Scaling Network-based Spectrum Analyzer with Constant Communication Cost

Youngjune Gwon

Presented at the 32nd IEEE International Conference on Computer Communications (INFOCOM'13) in Turin, Italy

April 16, 2013

Introduction

- Dynamic spectrum access (DSA) with cognitive radios
 - Alleviates inefficient spectrum allocation and licensing
- Accurate low-latency spectrum sensing most important to maximize DSA benefits
- Conventional spectrum analyzer
 - Can be ideal spectrum sensor
 - Measures amplitude of signals over *time* and converts to power magnitudes across *frequency*
 - FFT at the heart of modern spectrum analyzer equipment
 - Expense of FFT \Rightarrow true bottleneck is to keep up with Nyquist sampling
 - » E.g., 1-MHz channel: $2 \times 10^6 \times sample size$ bps \rightarrow 40 Mbps (if 20-bit sample)

Network-based Spectrum Analysis

- Distributed spectrum sensing
 - Spectrum analyzer & measurers separate entities but networked
- Simple, *in situ* compression of measurement data at acquisition
 - Compressive sensing encode
- In-network processing of data
 - Combine multiple compressed measurements
- Recovery of original data
 - Undo in-network data processing & compressive sensing decode

Case for Distributed Spectrum Sensing (1)

Case for Distributed Spectrum Sensing (2)

Our Focus

Measure disjoint bands and aggregate =

Challenges

- Naïve FFT spectrum analysis bottlenecked by high data rate of Nyquist sampling
 - Use of multiple spectrum sensors each monitoring a sub-band, we have mitigated this problem
- How to minimize network communication cost of sensor measurements propagating network
- Fine-grained spectral analysis of wideband spectrum

Problem Statement

What is the size-reducing operation θ that makes network-based analyzer feasible?

$$\arg\min_{\theta} \sum_{i=1}^{J} \dim(\mathbf{y}_i = \theta(\mathbf{x}_i)) \quad \text{s.t.} \ \|X(f_k) - \hat{X}(f_k)\|_{\ell_2} \le \epsilon$$

J: # of partitions in the spectrum

x_{*i*}: raw measured data from partition *i*

 \mathbf{y}_i : compressive measurement of \mathbf{x}_i

X: frequency response of original $\mathbf{x} = {\mathbf{x}_i}_{\forall i}$

 \hat{X} : frequency response of restored **x**

ε: some small error requirement

Problem Illustrated

Solution Approach (1)

No in-network data reduction

Solution Approach (2)

Compressive sensing (CS) encoding and in-network combining of compressed data

Reminder: Compressive Sensing

- Encode: $\mathbb{C}^N \longrightarrow \mathbb{C}^M$
 - Simple & data-blind \implies N:M compression (M << N) for sparse signal
- Decode
 - Available sparsifying basis (Ψ) determines $M \ge c \cdot K \cdot \log(N/K)$
 - Sparsity K revealed by Ψ
 - L1-minimization (*e.g.*, linear programming): min $\|\mathbf{s}\|_1$ s.t. $\mathbf{y} = \mathbf{\Phi} \Psi^{-1} \mathbf{s}$

How to Separate Sum of Compressed Measurements?

Can we do better?

Initial Approximation by Least Squares

- Require
 - $\{\mathbf{Q}_1, \mathbf{Q}_2, ..., \mathbf{Q}_p\} \triangleq distinct$ sparsifying bases for each channel
 - **Q** can be estimated from $\mathbf{R}_{x} = \mathbb{E}[\mathbf{x}\mathbf{x}^{H}] = \mathbf{Q} \wedge \mathbf{Q}^{H}$
- Leading components have largest eigenvalues
- Remove non-leading components until we have overdetermined system
 - More equations than unknowns: dim(y) > # of unknowns
 - Least squares does this job well

Iterative Refinement by CS Decode

- Compressive sensing decodes underdetermined system
 - More unknowns than equations
- Relax s's in *descending* order of their L1-norm
 - Compressive sensing works better on *largest-first decoding principle*
 - No need to solve for more than N unknowns at once
 - $N \triangleq$ length of original, uncompressed measurements (\mathbf{x}_i 's) on channel *i*
- Can be repeated in another stage

Evaluation in Lab Testbed of SW-defined Radios

Four sensor nodes (USRP2/USRP-N200) with WBX RF daughterboards

- Measure 8 channels from UHF white space
 *f*_i = {512.5, 537.5, 562.5, 587.5, 612.5, 637.5, 662.5, 687.5} MHz
- Each channel with *B* = 25 MHz bandwidth

Some Details

- Sensing & recovery methods
 - 1. Compressive sensing only (no combining)
 - 2. P-way combined compressed measurements for P = 2, 4, 8
- M = # of compressed measurements (per channel)
 - Varied from 26 (20x compression) to 308 (1.67x)
- Error metric $\xi = \frac{1}{L} \sum_{k=1}^{L} \frac{\|X(f_k) \hat{X}(f_k)\|_{\ell_2}}{\|X(f_k)\|_{\ell_2}}$
 - Average normalized frequency response error per sample
 - $L = 8 \times 512 = 4096$
 - − $f_k \in$ [500,700) MHz

Error Performance

- Total # of measurements transmitted ∝ communication cost
- P-way in-network combining could reduce measurements up to P-fold
 - Given error budget, # of measurements can remain constant until some limit
 - This limit depends on *sparsity* of channels in spectrum
- Proposed algorithm achieves similar accuracy performance as joint decoding while requiring P times less unknowns to solve concurrently

Improvement at Refinement Stages

8-way combined

• Small gain on accuracy after 2 stages

Summary

- Network-based spectrum analysis
 - Distributed spectrum sensors employed by distant analyzer operate over network
 - Key is to overcome network communication cost to move spectrum measurements
- Our approach
 - Compressive sensing encoding at sensor nodes
 - Simple in-network summing of multiple compressed measurements to further reduce overhead at network nodes
- New recovery algorithm
 - Least squares on leading principal components to separate individual measurements from the sum
 - Iterative relaxation by compressive sensing decode on each individual data
- Conclusion: sensors can be added without additional communication cost
 - Hold true until some limit determined by sparsity
 - Sparsity = true measure for channel information content

Supporting Materials

Remark on Sparsity and Discretization

- Discrete measurements performed by sensors *preserve* or *bring out* sparsity of original signal in frequency domain or in a custom basis
 - This is fundamental premise of our approach
- Design of better sparsity-inducing discretization schemes is challenging but can hugely enhance our approach

CS Recovery of Complex Signals

- $y = \Phi x = (\Phi \Psi^{-1})x$
 - x = N×1 complex-valued
 - y = M×1 complex-valued
 - $\Phi = M \times N$ real-valued
 - $\Psi = N \times N$ complex-valued

•
$$y = \Phi[x_R + j \cdot x_I] = \Phi \Psi^{-1}[X_R + j \cdot X_I] = \Phi[\Psi_R^{-1} + j \cdot \Psi_I^{-1}][X_R + j \cdot X_I]$$

- $j = sqrt(-1)$

We want: y' = AX'

$$y' = \begin{bmatrix} y_{\mathrm{R}} \\ y_{\mathrm{I}} \end{bmatrix} \qquad A = \begin{bmatrix} \Phi \Psi_{\mathrm{R}}^{-1} & -\Phi \Psi_{\mathrm{I}}^{-1} \\ \Phi \Psi_{\mathrm{I}}^{-1} & \Phi \Psi_{\mathrm{R}}^{-1} \end{bmatrix} \qquad X' = \begin{bmatrix} X_{\mathrm{R}} \\ X_{\mathrm{I}} \end{bmatrix}$$

Decode y' = AX'

2N×1