Concurrent Channel Access and Estimation for *Scalable* Multiuser MIMO Networking

Tsung-Han Lin and H.T. Kung IEEE INFOCOM 2013

School of Engineering and Applied Sciences

MIMO Communication

- Multiple antennas create additional degree-of-freedom
- Limited by scattering environments

Multiuser MIMO

- Rich spatial diversity from geographically separated users
- *K* antennas on the AP, expect *K*-times throughput improvement

Proposed **Concurrent Access** to Mitigate MAC Scalability Issue for MU-MIMO

Proposed MU-MIMO Concurrent Access in Support of Random Access

- More aggressive senders, i.e., smaller backoff window size
 - Standard tricks applied (e.g., CSMA with exponential backoff)
 - Automatically adapt to additional degree-offreedom
- No coordination
 - Senders choose to join concurrent transmissions independently

Challenges of Concurrent Access and Proposed Solutions

- Challenge: Precise synchronization is difficult
 - <u>Proposed solution</u>: Channel estimation from **loosely synchronized** preambles
 - Can be cast as a *sparse recovery* problem
- Challenge: Collision is expensive under MIMO
 - Proposed solution: Use delay packet decoding to exploit *retransmissions* to decode previously collided packets

Channel estimation with packet preambles measures channel distortion on data symbols

unknowns (h1, h2, etc.) in channel estimation proportional to delay spread

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$$

Multiuser case is analogous to multipath, but with much larger "delay spread"

Path delay (tap)

Scheduled and fully synchronized

unknowns = (# senders) x (# path delays)

unknowns =

(# potential senders) x (# potential timing misalignments)

The dimensionality of unknowns is enlarged, but the amount of channel coefficients per transmitting sender is the same, i.e., **sparse** in the new space

... we just don't know where they are

Compressive Sensing

• A few random projections preserve all information of a sparse signal

Random Preamble Sequence

Assign senders random preamble sequences
 {1, -1} to create random measurements

How long does the preamble need to be?

Ex: 4x4 MIMO, delay spread 60 ns, time sync offset 2 μ s, 100 potential senders

 Solve all vars
 Our strategy

 100 x 2 = 200 μs
 4 x (4 x 0.06) ~ 0.96 μs

Furthermore, Exploit Receiver Diversity for Decoding

- *N*-antenna MIMO AP receives *N* copies of concurrent preambles
 - Channel coefficients to each antenna are different
 - Timing misalignment and senders are the same!
- Leads to faster decoding and shorter preambles

Not there yet, random access based concurrent transmission also means **collisions** are likely

Collision

Full utilization

"Delay Packet Decoding": Exploit Successful Retransmissions

Rx

Successful retransmission can be used to cancel out packets in previous collisions

Need to learn h₁, h₂, h₃ from collided packets

Enable Concurrent Channel Estimation for Collided Packets

- Most collisions are caused by only a few additional packets
- Slightly longer preamble allows concurrent channel estimation of these collided packets

Tolerate small fluctuation in channel booking

System Evaluation with a Software Defined Radio Testbed

10MHz clock to synchronize USRPs

4 USRPs as four distributed users

USRP-N200 operates at 916MHz, 6.25MHz bandwidth MIMO-OFDM

> 4 synchronized USRPs as one AP

Concurrent Channel Estimation vs. Sequential Channel Estimation

USRP-N200, 4x4 MIMO 6.25MHz Bandwidth 13 taps

Sparsity constraint removes unwanted noise

Aggregated Throughput Improvement

Aggregated Throughput Improvement

Conclusion

- Concurrent access allows efficient and scalable multiuser MIMO networking without strict synchronization and coordination
- Key enabling techniques
 - Compressive sensing to relax synchronization and coordination
 - Delay packet decoding to tolerate demand fluctuation in random access