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Abstract

Mobile device hardware can limit the sophistication of
mobile applications. One strategy for side-stepping these
constraints is to opportunistically offload computations
to the cloud, where more capable hardware can do the
heavy lifting. We propose a platform that accomplishes
this via compressive offloading, a novel application of
compressive sensing in a distributed shared memory set-
ting. Our prototype gives up to an order-of-magnitude
acceleration and 60% longer battery life to the end user
of an example handwriting recognition app. We argue
that offloading is beneficial to both end users and cloud
providers—the former experiences a performance boost
and the latter receives a steady stream of small computa-
tions to fill periods of under-utilization. Such workloads,
originating from ARM-based mobile devices, are espe-
cially well-suited for offloading to emerging ARM-based
data centers.

1 Introduction

Despite the arrival of power-efficient multi-core CPUs
and GPUs to smartphones and tablets, increasingly so-
phisticated mobile apps routinely push against the bat-
tery and processor limits of modern mobile devices. One
way to alleviate these constraints is to offload compu-
tations to the cloud, where computing resources are ef-
fectively unlimited. This strategy is already manifest in
special-purpose systems such as Siri and Google Now,
but such web services cannot shift arbitrary workloads
to the cloud at runtime. Instead, these apps must be stat-
ically partitioned into device- and cloud-specific compo-
nents. Once implemented in this way, the partitioning
cannot be changed easily or dynamically, rendering run-
time optimization infeasible.

One solution to this problem casts the mobile device
and the cloud as a tightly coupled distributed shared
memory (DSM) system, in which memory on the mobile
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device is continuously replicated to a cloud server. Any
in-memory object on the device will thus have a replica
on the server, and any object method invoked on-device
could be transparently and dynamically redirected to the
remote replica for faster execution on more capable cloud
hardware (Figure 1).

Recent efforts in code offloading [15, 12, 13] have ex-
plored related designs, but our approach of continuous
memory replication has the advantage of allowing fine-
grain workloads to be shifted up to the cloud at runtime.
We emphasize fine granularity for two reasons. First,
on-the-go mobile users demand high system responsive-
ness. A fine partitioning of work (i.e., at the level of
an object method invocation) incurs less disruption to
the user in the event the device becomes disconnected
and a local restart of the task is required. Second, fine-
grain workloads give low-latency cloud service providers
a new class of work that can help maximize infrastruc-
ture utilization [16]. Both parties derive significant ben-
efit from such workloads due to the disparity in the hard-
ware resources each commands: the device owner sees
the work as computationally complex and is glad to have
it accelerated by someone else, while the cloud provider
perceives it as small and computationally cheap and thus
well-suited for flexibly filling troughs in utilization.

However, implementing a DSM, especially in a mobile
setting, is known to be hard [17, 6, 10] due to latency,
network bandwidth, power, and computation overhead
constraints. Further complicating matters is that mem-
ory I/O, which is direct and random-access, is not nat-
urally amenable to transaction logging techniques [21]
that are typically used to maintain data consistency. This
leaves existing replication methods that rely on commu-
nicating and comparing hashes to generate delta encod-
ings (e.g., rsync) as the only available options for syn-
chronizing the DSM. Unfortunately, such methods have
computation and network overheads that do not respect
the resource constraints of the mobile setting.

We propose UpShift, a platform that takes advantage



Cloud Server

Mobile Devi
obile Device Cloud Daemon

Mobile App
Memory Memory
‘Obin/Ohject\‘ _Compressive Offloading o
Local Remote
Figure 1: Compressive offloading uses compressive

sensing to tightly replicate a memory page and its res-
ident objects from device to server. On-device method
invocations are redirected to a remote object replica for
faster execution on more capable cloud hardware.

of recent advances in compressive sensing theory to real-
ize a DSM with the requisite performance characteristics
and thus the tight coupling needed to support offload-
ing arbitrary, fine-grain work from a mobile device to the
cloud. Below, we describe the platform’s core compres-
sive offloading mechanism, a prototype implementation
on i0S, and initial performance evaluations.

2  Compressive Offloading

Compressive offloading is based on compressive sens-
ing [14, 8, 9], an efficient random sampling technique
in which a k-sparse signal s € R” (i.e., only k coef-
ficients in s are non-zero) is sampled or encoded by an
M x N linear operator ® (the sampling matrix) to pro-
duce samples y € RM. When & is a random matrix and
M > O(klog(N/k)), with high probability, y can be
decoded to exactly recover s by solving

min |s|]|; subject to y = Ps, (1)
seRN

even though the system is underdetermined (M < N).

UpShift relies on a novel application of compressive
sensing to achieve the fast and network-efficient mem-
ory replication needed to support compressive offload-
ing. The key insight is that memory 1/O (i.e., deltas
to memory) typically constitutes a sparse signal that
can be compressively sampled. This approach, which
we call compressive replication, has two major advan-
tages: (1) it requires no communication cost to determine
the deltas and their offsets because these are automati-
cally recovered during decoding; and (2) it is resource-
commensurate because the encoder on the mobile device
has low computational complexity while the decoder on
the cloud server has higher complexity.

On system startup, we assume that both the local and
remote ends know the sampling matrix ® and that a
length N memory page, with initial byte values repre-
sented by sg, is already synchronized; i.e., both local and

remote can calculate yo = ®sg. At some later time,
a process on the mobile device modifies the contents of
the local memory page. When k elements have changed,
we denote the state of the page as s; and encode it by
calculating y; = ®s;. This encoding is then transmit-
ted over the network to the cloud server. On receipt, the
cloud server calculates y’ = yo — y1, which satisfies

!

Yy = Yo—W
= @SO — @Sl
= ®(so —s1), 2

where the unknown quantity sy — s; is the delta en-
coding we wish to recover. With high probability!, this
can be obtained from Equation 1 using convex optimiza-
tion [1, 11] or greedy methods [20, 19, 7]. sy — s; can
then be subtracted from sj to obtain s;. By extension, a
subsequent set ¢ of £ new updates to the local page will
generate a new sample y;. Upon its receipt, the remote
end calculates y;_1 — y; and applies the same decoding
scheme above to recover s;.

Compressive replication and computation offloading
are managed by two UpShift system components. On
the mobile device, we introduce a shim layer into the
runtime environment that (1) serves as the replication
agent and (2) intercepts and redirects object method in-
vocations to the cloud server. The replication agent op-
erates continuously in the background, though updates
can also be generated on-demand by the app via an API
call to the shim layer. On the cloud server, a daemon
(1) decodes and applies updates to its replica memory
page(s) and (2) services the redirected object method in-
vocations. In this early prototype, we disallow methods
from modifying object state since this might occur on
either the device or the server and would thus require
bidirectional replication to enforce data consistency. For
now, this simplification means we need only support uni-
directional replication from device to server and simple
versioning for each memory page (encoding the page in-
crements the version). On the mobile device, the shim
layer tags method invocations with the version at the time
of invocation. At the daemon, redirected invocations and
replica updates are queued and serviced in version order.
Return values are passed back from the daemon to the
shim layer and then finally to the app.

Our offloading mechanism shares some similarities
with traditional RPC systems, except there is no object
marshaling, which is typically slow and negatively im-
pacts perceived system responsiveness. Since objects in
memory are already replicated in the background, and
since UpShift components control the entire replication
and offloading process at both local and remote end-

Exact recovery always occurs in practice when M is set properly.



points, we are able to pass pointers and perform address
translation wherever appropriate.

The shim layer takes into account several cues when
deciding when to offload. At the most basic level, of-
floading only occurs when proper network conditions
permit. But the decision to offload can also be informed
by the device’s battery levels (offloading helps stretch the
battery budget; see Section 4), as well as backpressure
from the cloud service provider when its data centers are
heavily loaded. Additionally, the end user can exercise
direct control by either disallowing offloading altogether
or forcing it to be “always on”.

3 Prototype Implementation

The UpShift architecture described above is device-
agnostic and can work with applications written in
interpreted languages such as JavaScript or compiled
languages such as Objective-C. We have implemented a
prototype for the iOS ecosystem, using an iPad 3 running
i0S 6.1.3 as the mobile device and an Amazon EC2
g2.2xlarge instance in us-east-la running Ubuntu
12.04LTS as the cloud server. Here, we highlight some
design choices for our prototype.

Offloading. Aside from having a rich ecosystem, we
chose to target iOS because its lingua franca, Objective-
C (a superset of C), allows us to perform our own mem-
ory management conveniently. The UpShift shim layer
is implemented as a software library (1ibupshift)
against which an iOS app links. The shim implements
a memory manager which makes an initial block alloca-
tion out of the app’s process heap and then privately man-
ages this block as the UpShift memory page(s). Replicat-
ing this memory is possible because (1) modern ARM
processors (e.g., the iPad 3’s Cortex-A9) are bi-endian
and are therefore byte order-compatible with x86 Ama-
zon servers; and (2) we manage our own memory, SO
we have control over byte alignment and padding. At
present, the prototype supports only pure Objective-C
objects, which are allocated out of the UpShift memory
by a call to upshift_alloc instead of the Objective-C
root object’s alloc method. In the future, we can trans-
parently override the default al11loc by using a replace-
ment Objective-C category method. libupshift han-
dles method invocation redirection at runtime via method
swizzling: Objective-C is late-binding, so we can replace
method implementations at runtime with a 1ibupshift
method that forwards the invocation over the network to
the cloud daemon.

When an iOS app is compiled, any objects allocated
with upshift_alloc are also cross-compiled for the
Amazon EC2 environment. In our prototype system,
we abstract app code requiring this cross-compiling

into separate modules and perform the cross-compiling
manually.? The resulting library is loaded by the daemon
and provides class definitions for objects that are in the
UpShift server’s replica memory. Since Objective-C
objects are actually just C structs under the covers,
they can be made accessible on the daemon after address
translation and pointer casting.

Replication. One major goal in building our prototype
was determining the parameters that minimize replica-
tion latency. This is key since latency dictates the gran-
ularity of work we can offload. For example, if a repli-
cation update takes 5s to complete, then all workloads
that complete in fewer than 5s would not benefit from of-
floading. In practice, the choice of the sampling matrix
@ hugely impacts the encoding time on mobile device
hardware (and thus the latency). We have found that a
random partial discrete cosine transform (pDCT), i.e., a
type-II DCT matrix with N — M random rows deleted,
performs best since it uses the FFT and is thus much
faster than matrix multiplication on iPad hardware.
Similarly, we have found that an accelerated itera-
tive hard thresholding (AIHT) [7] decoding algorithm
offers the shortest decoding time, mainly because it es-
chews costly matrix factorizations at each iteration, un-
like matching pursuit algorithms. To extract even greater
decoding speed, we have implemented AIHT in CUDA
in order to take advantage of GPU instances on Ama-
zon EC2. This provides another attractive category of
computations that cloud providers could use to improve
utilization of their more expensive GPU hardware.

4 Evaluation

4.1 Resource Trade-Offs

The lower we drive replication latency, the wider the
range of workload sizes that can be offloaded and the
more responsive the system will feel. However, minimiz-
ing latency is not straightforward because its constituent
parts—encoding/compression time, network transmis-
sion time, and decoding/decompression time—are not
independent. For example, a faster encoding time can
give worse compression and thus drive up network cost.
This is the case with zlib [5] and snappy [2], two well-
known compressors against which we compare pDCT
encoding. Our comparison has some nuance: pDCT
is tantamout to compressing a delta encoding, whereas
zlib/snappy are just general data compressors. Were we
to require zlib/snappy to also compress a delta encod-
ing, we would incur additional computation and net-
work costs to generate it first (e.g., via rsync). Instead,

2Ultimately, when both device and cloud server use the same hard-
ware architecture (e.g., ARM or x86), these extra steps can be skipped.
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Figure 2: Mean encoding time for memory pages of var-
ious sizes on an iPad 3 using zlib, snappy, and pDCT.

we replicate a memory page with zlib/snappy by simply
compressing the entire page on-device and then overwrit-
ing its server replica. This comparison is fair in that no
costs beyond generating and sending the encodings are
incurred by any of the three candidate methods.

Figure 2 shows the mean encoding time of zlib,
snappy, and pDCT on an iPad for various memory page
sizes N, when k/N = 0.01 (i.e., 1% of the page has
changed). For pDCT, we took M = 5.5k samples, a
conservative number that guarantees recovery. snappy
encoding is fastest, and zlib is slowest, with pDCT falling
in between. For example, when N = 64KB, snappy
requires 4ms, zlib 487ms, and pDCT 53ms.? snappy
is particularly fast because it is a byte-level LZ77-type
compressor, whereas zlib includes computationally ex-
pensive bit-level Huffman coding. pDCT, in contrast, is
largely dominated by a single pass of the FFT.

Next, we consider decoding time. Recall that com-
pressive replication trades a lower complexity encoder
for a higher complexity decoder. Whereas zlib and
snappy have negligible decoding times on an Amazon
server, pDCT decoding takes on average 70ms for N =
64KB. Table 1 summarizes the average total latency es-
timates for snappy, zlib and pDCT, assuming a 54Mbps
802.11g uplink and a 10ms one-way Internet routing de-
lay per 1500-byte packet from the iPad to our Amazon
server. While snappy indeed gives the lowest total la-
tency, pDCT nonetheless beats zlib handily, while pro-
viding the best compression ratio overall.* The com-
pression gain over snappy is most significant: band-
width utilization is reduced some 52% while giving up
only 116ms in latency. Thus, pDCT gives the best la-
tency/compression trade-off because its 135ms replica-
tion latency is low enough to admit even the shortest
workloads for which users might perceive a benefit from
offloading (user-perceptible application response time is

3Hereafter, we use N = 64KB since it is a reasonable page size
and gives fair encoding and decoding times across all methods.

4To be clear, pDCT outperforms because it encodes and compresses
the deltas, whereas zlib and snappy must compress the entire data block
(they cannot obtain the deltas without additional costs).

[ Enc [ Network [ Dec [ Tot H CR [ Size

snappy 4 15 - 19 3.8:1 17.2
zlib 487 13 - | 500 || 6.0:1 | 10.9
pDCT 53 12 70 | 135 7.3:1 9.0

Table 1: Breakdown of average-case update latency (in
ms) of replicating a 64KB memory page, assuming a
54Mbps 802.11g uplink and a 10ms one-way routing de-
lay. Also shown is the compression ratio (CR) and size in
KB of an update for each scheme. Metrics are averaged
over 1,000 trials.

~100ms [18]), while its bandwidth cost is lowest overall.

Yet another advantage of pDCT is that the compres-
sion ratio for each replication update is fixed and pre-
dictable (i.e., determined by M), whereas those given
by zlib or snappy depend on the Kolmogorov complex-
ity of the input and can therefore vary widely across
updates. Compressive replication thus not only con-
sumes less bandwidth, but also produces a stabler traf-
fic stream, which is friendlier to other network applica-
tions. Furthermore, since pDCT is a sampling operation,
it can encode high Kolmogorov complexity inputs that
would confound zlib and snappy, e.g., when the mem-
ory page holds an array of floating point numbers. This
is an increasingly common scenario, as data generated
by device-integrated sensors are held in-memory during
costly (and thus offloadable) signal processing routines.

4.2 Performance Gains

To demonstrate that our prototype system produces prac-
tical performance gains, we implemented an example
iOS application that performs handwriting recognition of
Chinese characters. We chose this problem domain be-
cause each character has a prescribed number of strokes,
providing us a simple, quantifiable measure of the com-
plexity of each recognition task.

Our app is based on the open source Zinnia/Tegaki [4,
3] projects, which provide a trained support vector ma-
chine model for recognizing traditional Chinese charac-
ters. The user handwrites a character on the tablet screen
and the app captures the strokes as a list of stroke vectors
in an in-memory object. These stroke vectors are then
used by a model evaluation object method to produce a
classification that results in a Unicode character being re-
turned. Each written stroke causes the stroke vectors to
grow or their values to change, giving rise to deltas to the
memory occupied by the object. When the stroke vector
object is upshift_alloc’d, our platform takes care of
replicating these deltas and offloading the object’s model
evaluation method to the cloud server.

We compared the time required to recognize handwrit-
ten characters of increasing complexity locally on the
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Figure 3: Comparison of handwriting recognition performed on an iPad 3 (blue) vs. offloaded to an Amazon server
(green). (a) Recognition time on-device increases sharply with increased problem complexity, but remains relatively
flat when offloaded. (b) Speedup due to offloading increases with problem complexity. This is another view of (a).
(c) Battery depletion rates when recognizing handwritten characters of high complexity (25 strokes). Overall, with the
same battery budget, compressive offloading allows 60% more work to be performed.

iPad vs. offloaded to a cloud server. The offloading
experiments were performed in a typical office environ-
ment in New York City, where the iPad was a client on an
802.11g Wi-Fi network with an average measured round
trip time of 19ms to the Amazon server. Similar to the
experiments in Section 4.1, we set pDCT parameters to
N = 64KB, k/N = 0.01, and M = 7k, which gave
similar replication latencies to Table 1. When we com-
pare the on-device (blue) and offloaded (green) recog-
nition times in Figure 3a, we find that on-device recog-
nition time scales poorly with complexity; as character
complexity increases 10-fold (from a stroke count of 3
to 30), the average on-device recognition time increases
13.62-fold. In contrast, the increase is just 1.65-fold un-
der offloading. This is because the low overhead of com-
pressive replication (Section 4.1) allows us to make ef-
fective use of the raw computing power of the server.

How much speedup can a user expect from com-
pressive offloading? Even for moderately complex 20-
stroke characters, the on-device recognition time av-
erages 7,249ms; compressive offloading averages just
1,687ms, a substantial 4.2-fold speedup. Better still,
the acceleration increases as the complexity increases, as
shown in Figure 3b. For highest-complexity, 30-stroke
characters, the speedup due to offloading is more than
6.5-fold (on-device: 12,560ms; offloaded: 1,922ms).
The difference to the app user would be striking, espe-
cially when more than one character must be recognized
at a time (e.g., in a tract of handwritten text).

While the performance acceleration is substantial,
achieving it cannot be at the expense of increased bat-
tery consumption. We thus evaluated the battery effi-
ciency of compressive offloading, taking into account the
power drawn for computing the encoding and transmit-
ting it over Wi-Fi. Figure 3c compares battery depletion

over 250 consecutive high-complexity recognition tasks
run on-device (blue) vs. offloaded (green). With com-
pressive offloading, the battery depletion rate is reduced
substantially. In fact, as the linear regression lines show,
with the same battery budget, compressive offloading al-
lows the user to perform 60% more recognition tasks.

Taken together, these results show that compressive
offloading can provide end users with significant advan-
tages in both speed and battery efficiency in real-world
mobile apps. For the cloud provider, computations that
take the iPad an excruciatingly long 10 seconds to exe-
cute take barely a few hundred milliseconds. At scale,
these small workloads can be load-balanced to fill slack
anywhere in the data center.

5 Conclusions & Future Work

In this paper, we have described a proof-of-concept
platform for dynamically offloading arbitrary, fine-grain
workloads from mobile devices to the cloud. At a high
level, we believe that this case study points the way to-
wards a tighter integration between mobile devices and
cloud resources, possibly at the level of the operating
system. This is a particularly exciting near-term possibil-
ity in light of the emerging trend of ARM-based data cen-
ters. Since the overwhelming majority of mobile devices
are also ARM-based, there is the potential to greatly re-
duce the friction of directly offloading machine code to
the cloud. Compressive offloading can play a critical role
in such future systems because it provides a principled
way to do this transparently and efficiently.
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