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Confluence of Forces Points to 
Offloading to the Cloud
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Compute Offloading

Devices
• Proliferation of  

smartphones & tablets

• Complex tasks 
(e.g., imaging, learning, 
recognition)

• Emphasis on battery 
efficiency 

Network

• Internet infrastructure

• Wireless infrastructure 
(Wi-Fi & cellular)

• High bandwidths & 
low latencies

Cloud

• Cloud computing 
infrastructures

• Economies of scale

• On-demand 
provisioning



*

Cloud Daemon

A Simple DSM Supports Offloading
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Mobile App

Distributed Shared Memory
Memory Memory (replica)

Continuous
Replication

* See last slide for image source references

Object

variable_X

method_Y()

Object

variable_X

method_Y()Dynamic + Fine-grain Offloading



Advantages of Dynamic + Fine-Grain

• Dynamic
– Can offload arbitrary work at runtime
– Can optimize resource utilization (e.g., battery) at 

runtime

• Fine-grain
– At the level of a method invocation
– Feels more responsive when failure requires local 

restart to fix
– New class of small workloads for cloud providers

• Useful for leveling out utilization while providing low-latency 
services for end-users
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Challenges
• Latency

– Dictates granularity: if update takes 5s, then workloads that run <5s 
don’t benefit from offloading

• Bandwidth 
– We should only send deltas, but determining delta encoding has non-

trivial costs 
• e.g., rsync can take 3 round trips to generate a delta encoding, on top of time 

to calculate hashes

• Compute
– We should compress to save bandwidth, but compression can be 

computationally expensive

• Battery
– Shouldn’t end up consuming more battery budget
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Compressive Sensing

• Randomly mix signal elements by random projection onto lower-
dimensional space 

• Random Φ preserves Euclidean length/distance of sparse vectors 
with high probability when M ≥ O(K log N/K)

• Decode x from y by solving y = Φx via optimization (linear 
programming)

=×
Φ yx

M × N M × 1

N × 1

Random sampling
matrix 
(M < N)

K-sparse signal

Compressive 
samples
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Key Insight

Writes (deltas) to memory typically 
constitute a sparse signal that can 

be compressively sampled
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Compressive Replication (1)
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Device Server

x0

Time t0

Memory starts out synchronized, with byte values x0

Both device and server know Φ

Server calculates y0 = Φx0y0 = Φx0

x0



Compressive Replication (2)
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Device Server

x1

Time t1

x0

Some values in memory change, resulting in x1

Device calculates

Device transmits y1 = Φx1 to server

y0 = Φx0

y1 = Φx1y1 = Φx1

y1 = Φx1



y’ = y0 – y1
y' = Φx0 – Φx1
y' = Φ(x0 – x1)
y' = Φx’

Compressive Replication (3)
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Device Server

x1

Time t1

x0

y0 = Φx0

y1 = Φx1

Server calculates

y’ = Φx’ has same form as compressive sensing decoding 
problem, so server solves for x’

y’ = y0 – y1y’ = y0 – y1

x’ = x0 – x1 is the 
delta encoding!



Compressive Replication (4)
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Device Server

x1

Time t1

x0

x0 – x’ 
= x0 – (x0 – x1) 
= x1

x1

Server calculates x0 – x’ = x1, which is the new memory state

Server is now updated  



Novel Characteristics
• All-in-one

– Delta encoding + compression

• Delta encoding figured out by server, not 
device
– Automatically recovered during decoding
– Just send compressive samples; no add’l network 

costs

• Codec is resource-commensurate
– Device: low-complexity encoder 
– Server: higher-complexity decoder 
– Unlike traditional compressors
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What do we compare against?
• No similar replication methods 

– Compressive replication gives all-in-one delta encoding + compression
– e.g., rsync

• Compression is an add’l step
• Needs multiple round-trips to determine delta encoding

• Compressed snapshots probably fairest
– No add’l round-trip overheads
– Just compress the whole memory page (snapshot)
– snappy, zlib

• Metrics
– Replicate 64KB memory block
– Total Latency = encoding + network + decoding 
– Compression ratio (bandwidth cost)
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Latency/Compression Trade-off

Copyright © 2014  UpShift Labs, Inc. 14

Encodin
g (ms) 

Network 
(ms)

Decoding 
(ms)

Total 
Latency 

(ms)

Compression
Ratio

Update
Size 
(KB)

snappy 4 15 -- 19 3.8 : 1 17.2

zlib 487 13 -- 500 6.0 : 1 10.9

compressiv
e replication 53 12 70 135 7.3 : 1 9.0

Near ~100ms 
threshold of user-
perceptible app delay

Highest 
compressio
n ratio



Latency/Compression Trade-off
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Encodin
g (ms) 

Network 
(ms)

Decoding 
(ms)

Total 
Latency 

(ms)

Compression
Ratio

Update
Size 
(KB)

snappy 4 15 -- 19 3.8 : 1 17.2

zlib 487 13 -- 500 6.0 : 1 10.9

compressiv
e replication 53 12 70 135 7.3 : 1 9.0

Unlike snappy/zlib, comp ratio 
fixed & b/w cost predictable 
because y = Φx is independent of 
input’s Kolmogorov complexity

Remains good w/ high 
Kolmogorov complexity, which 
would confound snappy/zlib



Example Handwriting Recognition App

• UpShift platform for compressive 
offloading of iOS apps

• SVM for Chinese handwriting 
recognition
– Stroke count is measure of task 

complexity

• Device:  iPad (3rd gen)
• Server:  Amazon g2.xlarge

– GPU for compressive replication 
decoding

– CPU for SVM evaluation
• Network: 802.11g 

– Office setting
– 19ms RTT to us-east-1a server
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App Speedup
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More complex 
tasks have 
greater speedup

On-device 
execution time 
scales poorly 
with task 
complexity

Offloaded execution time 
stays short due to low 
overhead of compressive 
offloading. Users expect 
this.



Battery Savings
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Offloading allows 
60% more work to be 
done with the same 
battery budget.

High task complexity (25 strokes), 250 iterations



Summary
• Low-latency DSM updates enable fine-grain offloading

• UpShift supports offloading ~100ms workloads, while 
keeping resource utilization low

• Achieves significant speedups and battery savings

• Key insight: memory writes are a sparse signal that 
can be compressively sampled

• Implications for future ARM-based DC’s or x86-based 
devices
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Questions?
ck@upshiftlabs.com



Copyright © 2014  UpShift Labs, Inc. 21



Backup Slides
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What about the reverse direction?
• Note that the system is asymmetric

– Downlink is typically not as constrained as uplink
– Servers can do zlib compression very fast

• So the snapshot method is OK for reverse direction

• Our results are obtained under a unidirectional replication 
constraint (replicas are read-only).  Can we relax this?
– If both ends can write to their memories independently, then we 

have a data consistency problem
– However, latency is low enough that we can probably support 

synchronous offloading (i.e., block device until result is returned) 
– If app is already written under asynchronous model, then no 

consistency problem to begin with
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How to trigger an update?

• How do we know when k writes have been 
made to memory?

• Inject statistics collection into Objective-C 
setter methods
– Can do it at compile-time (preprocessing) or at 

run-time (method swizzling)
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What if there are lots of memory 
writes?

• Examples
– Large block initialization (calloc)

• However, large block allocation is OK since most modern 
memory managers defer allocation until initialization

– Reading large file into memory

• The signal is no longer sparse, so compressive 
sensing can no longer help

• Fall back to snapshotting
– Can probably get away with it since users have some 

expectation of delay
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Cloud Daemon

UpShift Platform Prototype

• Mobile app links against libupshift

• Objects are allocated from privately managed memory heap

• Replication agent manages replication of this memory

• Offloading is done via method swizzling (Objective-C is late binding)

• Offloadable objects are abstracted out into cross-compiled libraries, so server has class definitions

• Address spaces are fully managed by UpShift so we do address translation 
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Mobile App

libupshift

* See last slide for image source references

method offloading

Memory Replication 
agent

Offloading 
agent

Object

variable_X

method_Y()

Replication 
agent

Offloading 
agent

Mobile App 
Sandbox

Memory (replica)

Object

variable_X

method_Y()

compressive replication



Compressive Sensing Decoding

• A linear program solves the L1-norm minimization:

Fast
Incorrect ✘

L2-norm minimization

Intractable
Correct ✘

L0-norm minimization

Tractable
Correct (usually)✔

L1-norm minimization
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