding multiple sets of measurements received from other
nodes to eventually reduce the total measurements to the
base station. Under this model, our goal is to recover almost

exact (i.e., incurring an error below some small threshold
�) frequency response of the spectrum under analysis as if
the frequency response were constructed by running FFT on
Nyquist sampling.

We model the communication cost of our network-based
spectrum analyzer as the total number of measurements re-
ceived by (or transmitted to) the base station, consisting of all
measurements directly from sensor nodes and through network
nodes. Therefore, we wish to:

argmin
θ

J�

i=1

dim(yi = θ(xi)) s. t. �X(fk)− X̂(fk)��2 ≤ �,

where θ(.) is a size-reducing function we seek, which makes
dim(yi) � dim(xi) ∀i ∈ {1, · · · , J}. X(.) is the actual
frequency response of x, and X̂(.) the estimate reconstructed
from the compressed measurements yi. fk is a frequency
component index in J ×N -point FFT, where 0 ≤ k < J ×N .
The constraint is a performance requirement stipulating the
accuracy of the reconstructed frequency response such that the
Euclidean (�2) norm of the frequency response error should be
bound within some small constant �.

C. Our Contribution

The main contribution of this paper is the practical, network-
based wideband spectrum analyzer system and in-network data
processing and recovery schemes. In particular, we propose
the use of compressive sensing [5] in each sensor node’s
sampling operation with pre-distributed sensing matrices. We

J:	  #	  of	  par66ons	  in	  the	  spectrum	  
xi:	  raw	  measured	  data	  from	  par66on	  i	  
yi:	  compressive	  measurement	  of	  xi	  
X:	  frequency	  response	  of	  original	  x	  =	  {xi}∀i	  	  
X:	  frequency	  response	  of	  restored	  x	  
ε:	  some	  small	  error	  requirement	  	  



Problem	  Illustrated	  
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Solu<on	  Approach	  (1)	  
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Solu<on	  Approach	  (2)	  
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Reminder:	  Compressive	  Sensing	  

§  Encode:	  CN	  ⟶	  CM	  

–  Simple	  &	  data-‐blind	  ⟹	  N:M	  compression	  (M	  <<	  N)	  for	  sparse	  signal	  
§  Decode	  

–  Available	  sparsifying	  basis	  (Ψ)	  determines	  M	  ≥	  c·∙K·∙log(N/K)	  
•  Sparsity	  K	  revealed	  by	  Ψ	  	  

–  L1-‐minimiza6on	  (e.g.,	  linear	  programming):	  min║s║1	  s.t.	  y	  =	  ΦΨ–1s	  	  

Encode 

Φ=y x
M×N 

N×1 
M×1 

Ψ-‐1 sΦ=y 

Ψ s=x
(K-sparse) 

N×N N×1 

Decode 



How	  to	  Separate	  Sum	  of	  Compressed	  Measurements?	  

∑	  

y1	  =	  Φx1	  	  

y2	  =	  Φx2	  	  y	  =	  Φx1	  +	  Φx2	  +	  ...	  +	  ΦxP	  	  

yP	  =	  ΦxP	  	  
...	  

Generalized	  P-‐way	  sum	  

Joint	  Decoding	  Algorithm	  	  

= Ψ1
–1 

s1	  

Φ y 

Ψ–1 
(Overcomplete	  basis)	  

Compressive	  sensing	  decode	  on	  y	  =	  (Φ	  Ψ–1)	  s	  to	  solve	  for	  s1,	  s2,	  ...,	  sP	  jointly	  	  

...	  

s2	  

sP	  

Ψ2
–1 ΨP

–1 ...	  
Must	  solve	  	  
for	  P×N	  
unknowns	  
in	  one-‐shot	  

Can	  we	  do	  be@er?	  



Ini<al	  Approxima<on	  by	  Least	  Squares	  

§  Require	  	  
–  {Q1,	  Q2,	  ...,	  QP}	  ≜	  dis!nct	  sparsifying	  bases	  for	  each	  channel	  

•  Q	  can	  be	  es6mated	  from	  Rx	  =	  E[xxH]	  =	  Q	  Λ	  QH	  

§  Leading	  components	  have	  largest	  eigenvalues	  
§  Remove	  non-‐leading	  components	  un6l	  we	  have	  

overdetermined	  system	  
–  More	  equa6ons	  than	  unknowns:	  dim(y)	  >	  #	  of	  unknowns	  
–  Least	  squares	  does	  this	  job	  well	  

0	   0	   0	  
Keep	  only	  several	  leading	  
eigenvectors	  of	  Qi	  

Equivalent	  to	  
keeping	  variables	  at	  
leading	  posi6ons	  
only	  (others	  are	  
mul6plied	  by	  zeros)	  
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the basis estimation, the system directs sensor nodes with a
longer measurement period. Preparation Phase needs not be
scheduled too frequently for analyzing modulated RF signals
as we can expect that the locations of dominant eigenvectors
(i.e., leading principal components) in the covariance matrix
of a subchannel change slowly or remain relatively stationary
over time.

How KLT basis can be estimated: We adopt a technique
that integrates compressive sensing with using optimal KLT
basis [18]. Here, we summarize the technique. The KLT basis
Q is computed from a sample autocorrelation matrix Rx =
E[xxH], where x contains discrete channel measurements over
time. Similarly, the autocorrelation matrix of the compressive
measurements y is: Ry = E[yyH]. By Definition 1, Ry =
E[ΦxxHΦT] = ΦE[xxH]ΦT. So, Ry = ΦRxΦ

T. Since ΦT

is not a square matrix, using its pseudo-inverse (ΦT)†, we
obtain:

Ry(Φ
T)† = ΦRx (3)

Eq. (3) suggests that we have been compressively sensing Rx

in Ry(ΦT)†, which is already captured by y = Φx to encode
the original channel measurements x.

Following the above reasoning, we conclude that a KLT
basis Q can be recovered via compressive sensing, comprised
in four steps:

1) Decode X (DFT of x) from y = (ΦF−1)X where F−1

is the inverse DFT matrix;
2) Recover x by computing x = F−1X;
3) Repeat the previous steps l times to numerically com-

pute: Rx = E[xxH] = 1

l

�l
i=1

xixH

i ;
4) Obtain Q from the eigenvalue decomposition Rx =

QΛQH.

B. Initial Approximation via Least Squares Recovery

The KLT basis estimation can identify dominant eigen-
components by examining Λ whose diagonals are the eigen-
values of the channel autocorrelation Rx. When compressive
measurements arrive (as a P -way sum), the system first
sets up an overdetermined system of equations specified by
Definition 4, using only several dominant components per
each subchannel mixed in the P -way sum. To set up the
overdetermined equations, the system leverages its knowledge
on the locations of the leading eigen-components of the
subchannels. We compute the initial approximation by the least
squares, a method well-known for overdetermined equations.

Definition 4: The initial approximation determines a solu-

tion by the least squares method to an overdetermined system

of equations:

y = Φ [Q̃1 Q̃2 · · · Q̃P ]





s̃1

s̃2
.
.
.

s̃P




(4)

where y is the P-way sum of compressive measurements, Q̃i is

zero-filled truncated from the i-th KLT basis Qi such that Q̃i

contains only αi nonzero columns of dominant eigenvectors

corresponding to the first αi leading eigenvalues.

C. Iterative Refinement via Compressive Sensing Decoding

We refine the initial approximation through iterative relax-
ation(s) based on compressive sensing. We will relax only one

si at a time by systematically eliminating (P − 1) yi’s with
back-substituting (P − 1) s̃i’s from using the result of the
initial approximation. For example, we relax s1 by solving:

y = Φ [Q1 Q̃2 · · · Q̃P ]





s1
ˆ̃s2
...
ˆ̃sP




(5)

where the rest ˆ̃si’s are the back-substituted initial approxi-
mate. It is important to distinguish this system of equations,
which is underdetermined, from the overdetermined system in
Definition 4. We use the �1-minimization decoding, which is
popular in compressive sensing, and relax all N unknowns
in s1. After relaxing s1, we relax the next, say s2. For s2,
we back-substitute s1 with ŝ1 (which was just relaxed) and
s̃3, . . . , s̃P with ˆ̃s3, . . . , ˆ̃sP from the initial approximation:

y = Φ [Q1 Q2 Q̃3 · · · Q̃P ]





ŝ1

s2
ˆ̃s3
...
ˆ̃sP





(6)

This process iterates for all P si’s. Note that another stage
of P relaxations can take place. The new stage uses the result
of the relaxations from the previous stage.

V. ALGORITHMS

In this section, we first look into a joint decoding algorithm
that can recover the original signals from the sum of compres-
sive measurements. Next, we present our algorithms for initial
approximation and iterative refinement, which we described in
the previous section. We argue that the latter algorithms can
achieve better accuracy than the joint decoding while using
fewer measurements.

A. Joint Decoding Algorithm

For simplicity, consider 2-way combined compressive mea-
surements y = y1 + y2 = Φx1 +Φx2. Joint decoding is a
technique to recover x1 and x2 from y in one shot (hence,
the term joint). Decoding one of the signals, say x1, from y is
trivial if y2 is known, because we can decode y−y2 = Φx1.
But how can we recover the original signals without explicit
availability of additional measurements to separate one signal
from another?

Simply put, joint decoding leverages the overcomplete
representation used in, for example, blind source separation
[19]. Using an overcomplete basis Ψ = [Ψ1Ψ2] for the



Itera<ve	  Refinement	  by	  CS	  Decode	  

§  Compressive	  sensing	  decodes	  underdetermined	  system	  
–  More	  unknowns	  than	  equa6ons	  

§  Relax	  si’s	  in	  descending	  order	  of	  their	  L1-‐norm	  
–  Compressive	  sensing	  works	  beYer	  on	  largest-‐first	  decoding	  principle	  
–  No	  need	  to	  solve	  for	  more	  than	  N	  unknowns	  at	  once	  

•  N	  ≜	  length	  of	  original,	  uncompressed	  measurements	  (xi’s)	  on	  channel	  i	  	  

§  Can	  be	  repeated	  in	  another	  stage	  
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the basis estimation, the system directs sensor nodes with a
longer measurement period. Preparation Phase needs not be
scheduled too frequently for analyzing modulated RF signals
as we can expect that the locations of dominant eigenvectors
(i.e., leading principal components) in the covariance matrix
of a subchannel change slowly or remain relatively stationary
over time.

How KLT basis can be estimated: We adopt a technique
that integrates compressive sensing with using optimal KLT
basis [18]. Here, we summarize the technique. The KLT basis
Q is computed from a sample autocorrelation matrix Rx =
E[xxH], where x contains discrete channel measurements over
time. Similarly, the autocorrelation matrix of the compressive
measurements y is: Ry = E[yyH]. By Definition 1, Ry =
E[ΦxxHΦT] = ΦE[xxH]ΦT. So, Ry = ΦRxΦ

T. Since ΦT

is not a square matrix, using its pseudo-inverse (ΦT)†, we
obtain:

Ry(Φ
T)† = ΦRx (3)

Eq. (3) suggests that we have been compressively sensing Rx

in Ry(ΦT)†, which is already captured by y = Φx to encode
the original channel measurements x.

Following the above reasoning, we conclude that a KLT
basis Q can be recovered via compressive sensing, comprised
in four steps:

1) Decode X (DFT of x) from y = (ΦF−1)X where F−1

is the inverse DFT matrix;
2) Recover x by computing x = F−1X;
3) Repeat the previous steps l times to numerically com-

pute: Rx = E[xxH] = 1

l

�l
i=1

xixH

i ;
4) Obtain Q from the eigenvalue decomposition Rx =

QΛQH.

B. Initial Approximation via Least Squares Recovery

The KLT basis estimation can identify dominant eigen-
components by examining Λ whose diagonals are the eigen-
values of the channel autocorrelation Rx. When compressive
measurements arrive (as a P -way sum), the system first
sets up an overdetermined system of equations specified by
Definition 4, using only several dominant components per
each subchannel mixed in the P -way sum. To set up the
overdetermined equations, the system leverages its knowledge
on the locations of the leading eigen-components of the
subchannels. We compute the initial approximation by the least
squares, a method well-known for overdetermined equations.

Definition 4: The initial approximation determines a solu-

tion by the least squares method to an overdetermined system

of equations:

y = Φ [Q̃1 Q̃2 · · · Q̃P ]
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s̃2
.
.
.

s̃P




(4)

where y is the P-way sum of compressive measurements, Q̃i is

zero-filled truncated from the i-th KLT basis Qi such that Q̃i

contains only αi nonzero columns of dominant eigenvectors

corresponding to the first αi leading eigenvalues.

C. Iterative Refinement via Compressive Sensing Decoding

We refine the initial approximation through iterative relax-
ation(s) based on compressive sensing. We will relax only one

si at a time by systematically eliminating (P − 1) yi’s with
back-substituting (P − 1) s̃i’s from using the result of the
initial approximation. For example, we relax s1 by solving:

y = Φ [Q1 Q̃2 · · · Q̃P ]





s1
ˆ̃s2
...
ˆ̃sP




(5)

where the rest ˆ̃si’s are the back-substituted initial approxi-
mate. It is important to distinguish this system of equations,
which is underdetermined, from the overdetermined system in
Definition 4. We use the �1-minimization decoding, which is
popular in compressive sensing, and relax all N unknowns
in s1. After relaxing s1, we relax the next, say s2. For s2,
we back-substitute s1 with ŝ1 (which was just relaxed) and
s̃3, . . . , s̃P with ˆ̃s3, . . . , ˆ̃sP from the initial approximation:

y = Φ [Q1 Q2 Q̃3 · · · Q̃P ]





ŝ1

s2
ˆ̃s3
...
ˆ̃sP





(6)

This process iterates for all P si’s. Note that another stage
of P relaxations can take place. The new stage uses the result
of the relaxations from the previous stage.

V. ALGORITHMS

In this section, we first look into a joint decoding algorithm
that can recover the original signals from the sum of compres-
sive measurements. Next, we present our algorithms for initial
approximation and iterative refinement, which we described in
the previous section. We argue that the latter algorithms can
achieve better accuracy than the joint decoding while using
fewer measurements.

A. Joint Decoding Algorithm

For simplicity, consider 2-way combined compressive mea-
surements y = y1 + y2 = Φx1 +Φx2. Joint decoding is a
technique to recover x1 and x2 from y in one shot (hence,
the term joint). Decoding one of the signals, say x1, from y is
trivial if y2 is known, because we can decode y−y2 = Φx1.
But how can we recover the original signals without explicit
availability of additional measurements to separate one signal
from another?

Simply put, joint decoding leverages the overcomplete
representation used in, for example, blind source separation
[19]. Using an overcomplete basis Ψ = [Ψ1Ψ2] for the

Relax	  s1	  
1.  Back-‐subs6tute:	  yʹ′	  =	  y	  –	  Φ[Q2s2	  +	  ...	  +	  QPsP]	  

using	  ini6al	  approximates	  of	  s2,	  ...,	  sP	  
2.  Do	  compressive	  sensing	  decode	  with	  	  

yʹ′	  =	  (Φ	  Q1)	  s1	  to	  obtain	  refined	  s1	  

~	   ~	   ~	   ~	  ^	   ^	  



Evalua<on	  in	  Lab	  Testbed	  of	  SW-‐defined	  Radios	  	  

100BaseT	  

(f1,B)	  

Spectrum	  analyzer	  
•  Collects	  in-‐network	  combined,	  

compressed	  measurements	  
•  8⨯512-‐point	  FFT	  

(f5,B)	  

Four	  sensor	  nodes	  (USRP2/USRP-‐N200)	  with	  WBX	  RF	  daughterboards	  	  

(f2,B)	  (f6,B)	   (f3,B)	  (f7,B)	   (f4,B)	  (f8,B)	  

•  Measure	  8	  channels	  from	  UHF	  white	  space	  	  
fi	  =	  {512.5,	  537.5,	  562.5,	  587.5,	  612.5,	  637.5,	  662.5,	  687.5}	  MHz	  

•  Each	  channel	  with	  B	  =	  25	  MHz	  bandwidth	  

Network	  node	  (simulated)	  
•  Combines	  mul6ple	  compressed	  

measurements	  in-‐network	  



Some	  Details	  

§  Sensing	  &	  recovery	  methods	  
1.  Compressive	  sensing	  only	  (no	  combining)	  
2.  P-‐way	  combined	  compressed	  measurements	  for	  P	  =	  2,	  4,	  8	  

§  M	  =	  #	  of	  compressed	  measurements	  (per	  channel)	  
–  Varied	  from	  26	  (20x	  compression)	  to	  308	  (1.67x)	  

§  Error	  metric	  

–  Average	  normalized	  frequency	  response	  error	  per	  sample	  
–  L	  =	  8⨯512	  =	  4096	  
–  fk	  ∈	  [500,700)	  MHz	  

8

frequency response for the entire spectrum contributed by all

USRPs.

For compressive sensing, we pre-generated a set of Φ matri-

ces and stored in each USRP. For each subchannel, the USRPs

could take compressive measurements using configurable M ,

which we varied from 26 (M/N = 5 % or 20x compression)

to 308 (60 % or 1.67x). USRPs used the same Φ under

each configuration. We also saved uncompressed original data

for evaluative purposes. The uplink transmission to the base

station from an USRP was simulated over a fixed Ethernet, as

precise wireless uplink behaviors (assuming no packet losses)

should hardly affect what we examined (i.e., number of total

measurements and decoding accuracy).

The USRPs were coarsely synchronized, and each USRP’s

measurement start and end times cannot be determined exactly.

This is similar to a swept-tuned spectrum analyzer that mea-

sures a narrow subchannel one at a time, staying for a short

duration before moving to next and cycling the entire spec-

trum. The USRPs (unfortunately) incur a 2-second, hardware-

related delay when changing radio frequency, resulted from

driving a voltage controlled oscillator (VCO).

B. Description of Experiments

We evaluated the following schemes:

1) No mixing. USRPs perform compressive sensing on

their assigned subchannels and transmit the compressive

measurements directly to the base station, i.e., there are 8

transmissions to the base station per one complete cycle

of measurements for the entire spectrum;

2) P -way combined compressive measurements. Varying

P = 2, 4, 8, USRPs mix their compressive mea-

surements, thus there are 8/P transmissions per one

complete cycle.

We compared the decoding performance of the proposed

algorithm to joint decoding for P = 8. Note that for no

mixing case the proposed algorithm needs not be used, as each

subchannel can be recovered individually by the standard �1-

minimum decoder.

C. Error Metric

We use the following error metric to evaluate the accuracy

of our decoding algorithm:

ξ =
1

L

L�

k=1

�X(fk)− X̂(fk)��2
�X(fk)��2

(7)

where X(fk) is the frequency response of the spectrum under

analysis from the Nyquist sampling (no compression and

no manipulation of original data), and X̂(fk) the recovered

frequency response from a scheme we mentioned in Section

VI.B. Note frequency indices fk ∈ [500, 700)MHz with

k = 0, . . . , L − 1, following the discrete Fourier analysis

convention. Note also that the error metric ξ is normalized
(by the true value) per-sample mean.

D. Decoding Accuracy and Complexity
With varying number of compressive measurements for

each scheme, we counted the total number of measurements

received by the base station while computing the error metric.

Fig. 8 presents the number of measurements plotted against

the error metric ξ reflecting the accuracy of reconstructed

frequency responses. The 8-way combining scheme achieved a

5-fold saving in communication bandwidth for the same accu-

racy by no combining scheme. When we used the proposed de-

coding algorithm for P -way combined schemes, we applied 2
stages of iterative refinements. The proposed algorithm proved

to be better than the joint decoding in accuracy. In Fig. 9,

we plot frequency responses (i.e. spectrum analyzer display)

of the spectrum constructed from uncompressed original time

samples (4096 measurements), compressed but no combining

scheme (832 measurements, 4.9x compression), and 8-way

combined (208 measurements, 20x compression) for visual

comparison.

The proposed algorithm was also better in computational

complexity. To decode 8-way combined measurements, the

joint decoding requires to operate on 8×512 = 4096 variables

at once, whereas the proposed algorithm operates on 40

unknowns (i.e., each αi = 5) with the least squares and 2

stages of J = 8 relaxations (each decodes N = 512 variables).

The �1-minimum decoding has complexity of O(N3
) [13],

and the joint decoding requires O(P 3N3
) while the proposed

algorithm has only O(2PN3
) excluding the least squares in

the initial approximation. The least squares solve for
�P

i=1 αi

unknowns, which is about orders of magnitude fewer than PN

and therefore not a contributing factor.

E. Effect of Iterative Refinements
Fig. 10 depicts the error improvement versus the number

of refinement stages applied for 8-way combining (i.e., P =

8). The total number of measurements received by the base

station per one complete cycle, Mtot, were 50, 100, and 200.

Note that zero iterative (refinement) stage means the initial

approximation only. Error improvement becomes more signifi-

cant for smaller Mtot, which suggests that more computations

in decoding could compensate insufficient measurements to

some degree but could not overcome completely. There is a

diminishing return on the error improvements, and the return

is saturated faster for larger Mtot.

VII. CONCLUSION

We have described a network-based spectrum analyzer that

operates over distant sensor nodes providing the measurements

to construct fine-grained spectral information. Overcoming the

network communication cost as we scale up the number of

sensor nodes has been critical to our approach. To address

this, we have devised a recovery algorithm that accompanies a

simple, additive in-network combining scheme for compressed

measurements from multiple sensors. Our approach makes

an important assumption that discrete measurements obtained

by sensors bring out sparsity in the frequency domain or in

a custom basis. Designing sparsity-preserving discretization



Error	  Performance	  
N
um

be
r	  o

f	  m
ea
su
re
m
en

ts
	  tr
an

sm
i]
ed

	  

§  Total	  #	  of	  measurements	  transmiYed	  ∝	  communica6on	  cost	  
§  P-‐way	  in-‐network	  combining	  could	  reduce	  measurements	  up	  to	  P-‐fold	  

–  Given	  error	  budget,	  #	  of	  measurements	  can	  remain	  constant	  un6l	  some	  limit	  
–  This	  limit	  depends	  on	  sparsity	  of	  channels	  in	  spectrum	  

§  Proposed	  algorithm	  achieves	  similar	  accuracy	  performance	  as	  joint	  
decoding	  while	  requiring	  P	  6mes	  less	  unknowns	  to	  solve	  concurrently	  



Improvement	  at	  Refinement	  Stages	  
Er
ro
r	  (
ξ)
	  	  

Number	  of	  CS	  refinements	  

•  Error	  improvement	  more	  significant	  with	  smaller	  Mtot	  
•  Small	  gain	  on	  accuracy	  axer	  2	  stages	  

20x	  compression	  

8-‐way	  combined	  



Summary	  
§  Network-‐based	  spectrum	  analysis	  

–  Distributed	  spectrum	  sensors	  employed	  by	  distant	  analyzer	  operate	  over	  network	  
–  Key	  is	  to	  overcome	  network	  communica6on	  cost	  to	  move	  spectrum	  measurements	  

§  Our	  approach	  
–  Compressive	  sensing	  encoding	  at	  sensor	  nodes	  
–  Simple	  in-‐network	  summing	  of	  mul6ple	  compressed	  measurements	  to	  further	  

reduce	  overhead	  at	  network	  nodes	  

§  New	  recovery	  algorithm	  
–  Least	  squares	  on	  leading	  principal	  components	  to	  separate	  individual	  measurements	  

from	  the	  sum	  
–  Itera6ve	  relaxa6on	  by	  compressive	  sensing	  decode	  on	  each	  individual	  data	  

§  Conclusion:	  sensors	  can	  be	  added	  without	  addi<onal	  communica<on	  cost	  
–  Hold	  true	  un6l	  some	  limit	  determined	  by	  sparsity	  
–  Sparsity	  =	  true	  measure	  for	  channel	  informa6on	  content	  	  



Suppor<ng	  Materials	  



Remark	  on	  Sparsity	  and	  Discre<za<on	  

§  Discrete	  measurements	  performed	  by	  sensors	  preserve	  or	  
bring	  out	  sparsity	  of	  original	  signal	  in	  frequency	  domain	  or	  in	  
a	  custom	  basis	  

–  This	  is	  fundamental	  premise	  of	  our	  approach	  

§  Design	  of	  beYer	  sparsity-‐inducing	  discre6za6on	  schemes	  is	  
challenging	  but	  can	  hugely	  enhance	  our	  approach	  



CS	  Recovery	  of	  Complex	  Signals	  

§  y	  =	  Φx	  =	  (ΦΨ-‐1)x	  
–  x	  =	  N×1	  complex-‐valued	  
–  y	  =	  M×1	  complex-‐valued	  
–  Φ	  =	  M×N	  real-‐valued	  
–  Ψ	  =	  N×N	  complex-‐valued	  

§  y	  =	  Φ[xR+j·∙xI]	  =	  ΦΨ-‐1[XR+j·∙XI]	  =	  Φ[ΨR
-‐1+j·∙ΨI

-‐1][XR+j·∙XI]	  
–  j	  =	  sqrt(-‐1)	  

§  We	  want:	  yʹ′	  =	  AXʹ′	  

y '=
yR
yI
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Decode	  yʹ′	  =	  AXʹ′	  

yR 

= 

2N×1 

2M×2N 2M×1 

yI 

ΦΨR
-1 –ΦΨI

-1 

ΦΨI
-1 ΦΨR
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XR 

XI 


