
Inferring	  Origin	  Flow	  Pa0erns	  in	  Wi-‐Fi	  
with	  Deep	  Learning	  

	  	  Youngjune	  Gwon	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  H.	  T.	  Kung	  

11th	  Interna5onal	  Conference	  on	  Autonomic	  Compu5ng	  (ICACʹ′14)	  

	  Philadelphia,	  PA	  
	  

June	  18,	  2014	  



§  Introduc5on	  
§  Background	  
§  Origin	  flow	  paMern	  inference	  in	  Wi-‐Fi	  
§  Classical	  approaches	  
§  Our	  approach	  
§  Evalua5on	  
§  Conclusion	  

Outline	  



§  Network	  traffic	  analysis	  is	  classical	  research	  topic	  
–  Study,	  measure,	  and	  es5mate	  flow	  characteris5cs	  

Ø  E.g.,	  burst	  size	  and	  interarrival	  5me	  distribu5ons,	  mean	  values	  
–  Network	  nodes	  (routers)	  regularly	  sample	  packets	  

Ø  To	  provide	  data	  used	  for	  analysis	  

§  Why?	  
–  Traffic	  monitoring	  

Ø  Spot	  anomalies,	  (D)DoS	  aMacks,	  heavy	  hiMers	  
–  Help	  manage	  networking	  resources	  

Ø  Wireless	  spectrum	  among	  most	  precious	  networking	  resources	  
–  Program	  network	  nodes	  (SDN)	  

Ø  Improve	  Tx-‐Rx	  scheduling,	  interference	  mi5ga5on	  

What	  Is	  Network	  Traffic	  Inference?	  



Flow	  PaMern	  
§  Sequence	  of	  data	  bytes	  (run)	  with	  wai5ng	  5mes	  (gap)	  
§  Runs-‐and-‐gaps	  model	  

–  Flow	  paMern	  ⟹	  !me	  series	  data	  	  
Ø  Simple,	  but	  powerful	  abstrac5on	  

–  Applicable	  at	  any	  node	  (src,	  dst,	  intermediate)	  

similar ideas to force orthonormal dictionary columns as
our two-stage algorithm described in §5.1. However, our
idea of accompanying sparsity relaxation (§5.2) due to
sparse coding with an incoherent dictionary is novel.

1.5 Outline

Section 2 explains the time-series representation and pro-
cessing of a flow. In Section 3, we explore supervised
learning methods for the origin flow inference. Section 4
describes our baseline semi-supervised learning method.
We propose several enhancements to the baseline method
in Section 5 and evaluate the learning methods with a
custom simulator and OPNET in Section 6. The paper
concludes in Section 7.

2 Time-series Representation of Flow

The runs-and-gaps model [13] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As indicated earlier, we perform our
flow measurements directly at the MAC layer rather than
at the transport or IP layers by sampling and processing
Wi-Fi frames.
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Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN ] be a vector contain-
ing the number of packets in a flow measured over N
time intervals. Here, an important parameter is the unit
interval Ts or sampling period during which each ele-
ment wt is sampled and recorded. The total measurement
time or observation window is N ×Ts. Alternatively, we
have vector x = [x1 x2 . . . xt . . . xN ] for w where xt is the
corresponding byte count of the total payload at time t.
Hence, a zero in x (or w) indicates a gap. If w7 = 3 and
x7 = 1,492, we have 3 packets for the flow at t = 7, and
the sum of the payloads from the 3 packets is 1,492 bytes.
We will call either w or x a measurable input vector
for inference, which contains extractable features. While
both w and x carry unique information, we mainly work
with x throughout this paper.

We designate an origin flow (pattern) with another
vector f. Just like x, f is a sequence of byte counts uni-
formly sampled, but the difference is that f reflects the
initial pattern (or signature) originated at its source. Note
f ∈ RM whereas x ∈ RN , and M and N are not necessar-
ily equal. We use notation xi,k to refer kth measurement
on flow i since there can be many measurements on fi.
We also use fi,k to designate the kth instance of origin
flow i because there could be many origin patterns, or
the pattern can be a stochastic process and changes dy-
namically over time. In summary, f,w, and x are all finite
time-series representations of a flow.

Consider sampling and processing of three example
flows in Fig. 3 at a receiver. The receive buffer first times-
tamps each arriving data frame and marks with flow ID.
At t = 1, the received frame for flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
with 1,000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]
2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]
3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]
With Ts = 10 msec, each time series take 60 msec to

measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.
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Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised

Feature Learning

The core of an inference system comprises a feature ex-
tractor (FE) and a classifier (CL) that need to be trained.
Figure 4 describes the supervised learning frame-
work. Supervised learning requires a labeled training
dataset that consists of training examples {x1, . . . ,xT}
with corresponding desired output values (i.e., labels)
{l1, . . . , lT}. There are two mappings, FE : x → y that
maps an input x to its feature y and CL : y → l̂ that per-
forms classification on extracted features of the input.
The inference system learns the mappings FE and CL
from training examples and their labels. Once trained,

3

(per	  unit	  interval)	  



§  Flow	  1	  
–  w1	  =	  [2	  1	  2	  0	  1	  2],	  x1	  =	  [100	  80	  110	  0	  80	  100]	  

§  Flow	  2	  
–  w2	  =	  [1	  0	  1	  0	  1	  0],	  x2	  =	  [600	  0	  600	  0	  600	  0]	  

§  Flow	  3	  
–  w3	  =	  [4	  0	  0	  0	  0	  3],	  x3	  =	  [1500	  0	  0	  0	  0	  1500]	  

Runs-‐and-‐gaps	  Time	  Series	  Processing	  

similar ideas to force orthonormal dictionary columns as
our two-stage algorithm described in §5.1. However, our
idea of accompanying sparsity relaxation (§5.2) due to
sparse coding with an incoherent dictionary is novel.

1.5 Outline

Section 2 explains the time-series representation and pro-
cessing of a flow. In Section 3, we explore supervised
learning methods for the origin flow inference. Section 4
describes our baseline semi-supervised learning method.
We propose several enhancements to the baseline method
in Section 5 and evaluate the learning methods with a
custom simulator and OPNET in Section 6. The paper
concludes in Section 7.

2 Time-series Representation of Flow

The runs-and-gaps model [13] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As indicated earlier, we perform our
flow measurements directly at the MAC layer rather than
at the transport or IP layers by sampling and processing
Wi-Fi frames.
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Let w = [w1 w2 . . . wt . . . wN ] be a vector contain-
ing the number of packets in a flow measured over N
time intervals. Here, an important parameter is the unit
interval Ts or sampling period during which each ele-
ment wt is sampled and recorded. The total measurement
time or observation window is N ×Ts. Alternatively, we
have vector x = [x1 x2 . . . xt . . . xN ] for w where xt is the
corresponding byte count of the total payload at time t.
Hence, a zero in x (or w) indicates a gap. If w7 = 3 and
x7 = 1,492, we have 3 packets for the flow at t = 7, and
the sum of the payloads from the 3 packets is 1,492 bytes.
We will call either w or x a measurable input vector
for inference, which contains extractable features. While
both w and x carry unique information, we mainly work
with x throughout this paper.

We designate an origin flow (pattern) with another
vector f. Just like x, f is a sequence of byte counts uni-
formly sampled, but the difference is that f reflects the
initial pattern (or signature) originated at its source. Note
f ∈ RM whereas x ∈ RN , and M and N are not necessar-
ily equal. We use notation xi,k to refer kth measurement
on flow i since there can be many measurements on fi.
We also use fi,k to designate the kth instance of origin
flow i because there could be many origin patterns, or
the pattern can be a stochastic process and changes dy-
namically over time. In summary, f,w, and x are all finite
time-series representations of a flow.

Consider sampling and processing of three example
flows in Fig. 3 at a receiver. The receive buffer first times-
tamps each arriving data frame and marks with flow ID.
At t = 1, the received frame for flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
with 1,000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]
2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]
3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]
With Ts = 10 msec, each time series take 60 msec to

measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.
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Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised

Feature Learning

The core of an inference system comprises a feature ex-
tractor (FE) and a classifier (CL) that need to be trained.
Figure 4 describes the supervised learning frame-
work. Supervised learning requires a labeled training
dataset that consists of training examples {x1, . . . ,xT}
with corresponding desired output values (i.e., labels)
{l1, . . . , lT}. There are two mappings, FE : x → y that
maps an input x to its feature y and CL : y → l̂ that per-
forms classification on extracted features of the input.
The inference system learns the mappings FE and CL
from training examples and their labels. Once trained,

3

Ts	  =	  unit	  interval	  
(e.g.,	  100	  msec)	   Note:	  each	  flow	  marked	  with	  (#	  packets,	  sizes)	  



§  Origin	  flow	  paMern	  (f)	  
–  Conveys	  applica5on-‐level	  data	  genera5on	  context	  
–  As	  entering	  source	  Tx	  buffer	  

§  Measured	  flow	  paMern	  (x)	  
–  At	  best,	  x	  =	  ,me-‐shi1ed	  f	  
–  Reflects	  severity	  of	  conges5on/mix	  with	  other	  flows	  
–  As	  5mestamped	  at	  receiver	  Rx	  buffer	  

Origin	  Flow	  PaMern	  Inference	  in	  Wi-‐Fi	  (1)	  



§  Problem:	  how	  to	  accurately	  infer	  origin	  flow	  
paMern	  fA	  from	  received	  paMern	  xA|B?	  
–  Key	  challenge:	  CSMA	  alters	  origin	  paMern	  by	  introducing	  

complex,	  irregular	  mixture	  of	  compe5ng	  flows	  
–  BoMomline:	  mul!class	  classifica!on	  problem	  

Origin	  Flow	  PaMern	  Inference	  in	  Wi-‐Fi	  (2)	  



§  Supervised	  learning	  
–  ARMAX	  

Ø  AR	  =	  delayed	  ground	  truth	  paMerns	  (f)	  
Ø  MA	  =	  model	  error	  (ε)	  
Ø  X	  =	  delayed	  received	  paMerns	  (x)	  
Ø  Train	  ft	  =	  [ft–1	  ...	  ft–n	  xt–1	  ...	  xt–m	  ε]	  θ	  with	  labeled	  dataset	  {x(i),	  <f(i),	  l(i)>}	  

»  Es5mate	  θ	  via	  least	  squares	  (recursive	  LS	  by	  Kalman	  filtering)	  

–  Naïve	  Bayes	  classifier	  
Ø  Using	  feature	  y	  =	  [μrun	  μgap]	  for	  given	  x	  
Ø  Train	  p(l|y)	  ∝	  p(x|	  l)	  from	  with	  {x(i),	  y(i),	  l(i)}	  

§  Semi-‐supervised	  learning	  
–  Gaussian	  mixtures	  

Ø  Use	  same	  feature,	  bivariate	  y	  =	  [μrun	  μgap]	  for	  given	  x	  
Ø  Train	  K-‐Gaussian	  sum	  ∼	  {w,(μ,	  Σ)}	  via	  EM	  with	  {x(i),	  y(i)}	  (unsupervised)	  

»  w	  =	  mixing	  weights,	  	  (μ,	  Σ)	  =	  Gaussian	  parameters	  
Ø  Classifica5on:	  use	  SVM	  (supervised)	  

»  Train	  with	  posterior	  (membership)	  probabili5es	  with	  {x(i),	  <f(i),	  l(i)>}	  

Approaches	  (Classical)	  



§  	  Semi-‐supervised	  learning	  
–  Phase	  I:	  unsupervised	  feature	  learning	  

1.  Sparse	  coding	  &	  dic5onary	  learning	  (unlabeled	  x’s)	  
2.  Subsample	  features	  via	  (max)	  pooling	  
3.  Repeat	  for	  mul5ple	  layers	  (feed	  current	  layer’s	  result	  as	  

next	  layer’s	  input)	  

–  Phase	  II:	  supervised	  classifier	  training	  	  
1.  Do	  mul5-‐layer	  sparse	  coding	  and	  pooling	  with	  labeled	  x’s	  
2.  Train	  SVM	  classifiers	  with	  final	  feature	  vector	  resulted	  at	  

top	  

Our	  Approach	  



Mul5-‐layer	  Feature	  Learning	  and	  SVM	  Classifica5on	  

f-‐ext	  
(OMP	  &	  K-‐SVD)	  

subsample	  
(Max	  pool)	  

x(1)	  

y(1)	  
x(2)	  =	  z(1)	  

f-‐ext	  
(OMP	  &	  K-‐SVD)	  

subsample	  
(Max	  pool)	  

y(2)	  
x(3)	  =	  z(2)	  

f-‐ext	  
(OMP	  &	  K-‐SVD)	  

subsample	  
(Max	  pool)	  

y(L)	  
z(L)	  

. 	  . 	  
.	  

(received	  runs-‐and-‐gaps	  5me	  series)	  

Layer	  1	  

Layer	  2	  

Layer	  L	  CSMA	  spreads	  flow	  invariances	  (some	  
preserved	  original	  run	  lengths)	  over	  	  
long	  period	  ⟹	  feature	  learning	  &	  
pooling	  over	  mul5ple	  layers	  iden5fy	  
such	  invariances	  

z(L)	  

SVM	  classifier	  

x(L)	  =	  z(L–1)	  



§  Describe	  input	  x	  as	  M	  linear	  combina5on	  of	  D’s	  columns	  
§  x	  =	  D	  y	  	  	  

–  x	  =	  measured	  flow	  paMern	  
–  y	  =	  extracted	  feature	  from	  x	  
–  OMP	  computes	  y	  &	  K-‐SVD	  trains	  D	  

Ø  min	  ǁX	  –	  DYǁF2	  	  s.t.	  	  ǁykǁ0	  ≤	  M	  ∀k	  	  
–  Sparsity:	  M	  <<	  N	  <	  K	  

§  Sparse	  coding,	  clustering,	  and	  mixtures	  are	  fundamentally	  
same	  idea	  

What	  Is	  Sparse	  Coding?	  

D 



What	  Is	  Max	  Pooling?	  

§  What	  do	  we	  do	  when	  we	  have	  too	  many	  of	  same	  kinds?	  
–  Need	  to	  summarize	  over	  them	  

§  Max	  pooling	  
–  Transla5on-‐invariant	  subsampling	  of	  mul5ple	  feature	  vectors	  
–  Popular	  in	  CNN	  for	  image	  recogni5on	  



Summarizing	  Deep	  Feature	  Learning	  

.	  .	  .	   xk	  

Incoming	  measurements	  



§  Incoherent	  dic5onary	  atoms	  
–  Force:	  ǁDT

	  D	  ǁ	  =	  I	  with	  new	  constraint	  
Ø  min	  ǁX	  –	  DYǁF2	  +	  γ	  ǁDT

	  D	  	  –	  IǁF2	  	  s.t.	  	  ǁykǁ0	  ≤	  Mʹ′	  ∀k	  	  

§  Relax	  sparsity	  due	  to	  distor5ons	  resulted	  by	  
incoherent	  dic5onary	  training	  
–  Use	  Mʹ′	  >	  M	  for	  OMP	  

§  Overlapping	  max	  pooling	  
–  z1	  =	  max_pool(y1,	  ...,	  yL),	  z2	  =	  max_pool(y5,	  ...,	  yL+4),	  ...	  

Ø  Instead	  of	  z2	  =	  max_pool(yL+1,	  ...,	  y2L),	  ...	  	  

Enhancements	  



Evalua5on	  
§  Simulated	  7	  Wi-‐Fi	  nodes	  in	  OPNET	  Modeler	  

–  10	  dis5nct	  flow	  paMerns	  generated	  at	  source	  
Ø  Mixed	  with	  various	  other	  flows	  including	  RTP/UDP/IP,	  HTTP,	  {p,	  

interac5ve	  DB	  transac5ons	  

§  Schemes	  
–  ARMAX	  
–  Naïve	  Bayes	  
–  GMM	  with	  K	  =	  10	  &	  linear	  1-‐vs-‐all	  SVMs	  
–  Proposed	  baseline	  

Ø  2	  layers	  &	  linear	  1-‐vs-‐all	  SVMs	  
–  Proposed	  baseline	  +	  3	  enhancements	  
–  Implemented	  in	  MATLAB	  

§  Metrics	  
–  Classifica5on	  recall	  (true	  posi5ve	  rate)	  and	  false	  alarm	  rate	  



Flow	  PaMerns	  and	  Nodes	  



Classifica5on	  Performance	  



Burst	  and	  Interarrival	  Predic5on	  Errors	  

Scheme	   Origin	  run	  size	  
predicVon	  error	  

Origin	  gap	  size	  
predicVon	  error	  

ARMAX	   45.9%	   36.7%	  

Naïve	  Bayes	   37.5%	   24.6%	  

GMM	  
(K	  =	  10)	   31.3%	   18.1%	  

Proposed	  
(baseline)	   28.3%	   16.2%	  

Proposed	  
(enhanced)	   22.8%	   11.4%	  



§  Simply,	  we	  have	  created	  inverse	  mapping	  
–  Measured	  paMern	  ⟶	  origin	  paMern	  (prequalified)	  
–  This	  mapping	  consists	  of	  deep	  feature	  learner	  &	  classifier	  

§  Deep	  learning	  
–  Start	  with	  small	  features,	  aggregate	  up,	  and	  broaden	  

coverage	  
–  Can	  learn	  invariances	  and	  changes	  introduced	  by	  CSMA	  	  

Ø  Arbitrary	  mix	  of	  flows,	  retransmissions,	  loss	  of	  data	  

§  Future	  direc5ons	  
–  Explore	  other	  (dis)similarity	  metrics	  (e.g.,	  DTW)	  
–  Sparse	  packet	  sampling,	  mul5ple	  hops	  
–  Test	  on	  real	  Wi-‐Fi	  data	  
–  Other	  inference	  applica5ons	  in	  networking	  (e.g.,	  protocols)	  

Conclusion	  
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Metrics	  

Table 1: Origin flows used for evaluation

Flow Type Generative triplet �tr,sr, tg�
Flow 1 Constant �2,100,4�
Flow 2 Constant �2,500,2�
Flow 3 Constant �5,200,5�
Flow 4 Constant �10,200,10�
Flow 5 Stochastic �Exp(1), Pareto(100,2), Exp(0.1)�
Flow 6 Stochastic �Exp(0.5), Pareto(40,1), Exp(0.25)�
Flow 7 Stochastic �U(4,10), Pareto(100,2), Exp(0.5)�
Flow 8 Stochastic �N(10,5), Pareto(40,1), N(10,5)�
Flow 9 Mixed �1, Pareto(100,2), 1�
Flow 10 Mixed �1, Pareto(100,2), Exp(0.25)�

of 500 elements.

6.1.2 Preprocessing generated origin flow patterns

We precompute the mean run and gap lengths from the

generated origin flow patterns in the training dataset.

This is convenient because we enable simple lookup

(of the precomputed values) based on the classifi-

cation result of a measured flow in order to esti-

mate the origin run and gap properties. In Figure 8,

we have
�
s1

1
s1

2
0 0 0 s2

1
0 0 0 0 0 s3

1
s3

2
s3

3
0 0 . . .

�
, where

s1 = ∑2

k=1
s1

k , s2 = ∑1

k=1
s2

k , s3 = ∑3

k=1
s3

k give total bytes

of the three bursts. We can then compute the mean burst

size for this pattern. We also compute {t1
r , t2

r , t3
r , . . .},

{t1
g , t2

g , t3
g , . . .}, and their mean values.
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Figure 8: Computing generated flow statistics

6.1.3 Evaluation metrics

We are foremost interested in the accuracy of classifying

a measured pattern x to its ground-truth origin flow pat-

tern f. We compute two metrics, recall (true positive rate)

and false alarm (false positive rate), to evaluate classifi-

cation performance:

Recall = ∑True positives

∑True positives + ∑False negatives

False alarm =
∑False positives

∑False positives + ∑True negatives

Without false alarm rate, we cannot truly assess the

probability of detection for a classifier using a computed

recall value because the classifier can be configured to

declare positive only, automatically achieving to guess

all positives correctly. Classification leads to inferring

Table 2: Wi-Fi parameter configuration for Scenario 1

Parameter Description Value

aSlotTime Slot time 20 µsec

aSIFSTime Short interframe space (SIFS) 10 µsec

aDIFSTime DCF interframe space (DIFS) 50 µsec

aCWmin Min contention window size 15 slots

aCWmax Max contention window size 1023 slots

tPLCPPreamble PLCP preamble duration 16 µsec

tPLCP SIG PLCP SIGNAL field duration 4 µsec

tSymbol OFDM symbol duration 4 µsec

other important properties of a flow from its training

dataset records. As our secondary evaluation metrics, we

calculate errors in estimating the original mean burst size

and mean gap length of the flow.

6.2 Scenario 1: Three Wi-Fi Nodes
Figure 9 depicts Scenario 1. In this simple scenario, we

infer the origin time series fA sent by source node A, us-

ing xA|B measured at receiver node B. Node C, another

source, contends with node A by transmitting its own

flow fC. We carry out cross-validation with all 10 flow

datasets by setting fA = fi ∀i ∈ {1, . . . ,10}, flow by flow

at once. When fA = fi, we randomly set fC = f j ∀ j �= i.
Node C can change its flow pattern from f j to fk, while

node A still running fi, but fk is chosen such that k �= i.

Figure 9: Scenario 1

Wi-Fi setup. We have implemented a custom discrete-

event simulator in MATLAB, assuming the IEEE

802.11g our baseline Wi-Fi system. At its core, our

CSMA implementation is based on an open-source wire-

less simulator [2]. The backoff mechanism works as

follows. The contention window CW is initialized to

aCWmin. In case of timeout, CSMA doubles CW, other-

wise waits until the channel becomes idle with an ad-

ditional DCF interframe space (DIFS) duration. CSMA

chooses a uniformly random wait time between [1, CW].

CW can grow up to aCWmax of 1,023 slots. CW is decre-

mented only when the media is sensed idle. RTS and

CTS are disabled. The Wi-Fi configuration is summa-

rized in Table 2.

Inference schemes. We have implemented all of the

inference schemes in MATLAB. We consider ARMAX-
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Figure 6: Single-layer feature learning. 1-vs-all classi-
fication recall and FDR for language identification
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Figure 7: Two-layer deep feature learning. 1-vs-all
classification recall and FDR for language identification

Each datapoint is a vector of 1,000 elements constituting the encrypted payload-length time series
(measured in bytes), acquired from approximately 30 sec speech of one speaker.

Implementation. We have implemented the proposed deep feature learning and classification
system in MATLAB. We use Technion’s open-source OMP (v10) and K-SVD (v13) implemen-
tations [28] and LIBSVM [17]. We have written our own DTW module and K-medoids based on
it. We consider the SRTP default, length-preserving AES encryption in counter mode. We will later
show the impact of padding to a cipher block size on classification accuracy. We train mainly 1-vs-all
SVM classifiers. For comparison to Wright et al. [31], we also train 1-vs-1 classifiers selectively.

Classification accuracy metrics. To evaluate the accuracy performance of our classifiers, we com-
pute recall (true positive rate) and either false discovery rate (FDR) or false positive rate (FPR):
Recall =

�True positives
�True positives+

�False negatives , FDR =
�False positives

�False positives+
�True positives , and

FPR =
�False positives

�False positives+
�True negatives . We use FDR for 1-vs-all classifiers. Because we have

21 classes for the 22 Language dataset and 24 classes (including American English accent) for FAE,
the total number of negatives tends to be much larger than the number of positives when testing each
1-vs-all classifier against all samples in the test dataset. This makes FPR unfairly small for 1-vs-all,
thus FDR should be preferred. We compute FPR for 1-vs-1 classifiers.

Single layer analysis. We compare the performance of numerous L1 f-ext choices in a single layer
configuration: 1) OMP sparse coder & K-SVD (§4.2); 2) 3-grams (§4.2); 3) ED coder & K-means
clustering (§5.1); 4) DTW coder & K-medoids clustering (§5.1); 5) simultaneous 2/3/4-grams (§5.2).
We do max pooling by m = 10 on the L1 f-ext output vectors before applying to linear SVM
classifiers. We input each datapoint (∈ R1,000) in a training dataset as a stream from which xk ∈ RN

are formed as in Figure 4, using relatively short N = 64 (i.e., about 3.2 sec-long speech fragment).
There is an overlap τ = 0.2 · N between consecutive xk’s. We use K = 100 (dictionary atoms or
clusters) for each of 21 classes in the language identification problem, the concatenated dictionary
would have 2,100 atoms. We regularize OMP, ED, and DTW coders by setting P = 50 < K.

n-grams are a great choice for the high-performance L1 f-ext. However, there is a crucial drawback
for practical uses. We have observed that 22 Language dataset incurs 137 different voice payload
sizes in the Opus VBR coding (for FAE dataset, we find 98 different payload lengths), making the
unigram space size |S1| = 137. If we were to generate 2-, 3-, and 4-gram tables exhaustively, we
would face |S2| = 18, 769, |S3| ≈ 2.5 million, and |S4| ≈ 352 million. So we had to reduce the
4-gram table to popular thousands, 3-grams to a few thousands, and so forth. Still, the feature vector
with n-gram embedding has a huge dimensionality compared to other L1 f-ext choices.

Figure 6 shows the average recall and FDR of 1-vs-all classification for language identification (with
22 Language dataset) based on the single layer feature extraction with a specified L1 f-ext over the
horizontal axis. For single layer, the accuracy performance of the proposed DTW coder is very close
to simultaneous 2/3/4-grams. DTW-based single layer results in a better recall, but induces more
false positives by having a higher FDR. As expected, DTW performs superior over ED in clustering
and matching time series data.

Language identification. We have been able to improve the classification performance by adding
one more layer. At layer 2, the OMP sparse coder takes in the pooled DTW-based feature vectors of
layer 1. We use overlapping max pooling at layer 2. Figure 8 presents the complete confusion matrix
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Feature	  Extrac5on	  and	  Pooling	  Details	  
Do	  long	  measurement	  to	  acquire	  large	  	  
mulVples	  of	  N	  packet	  length	  sequence	  

x1	   Size	  N	  

x2	  
x3	   ...	  

y1	   y2	   y3	   yM	  

...	   ...	  

z1	  

Max	  pooling	  	  
by	  M	  

z1,i	  =	  max(y1,i,	  ...,	  yM,i)	  

To	  next	  layer:	  
	  

xj(I+1)	  =	  zj(I)	  
	  

τ	  


