
Mobile App Acceleration via
Fine-Grain Offloading to the

Cloud

Chit-Kwan Lin H. T. Kung

1Copyright © 2014 UpShift Labs, Inc.USENIX HotCloud 2014

Confluence of Forces Points to
Offloading to the Cloud

Copyright © 2014 UpShift Labs, Inc. 2

Compute Offloading

Devices
• Proliferation of

smartphones & tablets

• Complex tasks
(e.g., imaging, learning,
recognition)

• Emphasis on battery
efficiency

Network

• Internet infrastructure

• Wireless infrastructure
(Wi-Fi & cellular)

• High bandwidths &
low latencies

Cloud

• Cloud computing
infrastructures

• Economies of scale

• On-demand
provisioning

*

Cloud Daemon

A Simple DSM Supports Offloading

Copyright © 2014 UpShift Labs, Inc. 3

Mobile App

Distributed Shared Memory
Memory Memory (replica)

Continuous
Replication

* See last slide for image source references

Object

variable_X

method_Y()

Object

variable_X

method_Y()Dynamic + Fine-grain Offloading

Advantages of Dynamic + Fine-Grain

• Dynamic
– Can offload arbitrary work at runtime
– Can optimize resource utilization (e.g., battery) at

runtime

• Fine-grain
– At the level of a method invocation
– Feels more responsive when failure requires local

restart to fix
– New class of small workloads for cloud providers

• Useful for leveling out utilization while providing low-latency
services for end-users

Copyright © 2014 UpShift Labs, Inc. 4

Challenges
• Latency

– Dictates granularity: if update takes 5s, then workloads that run <5s
don’t benefit from offloading

• Bandwidth
– We should only send deltas, but determining delta encoding has non-

trivial costs
• e.g., rsync can take 3 round trips to generate a delta encoding, on top of time

to calculate hashes

• Compute
– We should compress to save bandwidth, but compression can be

computationally expensive

• Battery
– Shouldn’t end up consuming more battery budget

Copyright © 2014 UpShift Labs, Inc. 5

Compressive Sensing

• Randomly mix signal elements by random projection onto lower-
dimensional space

• Random Φ preserves Euclidean length/distance of sparse vectors
with high probability when M ≥ O(K log N/K)

• Decode x from y by solving y = Φx via optimization (linear
programming)

=×
Φ yx

M × N M × 1

N × 1

Random sampling
matrix
(M < N)

K-sparse signal

Compressive
samples

6

Key Insight

Writes (deltas) to memory typically
constitute a sparse signal that can

be compressively sampled

Copyright © 2014 UpShift Labs, Inc. 7

Compressive Replication (1)

Copyright © 2014 UpShift Labs, Inc. 8

Device Server

x0

Time t0

Memory starts out synchronized, with byte values x0

Both device and server know Φ

Server calculates y0 = Φx0y0 = Φx0

x0

Compressive Replication (2)

Copyright © 2014 UpShift Labs, Inc. 9

Device Server

x1

Time t1

x0

Some values in memory change, resulting in x1

Device calculates

Device transmits y1 = Φx1 to server

y0 = Φx0

y1 = Φx1y1 = Φx1

y1 = Φx1

y’ = y0 – y1
y' = Φx0 – Φx1
y' = Φ(x0 – x1)
y' = Φx’

Compressive Replication (3)

Copyright © 2014 UpShift Labs, Inc. 10

Device Server

x1

Time t1

x0

y0 = Φx0

y1 = Φx1

Server calculates

y’ = Φx’ has same form as compressive sensing decoding
problem, so server solves for x’

y’ = y0 – y1y’ = y0 – y1

x’ = x0 – x1 is the
delta encoding!

Compressive Replication (4)

Copyright © 2014 UpShift Labs, Inc. 11

Device Server

x1

Time t1

x0

x0 – x’
= x0 – (x0 – x1)
= x1

x1

Server calculates x0 – x’ = x1, which is the new memory state

Server is now updated

Novel Characteristics
• All-in-one

– Delta encoding + compression

• Delta encoding figured out by server, not
device
– Automatically recovered during decoding
– Just send compressive samples; no add’l network

costs

• Codec is resource-commensurate
– Device: low-complexity encoder
– Server: higher-complexity decoder
– Unlike traditional compressors

Copyright © 2014 UpShift Labs, Inc. 12

What do we compare against?
• No similar replication methods

– Compressive replication gives all-in-one delta encoding + compression
– e.g., rsync

• Compression is an add’l step
• Needs multiple round-trips to determine delta encoding

• Compressed snapshots probably fairest
– No add’l round-trip overheads
– Just compress the whole memory page (snapshot)
– snappy, zlib

• Metrics
– Replicate 64KB memory block
– Total Latency = encoding + network + decoding
– Compression ratio (bandwidth cost)

Copyright © 2014 UpShift Labs, Inc. 13

Latency/Compression Trade-off

Copyright © 2014 UpShift Labs, Inc. 14

Encodin
g (ms)

Network
(ms)

Decoding
(ms)

Total
Latency

(ms)

Compression
Ratio

Update
Size
(KB)

snappy 4 15 -- 19 3.8 : 1 17.2

zlib 487 13 -- 500 6.0 : 1 10.9

compressiv
e replication 53 12 70 135 7.3 : 1 9.0

Near ~100ms
threshold of user-
perceptible app delay

Highest
compressio
n ratio

Latency/Compression Trade-off

Copyright © 2014 UpShift Labs, Inc. 15

Encodin
g (ms)

Network
(ms)

Decoding
(ms)

Total
Latency

(ms)

Compression
Ratio

Update
Size
(KB)

snappy 4 15 -- 19 3.8 : 1 17.2

zlib 487 13 -- 500 6.0 : 1 10.9

compressiv
e replication 53 12 70 135 7.3 : 1 9.0

Unlike snappy/zlib, comp ratio
fixed & b/w cost predictable
because y = Φx is independent of
input’s Kolmogorov complexity

Remains good w/ high
Kolmogorov complexity, which
would confound snappy/zlib

Example Handwriting Recognition App

• UpShift platform for compressive
offloading of iOS apps

• SVM for Chinese handwriting
recognition
– Stroke count is measure of task

complexity

• Device: iPad (3rd gen)
• Server: Amazon g2.xlarge

– GPU for compressive replication
decoding

– CPU for SVM evaluation
• Network: 802.11g

– Office setting
– 19ms RTT to us-east-1a server

Copyright © 2014 UpShift Labs, Inc. 16

App Speedup

Copyright © 2014 UpShift Labs, Inc. 17

More complex
tasks have
greater speedup

On-device
execution time
scales poorly
with task
complexity

Offloaded execution time
stays short due to low
overhead of compressive
offloading. Users expect
this.

Battery Savings

Copyright © 2014 UpShift Labs, Inc. 18

Offloading allows
60% more work to be
done with the same
battery budget.

High task complexity (25 strokes), 250 iterations

Summary
• Low-latency DSM updates enable fine-grain offloading

• UpShift supports offloading ~100ms workloads, while
keeping resource utilization low

• Achieves significant speedups and battery savings

• Key insight: memory writes are a sparse signal that
can be compressively sampled

• Implications for future ARM-based DC’s or x86-based
devices

Copyright © 2014 UpShift Labs, Inc. 19

Copyright © 2014 UpShift Labs, Inc. 20

Questions?
ck@upshiftlabs.com

Copyright © 2014 UpShift Labs, Inc. 21

Backup Slides

Copyright © 2014 UpShift Labs, Inc. 22

What about the reverse direction?
• Note that the system is asymmetric

– Downlink is typically not as constrained as uplink
– Servers can do zlib compression very fast

• So the snapshot method is OK for reverse direction

• Our results are obtained under a unidirectional replication
constraint (replicas are read-only). Can we relax this?
– If both ends can write to their memories independently, then we

have a data consistency problem
– However, latency is low enough that we can probably support

synchronous offloading (i.e., block device until result is returned)
– If app is already written under asynchronous model, then no

consistency problem to begin with

Copyright © 2014 UpShift Labs, Inc. 23

How to trigger an update?

• How do we know when k writes have been
made to memory?

• Inject statistics collection into Objective-C
setter methods
– Can do it at compile-time (preprocessing) or at

run-time (method swizzling)

Copyright © 2014 UpShift Labs, Inc. 24

What if there are lots of memory
writes?

• Examples
– Large block initialization (calloc)

• However, large block allocation is OK since most modern
memory managers defer allocation until initialization

– Reading large file into memory

• The signal is no longer sparse, so compressive
sensing can no longer help

• Fall back to snapshotting
– Can probably get away with it since users have some

expectation of delay
Copyright © 2014 UpShift Labs, Inc. 25

Cloud Daemon

UpShift Platform Prototype

• Mobile app links against libupshift

• Objects are allocated from privately managed memory heap

• Replication agent manages replication of this memory

• Offloading is done via method swizzling (Objective-C is late binding)

• Offloadable objects are abstracted out into cross-compiled libraries, so server has class definitions

• Address spaces are fully managed by UpShift so we do address translation

Copyright © 2014 UpShift Labs, Inc. 26

Mobile App

libupshift

* See last slide for image source references

method offloading

Memory Replication
agent

Offloading
agent

Object

variable_X

method_Y()

Replication
agent

Offloading
agent

Mobile App
Sandbox

Memory (replica)

Object

variable_X

method_Y()

compressive replication

Compressive Sensing Decoding

• A linear program solves the L1-norm minimization:

Fast
Incorrect ✘

L2-norm minimization

Intractable
Correct ✘

L0-norm minimization

Tractable
Correct (usually)✔

L1-norm minimization

27

Image Source References
• http://www.computerhistory.org/timeline/images/1944_harvard_markI_larg

e.jpg
• http://history-computer.com/ModernComputer/Electronic/Images/PDP-

1.jpg
• http://oldcomputers.net/pics/Altair_8800.jpg
• http://oldcomputers.net/pics/ibm5150.jpg
• http://media.t3.com/img/resized/ib/xl_IBM_ThinkPad_greatest_624.jpg
• http://www1.pcmag.com/media/images/383992-first-iphone.jpg?thumb=y
• http://zapp1.staticworld.net/reviews/graphics/products/uploaded/apple_ipa

d_family_710821_g2.jpg
• http://cdn.gottabemobile.com/wp-content/uploads/2014/01/Nest-Cooling-2-

300x300.jpg
• http://i.dell.com/das/xa.ashx/global-site-design%20WEB/25b9106d-0ab1-

0508-371f-
f79a549236dc/1/OriginalPng?id=Dell/Product_Images/Dell_Enterprise_Pr
oducts/Enterprise_Systems/PowerEdge/PowerEdge_R310/hero/server-
poweredge-r310-left-hero-504x350.psd

Copyright © 2014 UpShift Labs, Inc. 28

http://www.computerhistory.org/timeline/images/1944_harvard_markI_large.jpg
http://history-computer.com/ModernComputer/Electronic/Images/PDP-1.jpg
http://oldcomputers.net/pics/Altair_8800.jpg
http://oldcomputers.net/pics/ibm5150.jpg
http://media.t3.com/img/resized/ib/xl_IBM_ThinkPad_greatest_624.jpg
http://www1.pcmag.com/media/images/383992-first-iphone.jpg?thumb=y
http://zapp1.staticworld.net/reviews/graphics/products/uploaded/apple_ipad_family_710821_g2.jpg
http://cdn.gottabemobile.com/wp-content/uploads/2014/01/Nest-Cooling-2-300x300.jpg
http://i.dell.com/das/xa.ashx/global-site-design%20WEB/25b9106d-0ab1-0508-371f-f79a549236dc/1/OriginalPng?id=Dell/Product_Images/Dell_Enterprise_Products/Enterprise_Systems/PowerEdge/PowerEdge_R310/hero/server-poweredge-r310-left-hero-504x350.psd

Copyright © 2014 UpShift Labs, Inc. 29

scratch

Copyright © 2014 UpShift Labs, Inc. 30

	Mobile App Acceleration via �Fine-Grain Offloading to the Cloud
	Confluence of Forces Points to �Offloading to the Cloud
	A Simple DSM Supports Offloading
	Advantages of Dynamic + Fine-Grain
	Challenges
	Compressive Sensing
	Key Insight
	Compressive Replication (1)
	Compressive Replication (2)
	Compressive Replication (3)
	Compressive Replication (4)
	Novel Characteristics
	What do we compare against?
	Latency/Compression Trade-off
	Latency/Compression Trade-off
	Example Handwriting Recognition App
	App Speedup
	Battery Savings
	Summary
	Slide Number 20
	Slide Number 21
	Backup Slides
	What about the reverse direction?
	How to trigger an update?
	What if there are lots of memory writes?
	UpShift Platform Prototype
	Compressive Sensing Decoding
	Image Source References
	Slide Number 29
	scratch

