Inferring Origin Flow Patterns in Wi-Fi with Deep Learning

Youngjune Gwon

H. T. Kung

11th International Conference on Autonomic Computing (ICAC'14)

Philadelphia, PA

June 18, 2014

Outline

- Introduction
- Background
- Origin flow pattern inference in Wi-Fi
- Classical approaches
- Our approach
- Evaluation
- Conclusion

What Is Network Traffic Inference?

- Network traffic analysis is classical research topic
 - Study, measure, and estimate flow characteristics
 - > E.g., burst size and interarrival time distributions, mean values
 - Network nodes (routers) regularly sample packets
 - To provide data used for analysis
- Why?
 - Traffic monitoring
 - Spot anomalies, (D)DoS attacks, heavy hitters
 - Help manage networking resources
 - Wireless spectrum among most precious networking resources
 - Program network nodes (SDN)
 - Improve Tx-Rx scheduling, interference mitigation

Flow Pattern

- Sequence of data bytes (*run*) with waiting times (*gap*)
- Runs-and-gaps model
 - − Flow pattern \Rightarrow *time series data*
 - Simple, but powerful abstraction
 - Applicable at any node (src, dst, intermediate)

Runs-and-gaps Time Series Processing

- Flow 1
 w₁ = [2 1 2 0 1 2], x₁ = [100 80 110 0 80 100]
- Flow 2

 $- \mathbf{w}_2 = [101010], \mathbf{x}_2 = [60006000600]$

Flow 3

 $- \mathbf{w}_3 = [4\ 0\ 0\ 0\ 3], \mathbf{x}_3 = [1500\ 0\ 0\ 0\ 0\ 1500]$

Origin Flow Pattern Inference in Wi-Fi (1)

- Origin flow pattern (f)
 - Conveys application-level data generation context
 - As entering source Tx buffer
- Measured flow pattern (x)
 - At best, x = time-shifted f
 - Reflects severity of congestion/mix with other flows
 - As timestamped at receiver Rx buffer

Origin Flow Pattern Inference in Wi-Fi (2)

- Problem: how to accurately infer origin flow pattern f_A from received pattern x_{A|B}?
 - <u>Key challenge</u>: CSMA alters origin pattern by introducing complex, irregular mixture of competing flows
 - <u>Bottomline</u>: *multiclass classification problem*

Approaches (Classical)

- Supervised learning
 - ARMAX
 - > AR = delayed ground truth patterns (f)
 - > MA = model error (ϵ)
 - X = delayed received patterns (x)
 - > Train $\underline{\mathbf{f}}_t = [\mathbf{f}_{t-1} \dots \mathbf{f}_{t-n} \mathbf{x}_{t-1} \dots \mathbf{x}_{t-m} \boldsymbol{\varepsilon}] \boldsymbol{\Theta}$ with labeled dataset $\{\mathbf{x}^{(i)}, <\mathbf{f}^{(i)}, l^{(i)} >\}$
 - » Estimate $\boldsymbol{\theta}$ via least squares (recursive LS by Kalman filtering)
 - Naïve Bayes classifier
 - > Using feature $\mathbf{y} = [\mu_{run} \, \mu_{gap}]$ for given \mathbf{x}
 - > Train $p(||\mathbf{y}) \propto p(\mathbf{x}||)$ from with $\{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \mathbf{z}^{(i)}\}$
- Semi-supervised learning
 - Gaussian mixtures
 - > Use same feature, bivariate $\mathbf{y} = [\mu_{run} \mu_{gap}]$ for given \mathbf{x}
 - > Train K-Gaussian sum ~ { $w,(\mu, \Sigma)$ } via \vec{EM} with { $x^{(i)}, y^{(i)}$ } (unsupervised)
 - » \mathbf{w} = mixing weights, $(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ = Gaussian parameters
 - Classification: use SVM (*supervised*)
 - » Train with posterior (membership) probabilities with $\{\mathbf{x}^{(i)}, <\mathbf{f}^{(i)}, I^{(i)} > \}$

Our Approach

- Semi-supervised learning
 - Phase I: unsupervised feature learning
 - 1. Sparse coding & dictionary learning (*unlabeled* **x**'s)
 - 2. Subsample features via (max) pooling
 - 3. Repeat for multiple layers (feed current layer's result as next layer's input)
 - Phase II: supervised classifier training
 - 1. Do multi-layer sparse coding and pooling with *labeled* **x**'s
 - Train SVM classifiers with final feature vector resulted at top

Multi-layer Feature Learning and SVM Classification

What Is Sparse Coding?

- Describe input x as M linear combination of D's columns
- **x** = D**y**
 - **x** = measured flow pattern
 - y = extracted feature from x
 - OMP computes y & K-SVD trains D
 - \succ min $\|\mathbf{X} D\mathbf{Y}\|_{F}^{2}$ s.t. $\|\mathbf{y}_{k}\|_{0} \le M \forall k$
 - Sparsity: M << N < K</p>
- Sparse coding, clustering, and mixtures are fundamentally same idea

What Is Max Pooling?

- What do we do when we have too many of same kinds?
 Need to summarize over them
- Max pooling
 - Translation-invariant subsampling of multiple feature vectors
 - Popular in CNN for image recognition

Summarizing Deep Feature Learning

Enhancements

- Incoherent dictionary atoms
 - Force: $||D^TD|| = I$ with new constraint
 - $\succ \min \|\mathbf{X} D\mathbf{Y}\|_{F}^{2} + \gamma \|D^{\mathsf{T}} D I\|_{F}^{2} \text{ s.t. } \|\mathbf{y}_{k}\|_{0} \leq M' \forall k$
- Relax sparsity due to distortions resulted by incoherent dictionary training
 - Use M' > M for OMP
- Overlapping max pooling
 - z₁ = max_pool(y₁, ..., y_L), z₂ = max_pool(y₅, ..., y_{L+4}), ...

> Instead of $\mathbf{z}_2 = \max_{pool}(\mathbf{y}_{L+1}, ..., \mathbf{y}_{2L}), ...$

Evaluation

- Simulated 7 Wi-Fi nodes in OPNET Modeler
 - 10 distinct flow patterns generated at source
 - Mixed with various other flows including RTP/UDP/IP, HTTP, ftp, interactive DB transactions
- Schemes
 - ARMAX
 - Naïve Bayes
 - GMM with K=10 & linear 1-vs-all SVMs
 - Proposed baseline
 - > 2 layers & linear 1-vs-all SVMs
 - Proposed baseline + 3 enhancements
 - Implemented in MATLAB
- Metrics
 - Classification recall (true positive rate) and false alarm rate

Flow Patterns and Nodes

-	Pattern	Flow type	Generative triplet $\langle t_r, s_r, t_g \rangle$
-	f ₁	Constant	(2,100,4)
	\mathbf{f}_2	Constant	$\langle 2, 500, 2 \rangle$
	f ₃	Constant	(5,200,5)
	f_4	Constant	(10, 200, 10)
	f 5	Stochastic	$\langle Exp(1), Pareto(100, 2), Exp(0, 1) \rangle$
	f ₆	Stochastic	$\langle \text{Exp}(0.5), \text{Pareto}(40,1), \text{Exp}(0.25) \rangle$
	f 7	Stochastic	(U(4, 10), Pareto(100, 2), Exp(0.5))
	f ₈	Stochastic	(N(10,5), Pareto(40,1), N(10,5))
	f9	Mixed	$\langle 1, Pareto(100, 2), 1 \rangle$
	f ₁₀	Mixed	$\langle 1, Pareto(100, 2), Exp(0.25) \rangle$

Node	Role	Main networking activity
А	Flow source	Transmits \mathbf{f}_i
В	Receiver	Intercepts flows as Wi-Fi router/AP
С	Flow source	Transmits $\mathbf{f}_j \forall j \neq i$
D	Flow source	Multimedia streaming over RTP/UDP/IP
Е	Flow dest.	HTTP with page size \sim U[10,400]B
F	Flow dest.	ftp file transfer with size 50000 B
G	Flow dest.	DB access with inter-arrival $\sim Exp(3)$ sec

Classification Performance

Burst and Interarrival Prediction Errors

Scheme	Origin run size prediction error	Origin gap size prediction error
ARMAX	45.9%	36.7%
Naïve Bayes	37.5%	24.6%
GMM (<i>K</i> = 10)	31.3%	18.1%
Proposed (baseline)	28.3%	16.2%
Proposed (enhanced)	22.8%	11.4%

Conclusion

- Simply, we have created *inverse mapping*
 - Measured pattern \rightarrow origin pattern (prequalified)
 - This mapping consists of deep feature learner & classifier
- Deep learning
 - Start with small features, aggregate up, and broaden coverage
 - Can learn invariances and changes introduced by CSMA
 - Arbitrary mix of flows, retransmissions, loss of data
- Future directions
 - Explore other (dis)similarity metrics (e.g., DTW)
 - Sparse packet sampling, multiple hops
 - Test on real Wi-Fi data
 - Other inference applications in networking (*e.g.*, protocols)

Backup Slides

$$Recall = \frac{\sum \text{True positives}}{\sum \text{True positives} + \sum \text{False negatives}}$$

$$False \ alarm = \frac{\sum \text{False positives}}{\sum \text{False positives} + \sum \text{True negatives}}$$

For multiple hypothesis testing, false discovery rate (FDR) could be used instead of false alarm rate

 $FDR = \frac{\sum \text{False positives}}{\sum \text{False positives} + \sum \text{True positives}}$

Feature Extraction and Pooling Details

