
Inferring	 Origin	 Flow	 Pa0erns	 in	 Wi-‐Fi	
with	 Deep	 Learning	

	 	 Youngjune	 Gwon	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 H.	 T.	 Kung	

11th	 Interna5onal	 Conference	 on	 Autonomic	 Compu5ng	 (ICACʹ′14)	

	 Philadelphia,	 PA	
	

June	 18,	 2014	

§  Introduc5on	
§  Background	
§  Origin	 flow	 paMern	 inference	 in	 Wi-‐Fi	
§  Classical	 approaches	
§  Our	 approach	
§  Evalua5on	
§  Conclusion	

Outline	

§  Network	 traffic	 analysis	 is	 classical	 research	 topic	
–  Study,	 measure,	 and	 es5mate	 flow	 characteris5cs	

Ø  E.g.,	 burst	 size	 and	 interarrival	 5me	 distribu5ons,	 mean	 values	
–  Network	 nodes	 (routers)	 regularly	 sample	 packets	

Ø  To	 provide	 data	 used	 for	 analysis	

§  Why?	
–  Traffic	 monitoring	

Ø  Spot	 anomalies,	 (D)DoS	 aMacks,	 heavy	 hiMers	
–  Help	 manage	 networking	 resources	

Ø  Wireless	 spectrum	 among	 most	 precious	 networking	 resources	
–  Program	 network	 nodes	 (SDN)	

Ø  Improve	 Tx-‐Rx	 scheduling,	 interference	 mi5ga5on	

What	 Is	 Network	 Traffic	 Inference?	

Flow	 PaMern	
§  Sequence	 of	 data	 bytes	 (run)	 with	 wai5ng	 5mes	 (gap)	
§  Runs-‐and-‐gaps	 model	

–  Flow	 paMern	 ⟹	 !me	 series	 data	 	
Ø  Simple,	 but	 powerful	 abstrac5on	

–  Applicable	 at	 any	 node	 (src,	 dst,	 intermediate)	

similar ideas to force orthonormal dictionary columns as
our two-stage algorithm described in §5.1. However, our
idea of accompanying sparsity relaxation (§5.2) due to
sparse coding with an incoherent dictionary is novel.

1.5 Outline

Section 2 explains the time-series representation and pro-
cessing of a flow. In Section 3, we explore supervised
learning methods for the origin flow inference. Section 4
describes our baseline semi-supervised learning method.
We propose several enhancements to the baseline method
in Section 5 and evaluate the learning methods with a
custom simulator and OPNET in Section 6. The paper
concludes in Section 7.

2 Time-series Representation of Flow

The runs-and-gaps model [13] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As indicated earlier, we perform our
flow measurements directly at the MAC layer rather than
at the transport or IP layers by sampling and processing
Wi-Fi frames.

!"#$%&

'()$&
*+,&-./&

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

-./& *+,& -./& *+,& -./&

Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN] be a vector contain-
ing the number of packets in a flow measured over N
time intervals. Here, an important parameter is the unit
interval Ts or sampling period during which each ele-
ment wt is sampled and recorded. The total measurement
time or observation window is N ×Ts. Alternatively, we
have vector x = [x1 x2 . . . xt . . . xN] for w where xt is the
corresponding byte count of the total payload at time t.
Hence, a zero in x (or w) indicates a gap. If w7 = 3 and
x7 = 1,492, we have 3 packets for the flow at t = 7, and
the sum of the payloads from the 3 packets is 1,492 bytes.
We will call either w or x a measurable input vector
for inference, which contains extractable features. While
both w and x carry unique information, we mainly work
with x throughout this paper.

We designate an origin flow (pattern) with another
vector f. Just like x, f is a sequence of byte counts uni-
formly sampled, but the difference is that f reflects the
initial pattern (or signature) originated at its source. Note
f ∈ RM whereas x ∈ RN , and M and N are not necessar-
ily equal. We use notation xi,k to refer kth measurement
on flow i since there can be many measurements on fi.
We also use fi,k to designate the kth instance of origin
flow i because there could be many origin patterns, or
the pattern can be a stochastic process and changes dy-
namically over time. In summary, f,w, and x are all finite
time-series representations of a flow.

Consider sampling and processing of three example
flows in Fig. 3 at a receiver. The receive buffer first times-
tamps each arriving data frame and marks with flow ID.
At t = 1, the received frame for flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
with 1,000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]
2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]
3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]
With Ts = 10 msec, each time series take 60 msec to

measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

!"!"!" !"!"!"
#$%&"'"

()*+,-+,./"

#$%&")"
('*0,,./"

#$%&"1"
(2*2,,-2,,-"
2,,-1,,./" #$%&"'"

('*3,./"

#$%&")"
('*0,,./"

#$%&"'"
()*0,-+,./"

#$%&"'"
('*3,./"

#$%&"1"
('*',,,./"

#$%&"'"
()*+,-+,./"

#! 3! 4! 5! 6! 7!

#$%&"1"
()*',,-2,,./"

#$%&")"
('*0,,./"

Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised

Feature Learning

The core of an inference system comprises a feature ex-
tractor (FE) and a classifier (CL) that need to be trained.
Figure 4 describes the supervised learning frame-
work. Supervised learning requires a labeled training
dataset that consists of training examples {x1, . . . ,xT}
with corresponding desired output values (i.e., labels)
{l1, . . . , lT}. There are two mappings, FE : x → y that
maps an input x to its feature y and CL : y → l̂ that per-
forms classification on extracted features of the input.
The inference system learns the mappings FE and CL
from training examples and their labels. Once trained,

3

(per	 unit	 interval)	

§  Flow	 1	
–  w1	 =	 [2	 1	 2	 0	 1	 2],	 x1	 =	 [100	 80	 110	 0	 80	 100]	

§  Flow	 2	
–  w2	 =	 [1	 0	 1	 0	 1	 0],	 x2	 =	 [600	 0	 600	 0	 600	 0]	

§  Flow	 3	
–  w3	 =	 [4	 0	 0	 0	 0	 3],	 x3	 =	 [1500	 0	 0	 0	 0	 1500]	

Runs-‐and-‐gaps	 Time	 Series	 Processing	

similar ideas to force orthonormal dictionary columns as
our two-stage algorithm described in §5.1. However, our
idea of accompanying sparsity relaxation (§5.2) due to
sparse coding with an incoherent dictionary is novel.

1.5 Outline

Section 2 explains the time-series representation and pro-
cessing of a flow. In Section 3, we explore supervised
learning methods for the origin flow inference. Section 4
describes our baseline semi-supervised learning method.
We propose several enhancements to the baseline method
in Section 5 and evaluate the learning methods with a
custom simulator and OPNET in Section 6. The paper
concludes in Section 7.

2 Time-series Representation of Flow

The runs-and-gaps model [13] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As indicated earlier, we perform our
flow measurements directly at the MAC layer rather than
at the transport or IP layers by sampling and processing
Wi-Fi frames.

!"#$%&

'()$&
*+,&-./&

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

-./& *+,& -./& *+,& -./&

Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN] be a vector contain-
ing the number of packets in a flow measured over N
time intervals. Here, an important parameter is the unit
interval Ts or sampling period during which each ele-
ment wt is sampled and recorded. The total measurement
time or observation window is N ×Ts. Alternatively, we
have vector x = [x1 x2 . . . xt . . . xN] for w where xt is the
corresponding byte count of the total payload at time t.
Hence, a zero in x (or w) indicates a gap. If w7 = 3 and
x7 = 1,492, we have 3 packets for the flow at t = 7, and
the sum of the payloads from the 3 packets is 1,492 bytes.
We will call either w or x a measurable input vector
for inference, which contains extractable features. While
both w and x carry unique information, we mainly work
with x throughout this paper.

We designate an origin flow (pattern) with another
vector f. Just like x, f is a sequence of byte counts uni-
formly sampled, but the difference is that f reflects the
initial pattern (or signature) originated at its source. Note
f ∈ RM whereas x ∈ RN , and M and N are not necessar-
ily equal. We use notation xi,k to refer kth measurement
on flow i since there can be many measurements on fi.
We also use fi,k to designate the kth instance of origin
flow i because there could be many origin patterns, or
the pattern can be a stochastic process and changes dy-
namically over time. In summary, f,w, and x are all finite
time-series representations of a flow.

Consider sampling and processing of three example
flows in Fig. 3 at a receiver. The receive buffer first times-
tamps each arriving data frame and marks with flow ID.
At t = 1, the received frame for flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
with 1,000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]
2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]
3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]
With Ts = 10 msec, each time series take 60 msec to

measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

!"!"!" !"!"!"
#$%&"'"

()*+,-+,./"

#$%&")"
('*0,,./"

#$%&"1"
(2*2,,-2,,-"
2,,-1,,./" #$%&"'"

('*3,./"

#$%&")"
('*0,,./"

#$%&"'"
()*0,-+,./"

#$%&"'"
('*3,./"

#$%&"1"
('*',,,./"

#$%&"'"
()*+,-+,./"

#! 3! 4! 5! 6! 7!

#$%&"1"
()*',,-2,,./"

#$%&")"
('*0,,./"

Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised

Feature Learning

The core of an inference system comprises a feature ex-
tractor (FE) and a classifier (CL) that need to be trained.
Figure 4 describes the supervised learning frame-
work. Supervised learning requires a labeled training
dataset that consists of training examples {x1, . . . ,xT}
with corresponding desired output values (i.e., labels)
{l1, . . . , lT}. There are two mappings, FE : x → y that
maps an input x to its feature y and CL : y → l̂ that per-
forms classification on extracted features of the input.
The inference system learns the mappings FE and CL
from training examples and their labels. Once trained,

3

Ts	 =	 unit	 interval	
(e.g.,	 100	 msec)	 Note:	 each	 flow	 marked	 with	 (#	 packets,	 sizes)	

§  Origin	 flow	 paMern	 (f)	
–  Conveys	 applica5on-‐level	 data	 genera5on	 context	
–  As	 entering	 source	 Tx	 buffer	

§  Measured	 flow	 paMern	 (x)	
–  At	 best,	 x	 =	 ,me-‐shi1ed	 f	
–  Reflects	 severity	 of	 conges5on/mix	 with	 other	 flows	
–  As	 5mestamped	 at	 receiver	 Rx	 buffer	

Origin	 Flow	 PaMern	 Inference	 in	 Wi-‐Fi	 (1)	

§  Problem:	 how	 to	 accurately	 infer	 origin	 flow	
paMern	 fA	 from	 received	 paMern	 xA|B?	
–  Key	 challenge:	 CSMA	 alters	 origin	 paMern	 by	 introducing	

complex,	 irregular	 mixture	 of	 compe5ng	 flows	
–  BoMomline:	 mul!class	 classifica!on	 problem	

Origin	 Flow	 PaMern	 Inference	 in	 Wi-‐Fi	 (2)	

§  Supervised	 learning	
–  ARMAX	

Ø  AR	 =	 delayed	 ground	 truth	 paMerns	 (f)	
Ø  MA	 =	 model	 error	 (ε)	
Ø  X	 =	 delayed	 received	 paMerns	 (x)	
Ø  Train	 ft	 =	 [ft–1	 ...	 ft–n	 xt–1	 ...	 xt–m	 ε]	 θ	 with	 labeled	 dataset	 {x(i),	 <f(i),	 l(i)>}	

»  Es5mate	 θ	 via	 least	 squares	 (recursive	 LS	 by	 Kalman	 filtering)	

–  Naïve	 Bayes	 classifier	
Ø  Using	 feature	 y	 =	 [μrun	 μgap]	 for	 given	 x	
Ø  Train	 p(l|y)	 ∝	 p(x|	 l)	 from	 with	 {x(i),	 y(i),	 l(i)}	

§  Semi-‐supervised	 learning	
–  Gaussian	 mixtures	

Ø  Use	 same	 feature,	 bivariate	 y	 =	 [μrun	 μgap]	 for	 given	 x	
Ø  Train	 K-‐Gaussian	 sum	 ∼	 {w,(μ,	 Σ)}	 via	 EM	 with	 {x(i),	 y(i)}	 (unsupervised)	

»  w	 =	 mixing	 weights,	 	 (μ,	 Σ)	 =	 Gaussian	 parameters	
Ø  Classifica5on:	 use	 SVM	 (supervised)	

»  Train	 with	 posterior	 (membership)	 probabili5es	 with	 {x(i),	 <f(i),	 l(i)>}	

Approaches	 (Classical)	

§  	 Semi-‐supervised	 learning	
–  Phase	 I:	 unsupervised	 feature	 learning	

1.  Sparse	 coding	 &	 dic5onary	 learning	 (unlabeled	 x’s)	
2.  Subsample	 features	 via	 (max)	 pooling	
3.  Repeat	 for	 mul5ple	 layers	 (feed	 current	 layer’s	 result	 as	

next	 layer’s	 input)	

–  Phase	 II:	 supervised	 classifier	 training	 	
1.  Do	 mul5-‐layer	 sparse	 coding	 and	 pooling	 with	 labeled	 x’s	
2.  Train	 SVM	 classifiers	 with	 final	 feature	 vector	 resulted	 at	

top	

Our	 Approach	

Mul5-‐layer	 Feature	 Learning	 and	 SVM	 Classifica5on	

f-‐ext	
(OMP	 &	 K-‐SVD)	

subsample	
(Max	 pool)	

x(1)	

y(1)	
x(2)	 =	 z(1)	

f-‐ext	
(OMP	 &	 K-‐SVD)	

subsample	
(Max	 pool)	

y(2)	
x(3)	 =	 z(2)	

f-‐ext	
(OMP	 &	 K-‐SVD)	

subsample	
(Max	 pool)	

y(L)	
z(L)	

. 	 . 	
.	

(received	 runs-‐and-‐gaps	 5me	 series)	

Layer	 1	

Layer	 2	

Layer	 L	 CSMA	 spreads	 flow	 invariances	 (some	
preserved	 original	 run	 lengths)	 over	 	
long	 period	 ⟹	 feature	 learning	 &	
pooling	 over	 mul5ple	 layers	 iden5fy	
such	 invariances	

z(L)	

SVM	 classifier	

x(L)	 =	 z(L–1)	

§  Describe	 input	 x	 as	 M	 linear	 combina5on	 of	 D’s	 columns	
§  x	 =	 D	 y	 	 	

–  x	 =	 measured	 flow	 paMern	
–  y	 =	 extracted	 feature	 from	 x	
–  OMP	 computes	 y	 &	 K-‐SVD	 trains	 D	

Ø  min	 ǁX	 –	 DYǁF2	 	 s.t.	 	 ǁykǁ0	 ≤	 M	 ∀k	 	
–  Sparsity:	 M	 <<	 N	 <	 K	

§  Sparse	 coding,	 clustering,	 and	 mixtures	 are	 fundamentally	
same	 idea	

What	 Is	 Sparse	 Coding?	

D

What	 Is	 Max	 Pooling?	

§  What	 do	 we	 do	 when	 we	 have	 too	 many	 of	 same	 kinds?	
–  Need	 to	 summarize	 over	 them	

§  Max	 pooling	
–  Transla5on-‐invariant	 subsampling	 of	 mul5ple	 feature	 vectors	
–  Popular	 in	 CNN	 for	 image	 recogni5on	

Summarizing	 Deep	 Feature	 Learning	

.	 .	 .	 xk	

Incoming	 measurements	

§  Incoherent	 dic5onary	 atoms	
–  Force:	 ǁDT

	 D	 ǁ	 =	 I	 with	 new	 constraint	
Ø  min	 ǁX	 –	 DYǁF2	 +	 γ	 ǁDT

	 D	 	 –	 IǁF2	 	 s.t.	 	 ǁykǁ0	 ≤	 Mʹ′	 ∀k	 	

§  Relax	 sparsity	 due	 to	 distor5ons	 resulted	 by	
incoherent	 dic5onary	 training	
–  Use	 Mʹ′	 >	 M	 for	 OMP	

§  Overlapping	 max	 pooling	
–  z1	 =	 max_pool(y1,	 ...,	 yL),	 z2	 =	 max_pool(y5,	 ...,	 yL+4),	 ...	

Ø  Instead	 of	 z2	 =	 max_pool(yL+1,	 ...,	 y2L),	 ...	 	

Enhancements	

Evalua5on	
§  Simulated	 7	 Wi-‐Fi	 nodes	 in	 OPNET	 Modeler	

–  10	 dis5nct	 flow	 paMerns	 generated	 at	 source	
Ø  Mixed	 with	 various	 other	 flows	 including	 RTP/UDP/IP,	 HTTP,	 {p,	

interac5ve	 DB	 transac5ons	

§  Schemes	
–  ARMAX	
–  Naïve	 Bayes	
–  GMM	 with	 K	 =	 10	 &	 linear	 1-‐vs-‐all	 SVMs	
–  Proposed	 baseline	

Ø  2	 layers	 &	 linear	 1-‐vs-‐all	 SVMs	
–  Proposed	 baseline	 +	 3	 enhancements	
–  Implemented	 in	 MATLAB	

§  Metrics	
–  Classifica5on	 recall	 (true	 posi5ve	 rate)	 and	 false	 alarm	 rate	

Flow	 PaMerns	 and	 Nodes	

Classifica5on	 Performance	

Burst	 and	 Interarrival	 Predic5on	 Errors	

Scheme	 Origin	 run	 size	
predicVon	 error	

Origin	 gap	 size	
predicVon	 error	

ARMAX	 45.9%	 36.7%	

Naïve	 Bayes	 37.5%	 24.6%	

GMM	
(K	 =	 10)	 31.3%	 18.1%	

Proposed	
(baseline)	 28.3%	 16.2%	

Proposed	
(enhanced)	 22.8%	 11.4%	

§  Simply,	 we	 have	 created	 inverse	 mapping	
–  Measured	 paMern	 ⟶	 origin	 paMern	 (prequalified)	
–  This	 mapping	 consists	 of	 deep	 feature	 learner	 &	 classifier	

§  Deep	 learning	
–  Start	 with	 small	 features,	 aggregate	 up,	 and	 broaden	

coverage	
–  Can	 learn	 invariances	 and	 changes	 introduced	 by	 CSMA	 	

Ø  Arbitrary	 mix	 of	 flows,	 retransmissions,	 loss	 of	 data	

§  Future	 direc5ons	
–  Explore	 other	 (dis)similarity	 metrics	 (e.g.,	 DTW)	
–  Sparse	 packet	 sampling,	 mul5ple	 hops	
–  Test	 on	 real	 Wi-‐Fi	 data	
–  Other	 inference	 applica5ons	 in	 networking	 (e.g.,	 protocols)	

Conclusion	

Backup	 Slides	

Metrics	

Table 1: Origin flows used for evaluation

Flow Type Generative triplet �tr,sr, tg�
Flow 1 Constant �2,100,4�
Flow 2 Constant �2,500,2�
Flow 3 Constant �5,200,5�
Flow 4 Constant �10,200,10�
Flow 5 Stochastic �Exp(1), Pareto(100,2), Exp(0.1)�
Flow 6 Stochastic �Exp(0.5), Pareto(40,1), Exp(0.25)�
Flow 7 Stochastic �U(4,10), Pareto(100,2), Exp(0.5)�
Flow 8 Stochastic �N(10,5), Pareto(40,1), N(10,5)�
Flow 9 Mixed �1, Pareto(100,2), 1�
Flow 10 Mixed �1, Pareto(100,2), Exp(0.25)�

of 500 elements.

6.1.2 Preprocessing generated origin flow patterns

We precompute the mean run and gap lengths from the

generated origin flow patterns in the training dataset.

This is convenient because we enable simple lookup

(of the precomputed values) based on the classifi-

cation result of a measured flow in order to esti-

mate the origin run and gap properties. In Figure 8,

we have
�
s1

1
s1

2
0 0 0 s2

1
0 0 0 0 0 s3

1
s3

2
s3

3
0 0 . . .

�
, where

s1 = ∑2

k=1
s1

k , s2 = ∑1

k=1
s2

k , s3 = ∑3

k=1
s3

k give total bytes

of the three bursts. We can then compute the mean burst

size for this pattern. We also compute {t1
r , t2

r , t3
r , . . .},

{t1
g , t2

g , t3
g , . . .}, and their mean values.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

$#

!"!" !"#"

!"$"

!#!" !##" !#$"
%"%"%"

$!" $#"
$$"

Figure 8: Computing generated flow statistics

6.1.3 Evaluation metrics

We are foremost interested in the accuracy of classifying

a measured pattern x to its ground-truth origin flow pat-

tern f. We compute two metrics, recall (true positive rate)

and false alarm (false positive rate), to evaluate classifi-

cation performance:

Recall = ∑True positives

∑True positives + ∑False negatives

False alarm =
∑False positives

∑False positives + ∑True negatives

Without false alarm rate, we cannot truly assess the

probability of detection for a classifier using a computed

recall value because the classifier can be configured to

declare positive only, automatically achieving to guess

all positives correctly. Classification leads to inferring

Table 2: Wi-Fi parameter configuration for Scenario 1

Parameter Description Value

aSlotTime Slot time 20 µsec

aSIFSTime Short interframe space (SIFS) 10 µsec

aDIFSTime DCF interframe space (DIFS) 50 µsec

aCWmin Min contention window size 15 slots

aCWmax Max contention window size 1023 slots

tPLCPPreamble PLCP preamble duration 16 µsec

tPLCP SIG PLCP SIGNAL field duration 4 µsec

tSymbol OFDM symbol duration 4 µsec

other important properties of a flow from its training

dataset records. As our secondary evaluation metrics, we

calculate errors in estimating the original mean burst size

and mean gap length of the flow.

6.2 Scenario 1: Three Wi-Fi Nodes
Figure 9 depicts Scenario 1. In this simple scenario, we

infer the origin time series fA sent by source node A, us-

ing xA|B measured at receiver node B. Node C, another

source, contends with node A by transmitting its own

flow fC. We carry out cross-validation with all 10 flow

datasets by setting fA = fi ∀i ∈ {1, . . . ,10}, flow by flow

at once. When fA = fi, we randomly set fC = f j ∀ j �= i.
Node C can change its flow pattern from f j to fk, while

node A still running fi, but fk is chosen such that k �= i.

Figure 9: Scenario 1

Wi-Fi setup. We have implemented a custom discrete-

event simulator in MATLAB, assuming the IEEE

802.11g our baseline Wi-Fi system. At its core, our

CSMA implementation is based on an open-source wire-

less simulator [2]. The backoff mechanism works as

follows. The contention window CW is initialized to

aCWmin. In case of timeout, CSMA doubles CW, other-

wise waits until the channel becomes idle with an ad-

ditional DCF interframe space (DIFS) duration. CSMA

chooses a uniformly random wait time between [1, CW].

CW can grow up to aCWmax of 1,023 slots. CW is decre-

mented only when the media is sensed idle. RTS and

CTS are disabled. The Wi-Fi configuration is summa-

rized in Table 2.

Inference schemes. We have implemented all of the

inference schemes in MATLAB. We consider ARMAX-

8

For	 mul5ple	 hypothesis	 tes5ng,	 false	 discovery	 rate	 (FDR)	 	
could	 be	 used	 instead	 of	 false	 alarm	 rate	 	

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

OMP/K−SVD 3−grams ED/K−means DTW/K−medoids 2/3/4−grams
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall (single layer)
FDR (single layer)
Recall (128−bit padding)
FDR (128−bit padding)

Figure 6: Single-layer feature learning. 1-vs-all classi-
fication recall and FDR for language identification

OMP/K−SVD 3−grams ED/K−means DTW/K−medoids 2/3/4−grams
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall (2 layers)
FDR (2 layers)
Recall (128−bit padding)
FDR (128−bit padding)

Figure 7: Two-layer deep feature learning. 1-vs-all
classification recall and FDR for language identification

Each datapoint is a vector of 1,000 elements constituting the encrypted payload-length time series
(measured in bytes), acquired from approximately 30 sec speech of one speaker.

Implementation. We have implemented the proposed deep feature learning and classification
system in MATLAB. We use Technion’s open-source OMP (v10) and K-SVD (v13) implemen-
tations [28] and LIBSVM [17]. We have written our own DTW module and K-medoids based on
it. We consider the SRTP default, length-preserving AES encryption in counter mode. We will later
show the impact of padding to a cipher block size on classification accuracy. We train mainly 1-vs-all
SVM classifiers. For comparison to Wright et al. [31], we also train 1-vs-1 classifiers selectively.

Classification accuracy metrics. To evaluate the accuracy performance of our classifiers, we com-
pute recall (true positive rate) and either false discovery rate (FDR) or false positive rate (FPR):
Recall =

�True positives
�True positives+

�False negatives , FDR =
�False positives

�False positives+
�True positives , and

FPR =
�False positives

�False positives+
�True negatives . We use FDR for 1-vs-all classifiers. Because we have

21 classes for the 22 Language dataset and 24 classes (including American English accent) for FAE,
the total number of negatives tends to be much larger than the number of positives when testing each
1-vs-all classifier against all samples in the test dataset. This makes FPR unfairly small for 1-vs-all,
thus FDR should be preferred. We compute FPR for 1-vs-1 classifiers.

Single layer analysis. We compare the performance of numerous L1 f-ext choices in a single layer
configuration: 1) OMP sparse coder & K-SVD (§4.2); 2) 3-grams (§4.2); 3) ED coder & K-means
clustering (§5.1); 4) DTW coder & K-medoids clustering (§5.1); 5) simultaneous 2/3/4-grams (§5.2).
We do max pooling by m = 10 on the L1 f-ext output vectors before applying to linear SVM
classifiers. We input each datapoint (∈ R1,000) in a training dataset as a stream from which xk ∈ RN

are formed as in Figure 4, using relatively short N = 64 (i.e., about 3.2 sec-long speech fragment).
There is an overlap τ = 0.2 · N between consecutive xk’s. We use K = 100 (dictionary atoms or
clusters) for each of 21 classes in the language identification problem, the concatenated dictionary
would have 2,100 atoms. We regularize OMP, ED, and DTW coders by setting P = 50 < K.

n-grams are a great choice for the high-performance L1 f-ext. However, there is a crucial drawback
for practical uses. We have observed that 22 Language dataset incurs 137 different voice payload
sizes in the Opus VBR coding (for FAE dataset, we find 98 different payload lengths), making the
unigram space size |S1| = 137. If we were to generate 2-, 3-, and 4-gram tables exhaustively, we
would face |S2| = 18, 769, |S3| ≈ 2.5 million, and |S4| ≈ 352 million. So we had to reduce the
4-gram table to popular thousands, 3-grams to a few thousands, and so forth. Still, the feature vector
with n-gram embedding has a huge dimensionality compared to other L1 f-ext choices.

Figure 6 shows the average recall and FDR of 1-vs-all classification for language identification (with
22 Language dataset) based on the single layer feature extraction with a specified L1 f-ext over the
horizontal axis. For single layer, the accuracy performance of the proposed DTW coder is very close
to simultaneous 2/3/4-grams. DTW-based single layer results in a better recall, but induces more
false positives by having a higher FDR. As expected, DTW performs superior over ED in clustering
and matching time series data.

Language identification. We have been able to improve the classification performance by adding
one more layer. At layer 2, the OMP sparse coder takes in the pooled DTW-based feature vectors of
layer 1. We use overlapping max pooling at layer 2. Figure 8 presents the complete confusion matrix

7

Feature	 Extrac5on	 and	 Pooling	 Details	
Do	 long	 measurement	 to	 acquire	 large	 	
mulVples	 of	 N	 packet	 length	 sequence	

x1	 Size	 N	

x2	
x3	 ...	

y1	 y2	 y3	 yM	

...	 ...	

z1	

Max	 pooling	 	
by	 M	

z1,i	 =	 max(y1,i,	 ...,	 yM,i)	

To	 next	 layer:	
	

xj(I+1)	 =	 zj(I)	
	

τ	

