
Inferring Origin Flow Patterns in Wi-Fi with Deep Learning

Youngjune L. Gwon
Harvard University

H. T. Kung
Harvard University

Abstract

We present a novel application of deep learning in net-
working. The envisioned system can learn the original
flow characteristics such as a burst size and inter-burst
gaps conceived at the source from packet sampling done
at a receiver Wi-Fi node. This problem is challenging be-
cause CSMA introduces complex, irregular alterations to
the origin pattern of the flow in the presence of compet-
ing flows. Our approach is semi-supervised learning. We
first work through multiple layers of feature extraction
and subsampling from unlabeled flow measurements. We
use a feature extractor based on sparse coding and dic-
tionary learning, and our subsampler performs overlap-
ping max pooling. Given the layers of learned feature
mapping, we train SVM classifiers with deep feature
representation resulted at the top layer. The proposed
scheme has been evaluated empirically in a custom wire-
less simulator and OPNET. The results are promising
that we achieve superior classification performance over
ARMAX, Naı̈ve Bayes classifiers, and Gaussian mixture
models optimized by the EM algorithm.

1 Introduction

Machine learning plays an increasingly important role
in the complex, data-intensive tasks required by today’s
sensing and computing systems. A flow is a sequence of
data packets sharing the same context (e.g., TCP connec-
tion, media stream) sent from a source to its destination.
Accurate knowledge about the flow characteristics such
as a burst size (in number of packets or bytes) and inter-
burst gap, as were originated at the source, can be used
beneficially to manage scarce networking resources. One
motivating example would be software-defined network-
ing (SDN) [3], which can leverage detailed flow knowl-
edge to program routers and access points (APs) for
scheduling a congested data traffic or mitigating wireless
interferences more intelligently.

This paper describes our first work in developing in-
ference schemes to learn the original properties of a flow
from packet sampling at a receiver that is not necessarily
the destination of the flow. We focus on the case where
the source and the receiver are Wi-Fi nodes, and there are
other Wi-Fi nodes that transmit their own flows. In par-
ticular, the receiver for our case is a network node such as
a Wi-Fi AP that forwards or broadcasts packets, being a
spot of aggregating different flows. The key challenge is
how to unravel the work of CSMA that introduces a com-
plicated mixture of competing flows. We believe that the
approach of this paper can be extended for various other
wireless and wired networks.

1.1 The Problem

Figure 1 explains our origin flow inference problem. Wi-
Fi node A is the source of flow fA transmitted to Node B,
a Wi-Fi AP. We denote xA|B a sample of fA measured
by B. We use vector notation f to represent an origin
flow pattern over time, and x its measurement. (Section 2
will explain how we describe patterns of a flow in detail;
for now, consider f and x finite sequences of numbers.)
Notice that there are other Wi-Fi nodes in the channel,
namely nodes C, D, E, F, and G, that transmit own flows,
creating contentions.

Distributed Coordination Function (DCF) provides the
fundamental mechanism to access wireless media for
the IEEE 802.11 Wi-Fi [1]. DCF employs Carrier Sense
Multiple Access (CSMA) with a random backoff drawn
from an exponentially growing window. Mixed with
other transmissions, the sample xA|B could hardly pre-
serve the original patterns in fA. For example, the re-
ceived packet burst lengths and gaps between bursts can
be altered significantly. The exactness of such alteration
is difficult to estimate, but there are both linear (e.g., ge-
ometric increase of burst lengths) and nonlinear (e.g.,
packet loss, retransmission, timeout) distortions. Among
all possible causes, the main culprit should be CSMA.

fA

xA|B

Node A
(source)

Node B
(receiver)

IEEE 802.11 DCF

(CSMA/CA)

(other nodes)

Node C

Node D

Node E

Node F

Node G

fC
fD

fE

fF

fG
Tx buffer

fA

Rx buffer

xA|B

App

TCP/UDP/IP

802.11

Figure 1: Flow inference problem illustrated

We aim to solve the following.

1. Classify received frame/packet pattern sampled at a
receiver Wi-Fi node to the origin flow pattern;

2. Infer the original properties of a flow such as burst
sizes and inter-burst gaps originated at the source.

We clarify several points. First, the origin flow pat-
tern conveys context of application-level data. This is
depicted under node A in Figure 1. fA instantiates a pat-
tern of the data formation mostly passed from the appli-
cation layer (and the lesser from Transport/IP/MAC) to
the transmit unit. Thus, our inference problem can lead
to important understanding of application context min-
ing. Secondly, our primary work domain is the MAC
layer. We deduce observable patterns of a conventional
TCP/UDP/IP flow from measuring directly the 802.11
MAC frames over time. Lastly, a sampled flow pattern at
best is the origin flow pattern shifted (delayed) in time.
For our inference to be effective, it is crucial to learn in-
variance such as some preserved original burst lengths
that can spread widely over time.

1.2 Motivating Applications

Traffic monitoring capabilities are crucial for network
management and security. Wireless bandwidth is among
the most precious networking resources. Accurate origin
flow inference can help derive efficient scheduling for
wireless channels. The inferred information can also be
used to classify legitimate traffic from malicious attacks.
Programming network nodes. Software-defined net-
working (SDN) is an emerging paradigm to build highly
dynamic networks. Inferred origin traffic information can
help program SDN nodes. For example, we can improve
transmit-receive scheduling and avoid interferences.
Resource provisioning. The state-of-the-art networks
can provision almost all networking resources elastically.
The origin traffic inference will reveal the original prop-
erties of a flow that resource provisions such as com-
munication bandwidth, flow cache, and compute cycles
should strive to satisfy.

Queue management. A network node (e.g., router, AP,
switch) can leverage the source sending rates of large
flows to manage its receive buffers and scheduling mech-
anisms dynamically. With knowledge on origin charac-
teristics of a flow, networks can improve overall fairness.

1.3 Our Contributions
The main contribution of our work is to demonstrate the
effectiveness of learning algorithms applied to an im-
portant networking problem mostly studied under para-
metric, model-based frameworks. Our approach is semi-
supervised learning. We set up and train deep, unsuper-
vised feature learning that constitutes multiple layers of
sparse coding and pooling units. Given the learned fea-
ture mapping, we train classifiers in supervised learn-
ing. We have identified the key attributes for success-
ful learning approaches to enhance our baseline such
as forcing incoherency for sparse coding dictionary to
extract more discriminative features, dense arrangement
of sparse coding units, and max pooling on overlap-
ping intervals. We have also explored and experimented
with other learning methods from classical autoregres-
sive time-series prediction and Naı̈ve Bayes classifiers
to the EM-optimized Gaussian mixtures. Our evaluation
empirically confirms superior performance of the pro-
posed learning methods in recovering the original prop-
erties of a flow.

1.4 Related Work
There is considerable work in model-based estimation
for origin flow properties. Basu and Mukherjee [5] dis-
cuss numerous time-series models for Internet data traf-
fic, including the autoregressive moving average process
helpful for some of our formulation in Sections 2 and 3.
Claffy et al. [9] present one of the earliest work to in-
fer the original packet size distribution of a flow from
packet sampling at routers. Duffield et al. [12] analyze
methods to infer the original frequencies of flow lengths
from sparse packet sampling.

The way sparse representations are used in computer
vision and pattern recognition has inspired our method.
Wright et al. [27] have developed a face recognition sys-
tem that performs classification with sparse representa-
tion of features, which is based on a similar idea as ours.
The idea of pooling sparse representations of features
provides an important primitive to construct higher-level
features as studied by Raina et al. [22], although pooling
techniques date back to Riesenhuber and Poggio [24].
Coates and Ng [10] propose to pool over multiple fea-
tures for deep learning.

Heisele, Ho, and Poggio [14] explain useful tech-
niques of applying SVM for multi-class classification,

2

which is inherent in our origin flow pattern inference
problem. There are a number of existing techniques to
learn incoherent dictionary atoms. Ramirez et al. [23],
Zhang & Li [28], and Lin et al. [18] have proposed
similar ideas that force orthonormal dictionary columns
as we maximize incoherency among dictionary columns
in §5.1. Our idea of accompanying sparsity relaxation
(§5.2) for sparse coding with forced incoherent dictio-
nary atoms is new.

1.5 Outline
Section 2 explains the time-series representation and pro-
cessing of a flow. In Section 3, we explore supervised
learning methods for the origin flow inference. Section 4
describes our baseline semi-supervised learning method.
We propose several enhancements to the baseline method
in Section 5 and evaluate the learning methods with a
custom simulator and OPNET in Section 6. The paper
concludes in Section 7.

2 Time-series Representation of Flow

The runs-and-gaps model [16] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As indicated earlier, we perform our
flow measurements directly at the MAC layer rather than
at the transport or IP layers by sampling and processing
Wi-Fi frames.

!"#$%&

'()$&
*+,&-./&

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

-./& *+,& -./& *+,& -./&

Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN] be a vector contain-
ing the number of packets in a flow measured over N
time intervals. Here, an important parameter is the unit
interval Ts or sampling period during which each ele-
ment wt is sampled and recorded. The total measurement
time or observation window is N×Ts. Alternatively, we
have vector x = [x1 x2 . . . xt . . . xN] for w where xt is the
corresponding byte count of the total payload at time t.
Hence, a zero in x (or w) indicates a gap. If w7 = 3 and
x7 = 1,492, we have 3 packets for the flow at t = 7, and

the sum of the payloads from the 3 packets is 1,492 bytes.
We will call either w or x a measurable input vector
for inference, which contains extractable features. While
both w and x carry unique information, we mainly work
with x throughout this paper.

We designate an origin flow (pattern) with another
vector f. Just like x, f is a sequence of byte counts uni-
formly sampled, but the difference is that f reflects the
initial pattern (or signature) originated at its source. Note
f ∈ RM whereas x ∈ RN , and M and N are not necessar-
ily equal. We use notation xi,k to refer kth measurement
on flow i since there can be many measurements on fi.
We also use fi,k to designate the kth instance of origin
flow i because there could be many origin patterns, or
the pattern can be a stochastic process and changes dy-
namically over time. In summary, f,w, and x are all finite
time-series representations of a flow.

Consider sampling and processing of three example
flows in Fig. 3 at a receiver. The receive buffer first times-
tamps each arriving data frame and marks with flow ID.
At t = 1, the received frame for flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
with 1,000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]
2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]
3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]
With Ts = 10 msec, each time series take 60 msec to

measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

!"!"!" !"!"!"
#$%&"'"

()*+,-+,./"

#$%&")"
('*0,,./"

#$%&"1"
(2*2,,-2,,-"
2,,-1,,./" #$%&"'"

('*3,./"

#$%&")"
('*0,,./"

#$%&"'"
()*0,-+,./"

#$%&"'"
('*3,./"

#$%&"1"
('*',,,./"

#$%&"'"
()*+,-+,./"

#! 3! 4! 5! 6! 7!

#$%&"1"
()*',,-2,,./"

#$%&")"
('*0,,./"

Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised
Feature Learning

The core of an inference system comprises a feature ex-
tractor (FE) and a classifier (CL) that need to be trained.
Figure 4 describes the supervised learning frame-
work. Supervised learning requires a labeled training
dataset that consists of training examples {x1, . . . ,xT}
with corresponding desired output values (i.e., labels)
{l1, . . . , lT}. There are two mappings, FE : x→ y that

3

Feature
Extractor

(FE)

Classifier
(CL)

Feature
Extractor

(FE)

Classifier
(CL)

!"#$%$%&'

1.4 Related Work
There is considerable amount of previous studies that
employ model-based estimation to infer the origin flow
properties.

1.5 Outline
In Section II, we explain the runs-and-gaps model to
characterize the time series traffic data, introduce the
inference problem in Wi-Fi, and describe possible ma-
chine learning approaches for the problem. Section III
overviews our basic data processing and explain the pro-
posed inference schemes in detail. In addition to the pro-
posed schemes, we suggest two enhancements for dic-
tionary learning and sparse coding in Section IV. Em-
pirical evaluation follows in Section V, using a custom
discrete-event wireless simulator and OPNET’s built-in
IEEE 802.11. We discuss related work in Section VI, and
Section VII concludes the paper.

2 Time-series Representation of Flow

The runs-and-gaps model [5] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As pointed out earlier, we must cope
with the workings of CSMA, which leaves measuring
and processing Wi-Fi frames directly at the MAC layer
rather than at the transport or IP layers.

!"#$%&

'()$&
*+,&-./&

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

-./& *+,& -./& *+,& -./&

Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN] be a vector containing
the number of packets for the same flow measured over
adjacent time intervals. Here, an important parameter is
the unit interval Ts during which each element wt is sam-
pled and recorded. Alternatively, we have a representa-
tion x = [x1 x2 . . . xt . . . xN] for w where xt is a corre-
sponding byte count of the total payload at time interval
t—hence, a zero in x (or w) indicates a gap.

We will call either w or x an input vector for inference,
which contains extractable features. Since w,x ∈ RN ,

they are finite time-series representations of a flow. Note
that we can represent both origin or sampled flows this
way. The total measurement time to acquire w, x should
be N ×Ts.

Consider the processing of three example flows in
Fig. 3. The receive buffer first timestamps each arriving
data frame and marks with flow ID upon processing. At
t = 1, the received frame for Flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, Flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
of 1000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]

2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]

3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]

With Ts = 10 msec, each time series take 60 msec to
measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

!"!"!" !"!"!"
#$%&"'"

()*+,-+,./"

#$%&")"
('*0,,./"

#$%&"1"
(2*2,,-2,,-"
2,,-1,,./" #$%&"'"

('*3,./"

#$%&")"
('*0,,./"

#$%&"'"
()*0,-+,./"

#$%&"'"
('*3,./"

#$%&"1"
('*',,,./"

#$%&"'"
()*+,-+,./"

#! 3! 4! 5! 6! 7!

#$%&"1"
()*',,-2,,./"

#$%&")"
('*0,,./"

Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised
Feature Learning

The core of an inference system comprises feature ex-
tractors and classifiers that need to be trained. Supervised
learning requires a labeled training dataset that consists
of training examples {x1, . . . ,xT } with corresponding
desired output values (i.e., labels) {l1, . . . , lT }. The la-
bels serve as ground truths for training the inference sys-
tem with Ideally, the training dataset should consist of
i.i.d. samples for better performance. We now explore su-
pervised learning methods for origin flow inference.

{xi, li}T
i=1

3.1 ARMAX Least Squares
Autoregressive moving average with exogenous inputs
(ARMAX) [6] is a widely-studied model used in linear
system identification. ARMAX models the current out-
put of a system with the previous (delayed) output and
input values by a linear difference equation: yt +a1yt−1 +
. . .+anyt−n = b1xt−1 + . . .+bmxt−m + ε . x and y are the

3

(%)*"*%+*'

1.4 Related Work
There is considerable amount of previous studies that
employ model-based estimation to infer the origin flow
properties.

1.5 Outline
In Section II, we explain the runs-and-gaps model to
characterize the time series traffic data, introduce the
inference problem in Wi-Fi, and describe possible ma-
chine learning approaches for the problem. Section III
overviews our basic data processing and explain the pro-
posed inference schemes in detail. In addition to the pro-
posed schemes, we suggest two enhancements for dic-
tionary learning and sparse coding in Section IV. Em-
pirical evaluation follows in Section V, using a custom
discrete-event wireless simulator and OPNET’s built-in
IEEE 802.11. We discuss related work in Section VI, and
Section VII concludes the paper.

2 Time-series Representation of Flow

The runs-and-gaps model [5] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As pointed out earlier, we must cope
with the workings of CSMA, which leaves measuring
and processing Wi-Fi frames directly at the MAC layer
rather than at the transport or IP layers.

!"#$%&

'()$&
*+,&-./&

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

-./& *+,& -./& *+,& -./&

Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN] be a vector containing
the number of packets for the same flow measured over
adjacent time intervals. Here, an important parameter is
the unit interval Ts during which each element wt is sam-
pled and recorded. Alternatively, we have a representa-
tion x = [x1 x2 . . . xt . . . xN] for w where xt is a corre-
sponding byte count of the total payload at time interval
t—hence, a zero in x (or w) indicates a gap.

We will call either w or x an input vector for inference,
which contains extractable features. Since w,x ∈ RN ,

they are finite time-series representations of a flow. Note
that we can represent both origin or sampled flows this
way. The total measurement time to acquire w, x should
be N ×Ts.

Consider the processing of three example flows in
Fig. 3. The receive buffer first timestamps each arriving
data frame and marks with flow ID upon processing. At
t = 1, the received frame for Flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, Flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
of 1000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]

2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]

3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]

With Ts = 10 msec, each time series take 60 msec to
measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

!"!"!" !"!"!"
#$%&"'"

()*+,-+,./"

#$%&")"
('*0,,./"

#$%&"1"
(2*2,,-2,,-"
2,,-1,,./" #$%&"'"

('*3,./"

#$%&")"
('*0,,./"

#$%&"'"
()*0,-+,./"

#$%&"'"
('*3,./"

#$%&"1"
('*',,,./"

#$%&"'"
()*+,-+,./"

#! 3! 4! 5! 6! 7!

#$%&"1"
()*',,-2,,./"

#$%&")"
('*0,,./"

Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised
Feature Learning

The core of an inference system comprises feature ex-
tractors and classifiers that need to be trained. Supervised
learning requires a labeled training dataset that consists
of training examples {x1, . . . ,xT } with corresponding
desired output values (i.e., labels) {l1, . . . , lT }. The la-
bels serve as ground truths for training the inference sys-
tem with Ideally, the training dataset should consist of
i.i.d. samples for better performance. We now explore su-
pervised learning methods for origin flow inference.

x l̂ y

3.1 ARMAX Least Squares
Autoregressive moving average with exogenous inputs
(ARMAX) [6] is a widely-studied model used in linear
system identification. ARMAX models the current out-
put of a system with the previous (delayed) output and
input values by a linear difference equation: yt +a1yt−1 +
. . .+anyt−n = b1xt−1 + . . .+bmxt−m + ε . x and y are the

3

1.4 Related Work
There is considerable amount of previous studies that
employ model-based estimation to infer the origin flow
properties.

1.5 Outline
In Section II, we explain the runs-and-gaps model to
characterize the time series traffic data, introduce the
inference problem in Wi-Fi, and describe possible ma-
chine learning approaches for the problem. Section III
overviews our basic data processing and explain the pro-
posed inference schemes in detail. In addition to the pro-
posed schemes, we suggest two enhancements for dic-
tionary learning and sparse coding in Section IV. Em-
pirical evaluation follows in Section V, using a custom
discrete-event wireless simulator and OPNET’s built-in
IEEE 802.11. We discuss related work in Section VI, and
Section VII concludes the paper.

2 Time-series Representation of Flow

The runs-and-gaps model [5] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As pointed out earlier, we must cope
with the workings of CSMA, which leaves measuring
and processing Wi-Fi frames directly at the MAC layer
rather than at the transport or IP layers.

!"#$%&

'()$&
*+,&-./&

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

-./& *+,& -./& *+,& -./&

Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN] be a vector containing
the number of packets for the same flow measured over
adjacent time intervals. Here, an important parameter is
the unit interval Ts during which each element wt is sam-
pled and recorded. Alternatively, we have a representa-
tion x = [x1 x2 . . . xt . . . xN] for w where xt is a corre-
sponding byte count of the total payload at time interval
t—hence, a zero in x (or w) indicates a gap.

We will call either w or x an input vector for inference,
which contains extractable features. Since w,x ∈ RN ,

they are finite time-series representations of a flow. Note
that we can represent both origin or sampled flows this
way. The total measurement time to acquire w, x should
be N ×Ts.

Consider the processing of three example flows in
Fig. 3. The receive buffer first timestamps each arriving
data frame and marks with flow ID upon processing. At
t = 1, the received frame for Flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, Flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
of 1000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]

2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]

3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]

With Ts = 10 msec, each time series take 60 msec to
measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

!"!"!" !"!"!"
#$%&"'"

()*+,-+,./"

#$%&")"
('*0,,./"

#$%&"1"
(2*2,,-2,,-"
2,,-1,,./" #$%&"'"

('*3,./"

#$%&")"
('*0,,./"

#$%&"'"
()*0,-+,./"

#$%&"'"
('*3,./"

#$%&"1"
('*',,,./"

#$%&"'"
()*+,-+,./"

#! 3! 4! 5! 6! 7!

#$%&"1"
()*',,-2,,./"

#$%&")"
('*0,,./"

Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised
Feature Learning

The core of an inference system comprises feature ex-
tractors and classifiers that need to be trained. Supervised
learning requires a labeled training dataset that consists
of training examples {x1, . . . ,xT } with corresponding
desired output values (i.e., labels) {l1, . . . , lT }. The la-
bels serve as ground truths for training the inference sys-
tem with Ideally, the training dataset should consist of
i.i.d. samples for better performance. We now explore su-
pervised learning methods for origin flow inference.

x l̂ y

3.1 ARMAX Least Squares
Autoregressive moving average with exogenous inputs
(ARMAX) [6] is a widely-studied model used in linear
system identification. ARMAX models the current out-
put of a system with the previous (delayed) output and
input values by a linear difference equation: yt +a1yt−1 +
. . .+anyt−n = b1xt−1 + . . .+bmxt−m + ε . x and y are the

3

1.4 Related Work
There is considerable amount of previous studies that
employ model-based estimation to infer the origin flow
properties.

1.5 Outline
In Section II, we explain the runs-and-gaps model to
characterize the time series traffic data, introduce the
inference problem in Wi-Fi, and describe possible ma-
chine learning approaches for the problem. Section III
overviews our basic data processing and explain the pro-
posed inference schemes in detail. In addition to the pro-
posed schemes, we suggest two enhancements for dic-
tionary learning and sparse coding in Section IV. Em-
pirical evaluation follows in Section V, using a custom
discrete-event wireless simulator and OPNET’s built-in
IEEE 802.11. We discuss related work in Section VI, and
Section VII concludes the paper.

2 Time-series Representation of Flow

The runs-and-gaps model [5] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As pointed out earlier, we must cope
with the workings of CSMA, which leaves measuring
and processing Wi-Fi frames directly at the MAC layer
rather than at the transport or IP layers.

!"#$%&

'()$&
*+,&-./&

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

-./& *+,& -./& *+,& -./&

Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN] be a vector containing
the number of packets for the same flow measured over
adjacent time intervals. Here, an important parameter is
the unit interval Ts during which each element wt is sam-
pled and recorded. Alternatively, we have a representa-
tion x = [x1 x2 . . . xt . . . xN] for w where xt is a corre-
sponding byte count of the total payload at time interval
t—hence, a zero in x (or w) indicates a gap.

We will call either w or x an input vector for inference,
which contains extractable features. Since w,x ∈ RN ,

they are finite time-series representations of a flow. Note
that we can represent both origin or sampled flows this
way. The total measurement time to acquire w, x should
be N ×Ts.

Consider the processing of three example flows in
Fig. 3. The receive buffer first timestamps each arriving
data frame and marks with flow ID upon processing. At
t = 1, the received frame for Flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, Flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
of 1000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]

2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]

3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]

With Ts = 10 msec, each time series take 60 msec to
measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

!"!"!" !"!"!"
#$%&"'"

()*+,-+,./"

#$%&")"
('*0,,./"

#$%&"1"
(2*2,,-2,,-"
2,,-1,,./" #$%&"'"

('*3,./"

#$%&")"
('*0,,./"

#$%&"'"
()*0,-+,./"

#$%&"'"
('*3,./"

#$%&"1"
('*',,,./"

#$%&"'"
()*+,-+,./"

#! 3! 4! 5! 6! 7!

#$%&"1"
()*',,-2,,./"

#$%&")"
('*0,,./"

Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised
Feature Learning

The core of an inference system comprises feature ex-
tractors and classifiers that need to be trained. Supervised
learning requires a labeled training dataset that consists
of training examples {x1, . . . ,xT } with corresponding
desired output values (i.e., labels) {l1, . . . , lT }. The la-
bels serve as ground truths for training the inference sys-
tem with Ideally, the training dataset should consist of
i.i.d. samples for better performance. We now explore su-
pervised learning methods for origin flow inference.

x l̂ y

3.1 ARMAX Least Squares
Autoregressive moving average with exogenous inputs
(ARMAX) [6] is a widely-studied model used in linear
system identification. ARMAX models the current out-
put of a system with the previous (delayed) output and
input values by a linear difference equation: yt +a1yt−1 +
. . .+anyt−n = b1xt−1 + . . .+bmxt−m + ε . x and y are the

3

Figure 4: Supervised learning framework

maps an input x to its feature y and CL : y→ l̂ that per-
forms classification on extracted features of the input.
The inference system learns the mappings FE and CL
from training examples and their labels. Once trained,
when an unknown data x comes in, the system makes an
inference by classifying it to a class l̂.

Supervised learning for the origin flow inference prob-
lem considers a training dataset {xi,〈fli , li〉}T

i=1 collected
at the Wi-Fi receiver of interest. xi is a time-series rep-
resentation of flow li sampled at the receiver. We also
make fli available, the corresponding origin flow time-
series representation. So, when a measured sample x is
classified as l j, we can infer the original flow properties
from looking up fl j ’s.

We now explore supervised learning methods. We note
that most of these methods naturally lead to binary clas-
sifiers. Our origin flow inference problem, however, is
a multi-class classification. We will revisit this issue in
§4.3. For clarity of explanation, this section accompanies
binary classification.

Autoregressive moving average with exogenous in-
puts (ARMAX) [19] is a widely-studied model for lin-
ear system identification. ARMAX models the current
output of a system with the previous (delayed) output
and input values. With ARMAX, we can directly esti-
mate the origin flow time-series f = [f1 f2 . . . ft−1 ft]
from the measurement x = [x0 x1 . . . xt−2 xt−1] in a
linear difference equation: ft + a1 ft−1 + . . .+ an ft−n =
b1xt−1 + . . .+ bmxt−m + ε . Note that ε gives the model
error, which itself can be written elaborately over time,
i.e., c1εt−1 + . . .+ cmεt−m. The ARMAX matrix form is

ft

ft−1

...
f1

︸ ︷︷ ︸

f

=

ft−1 · · · ft−n xt−1 · · · xt−m

...
...

...
...

f0 · · · f1−n x0 · · · x1−m

︸ ︷︷ ︸

ΦΦΦ

−a1

...
−an

b1

...
bm

︸ ︷︷ ︸

θθθ
Under supervised learning, if we have many training ex-
amples {xi,〈fli , li〉}T

i=1, we will have a massively over-

constrained system for our inference problem. Least
squares can train θθθ . However, when the normal equation
θ̂θθ = (ΦΦΦT

ΦΦΦ)−1ΦΦΦ
Ty becomes unstable, the recursive least

squares via Kalman filtering [8] can be used instead.
Naı̈ve Bayes Classifier. The key for Naı̈ve Bayes is to

define a good feature extractor for a flow measurement
x. We use a feature y =

[
µ̂run size µ̂gap length

]
by com-

puting the sample mean values of run size (bytes) and
gap length (unit intervals) from x. The classifier is con-
structed from computing empirical conditional distribu-
tion p(y|li) of the train dataset. In runtime, the trained
classifiers infer the origin flow: li if p(li|y) ≥ p(l j|y)⇔
p(y|li)p(li)/p(y|l j)p(l j) ≥ 1. Here, we use a simple de-
cision rule that compares the learned likelihood ratios
p(y|li) and p(y|l j) for binary classification.

Support vector machine (SVM). Boser, Guyon &
Vapnik [6] first proposed SVM. SVM is a binary clas-
sification model searching for a hyperplane that maxi-
mizes separation between two classes. The hyperplane
is orthogonal to the shortest line connecting the convex
hulls of the classes. Support vectors are the data points
along the shortest line. The hyperplane has the form
h(x) = ∑

T
i=1 αilixi ·x+b, where xi is a training example

for flow i, and αi, b the solution of a quadratic program-
ming (QP) problem. Class label li ∈ {−1,1} for each xi
must be provided during the training. Classification of a
runtime input x computes sign(h(x)).

The SVM kernel trick can work with nonlinearity of
data. A kernel function K(.) (e.g., radial basis, sigmoid)
maps the input x to a higher dimensional feature space
where a better margin is possible. The hyperplane with
the kernel trick becomes hkern(x) = ∑

T
i=1 αiliK(xi,x)+b.

Gaussian mixture model (GMM). Strictly speaking,
GMM is an unsupervised feature learning method that is
later paired with supervised classifier training. GMM as-
sumes the probability density of input data as a weighted
sum of K Gaussian distributions. GMM can be thought
as a model-based version for K-means clustering. Param-
eterized by {w j,µ j,Σ j}K

j=1, the feature for an input x is a
combination of posterior membership probabilities eval-
uated by the Gaussians. For jth Gaussian, we have

p j(x) =
1

(2π)N/2|Σ j|1/2 · exp
[
−1

2
(x−µ j)

>
Σ
−1
j (x−µ j)

]
Expectation maximization (EM) [11] trains GMMs it-

eratively. In E-step, EM creates a function evaluating the
expected log-likelihood with the current estimate of the
parameters. M-step computes new parameter values that
maximizes the expected log-likelihood of the E-step.

4 Origin Flow Inference with Deep Learning

Deep learning refers to multiple layers of extracting fea-
tures and nonlinear aggregation of the extracted features.

4

This section presents our deep learning approach for the
origin flow inference problem.

4.1 Overview
We propose an inference system based on semi-
supervised learning. At the first stage, the system per-
forms unsupervised feature learning over multiple layers.

1. Do sparse coding and dictionary learning with un-
labeled training dataset

2. Pool sparse representations of the training dataset to
reduce the number of features

3. Pass the resulting features (i.e., pooled sparse repre-
sentations) to next layer and repeat by treating cur-
rent layer’s features as input data for next layer

Given multiple layers of the learned dictionaries and
features, the system next performs supervised learning.

1. Do multi-layer sparse coding and pooling with la-
beled training dataset

2. Train (linear) SVM classifiers with the final form of
feature vector resulted at the top layer

At runtime, the system takes a sample measurement
of a flow, performs the multi-layer inference (i.e., sparse
coding and pooling), and predicts the origin flow pattern
and properties.

4.2 Unsupervised Feature Learning
4.2.1 Sparse coding

We use sparse coding [20] as the primary means to ex-
tract features from the sampled time-series data. Con-
sider unlabeled dataset {xk}T

k=1 with each xk ∈ RN . We
pack {xk}T

k=1 to the columns of X =
[
x>1 x>2 . . . x>T

]
.

Note X ∈ RN×T . Sparse coding requires a dictionary
D ∈ RN×P learned from X. We adopt K-SVD [4] that
learns D in the following optimization

min
D,Y
‖X−DY‖2

F s.t. ‖yk‖0 ≤ K ∀k (1)

Here, the columns of Y ∈ RP×T or {yk}T
k=1, are the

sparse representations of {xk}T
k=1. (Note yk ∈ RP.)

K-SVD is a fast iterative algorithm and requires to
compute sparse code yk for each xk with current D. We
use orthogonal matching pursuit (OMP) [21] for com-
puting sparse codes. Our choice of OMP is merely based
on its computational efficiency, and there are other al-
gorithms such as LASSO [26] and LARS [13] that also
work well.

The columns of D, {d j}P
j=1, are dictionary atoms.

Hence, each element in vector y reflects a degree of

membership to the corresponding dictionary atom. To
represent unbiased membership, dictionary atoms are
normalized such that

∥∥d j
∥∥2
`2

= 1. To make every d j

meaningful, we need more training samples than dictio-
nary atoms, so T ≥ P. For discriminative convenience,
D is overcomplete—i.e., P > N. This means that sparse
code y has a higher dimensionality than x, but y is K-
sparse, that is, only K� N entries of y are nonzero.

4.2.2 Max pooling

Every input vector xk is mapped to the corresponding
feature vector yk via sparse coding. If all feature vec-
tors were used straightforwardly, we could overwhelm
the unsupervised feature learning process. It is custom-
ary to reduce the number of extracted features by sub-
sampling (or summarizing over) feature vectors—note,
this is by no means to discard any useful information.

Pooling, popular in convolutional neural networks
[17], operates over multiple (sparse) feature repre-
sentations and aggregates to a higher level of fea-
tures in reduced dimension. An important property of
pooled feature representation is translation invariance
[24]. We use max pooling [7] that takes the maxi-
mum value for the elements in the same position over
a group of feature vectors. For example, consider max
pooling of L sparse codes {y1,y2, . . . ,yL} that yields
z = max pool(y1,y2, . . . ,yL) in Figure 5. Noting yk =
[yk,1 . . . yk,P] and z = [z1 . . . zP], max pooling results
in z j = max(y1, j,y2, j, . . . ,yL, j).

!!"!####!!"$####!!"%####"""#####&&&####!!"$##

!$"!####!$"$####!$"%####"""#####&&&####!$"$##

!%"!####!%"$####!%"%####"""#####&&&####!%"$##

!!#

!$#

!%#

&#&
#&#

#&!#######&$#######&%######"""#####&&&#####&$##"#
&!#'#()*+!!'!"#!$'!"#&&&"#!%'!,#
&$#'#()*+!!'$"#!$'$"#&&&"#!%'$,####

Figure 5: Max pooling of L sparse codes

4.2.3 Multi-layer deep learning

Figure 6 presents our multi-layer deep learning. We use 2
layers. Each layer trains own dictionary and has separate
sparse coding and pooling units. Assuming input vector
xk has a moderate size N, we perform batch processing of
multiple xk’s concatenated in series. Figure 6 showcases
4 input vectors with pooling unit configured at L = 2. If
xk has a very large N on the other hand, xk can be divided

5

!!"

#$%&'"!"

#$%&'"(" "#$%&'()*+,-.(

/$!(#**0,-.(

)*$++,-&'"

.//*&0"+1$'+&"2&$34'&"'&1'&+&53$6/5"2/'"
7!!8"!(8"!98"!:;"$<&'"(=*$%&'"0&&1"*&$'5,5>"

!(" !9" !:"

"#$%&'()*+,-.(

/$!(#**0,-.(

1!?!@" 1(?!@" 19?!@" 1:?!@"

2!?!@" 2(?!@"

1!?(@" 1(?(@"

2!?(@"

Figure 6: Baseline 2-layer deep learning with sparse coding and
max pooling

into subpatches, and we perform sparse coding on each
subpatch. The input vector length for sparse coding is an
important system parameter for deep feature learning.

Max pooling is performed over sets of two consecutive
sparse representations {y(1)1 ,y(1)2 } and {y(1)3 ,y(1)4 }. We

use notation y(1)k for kth sparse code at layer 1. The in-

termediate pooled features, z(1)1 and z(1)2 , are sent to layer
2 for another round of sparse coding and max pooling.
At the top, z(2)1 —obtained by pooling the layer 2 sparse
codes y(2)1 and y(2)2 —gives the final feature representation
for {x1,x2,x3,x4} in this 2-layer deep learning.

In general, a depth or the number of layers reflects the
coverage of deep learning. Layer 1 extracts small, local
features over multiple intervals spanned by consecutive
input vectors. The resulting feature representations are
subsampled with max pooling before passed to layer 2.
Layer 2 builds larger features using its own dictionary.
Because the feature coverage by layer 1 coding and pool-
ing is over a subregion for the layer 2 coverage, the fea-
tures aggregated at layer 2 are novel and could not be
seen at layer 1.

4.3 Supervised Learning
We embrace the supervised learning that largely con-
sists of training SVM classifiers. The SVM classification
framework is generic and can directly work on x without
any feature extraction or pooling. SVMs could be trained
with a single-layer sparse representation y(1) subject to
x = D(1) y(1). Under our 2-layer deep learning setup, we
train linear SVM classifiers using the final pooled feature
vectors z(2).

Considering there are many data patterns generated
by applications, the origin flow inference is a multi-
class classification problem. There are two approaches
for SVM, which is inherently a binary classifier, to clas-

sify q origin flow patterns. The first approach is to train
all q(q−1)

2 1-vs-1 SVMs exhaustively. Each SVM is ded-
icated to distinguish between any pair out of q origin
flows and infers the original flow properties mapped by
the classification result.

The second approach is to train q 1-vs-all SVMs. For
flow i, training 1-vs-all SVM will require two datasets
Xi with label li = 1 consisting of measured patterns of
flow i only and X\i with label l j = −1 containing mea-
surements for all other flows j ∀ j 6= i. Ideally, X\i should
contain unbiased mix of the other flows. Our empirical
evaluation in Section 6 considers the 1-vs-all approach.

5 Enhancements

5.1 Incoherent Dictionary Learning

Dictionary learning algorithms address the performance
of sparse coding in two aspects: 1) reconstructive accu-
racy and 2) discriminative ability of the learned dictio-
nary atoms (i.e., the column vectors of D). We emphasize
the latter aspect because our primary objective is clas-
sification rather than compressing data. Discriminative
ability of a dictionary is related to making its atoms as
incoherent as possible. Sparse coding with a dictionary
consisting of more incoherent column vectors should im-
prove the margin of an SVM, which results in a better
classification performance.

The maximally incoherent D is constrained such that
DTD= I. In other words, an incoherent dictionary matrix
has orthonormal columns. This is equivalent to minimiz-
ing

∥∥DTD− I
∥∥2

F . We can also think of having the two
conditions dT

k d j = 0 ∀k 6= j (orthogonal columns) and∥∥dT
k dk
∥∥

2 = 1 (normalized).
Since we use K-SVD, we add the incoherence opti-

mization term to Equation (1)

min
D,Y
‖X−DY‖2

F + γ
∥∥DTD− I

∥∥2
F s.t.‖yk‖0 ≤ K ∀k

(2)

The new optimization here, however, is not a trivial task.
For the time being, we propose a two-stage algorithm
presented below instead.

In the outer for loop, we run K-SVD unmodified. The
resulting D then enters the inner while loop that imple-
ments the gradient descent algorithm [25] to regularize
the incoherence term in Eq. (2). γ is the step size for gra-
dient search and decayed by 0 < δ < 1 within the inner
loop until initialized back to the default value γ0 in the
outer loop after running K-SVD with the next training
vector.

6

Algorithm 1 Two-stage incoherent dictionary learning

Require: training dataset X =
[
x>1 . . . x>T

]
1: initialize D := I
2: for i = 1 to T
3: D := ksvd(D,xk,K)
4: initialize γ := γ0

5: while
∥∥DTD− I

∥∥2
F > ε

6: D := D− γD(DTD− I)
7: D := normalize columns(D)
8: γ := γ ·δ
9: end

10: end

5.2 Sparsity Relaxation

Strictly speaking, the way we force the dictionary inco-
herence is flawed. The gradient descent takes over after
K-SVD, but K-SVD and the gradient descent regulariza-
tion have to take place jointly as Equation (2) suggests.
For this reason, the resulting effect of the outer loop
computation perturbs the K-SVD optimization. In other
words, improving the dictionary incoherence comes with
the cost of reconstructive accuracy.

As a result, using the same value of K for sparse cod-
ing may be too tight to meet the minimal error crite-
rion. Therefore, we must relax the original sparsity K
for sparse coding to K′ such that K′ > K. We do spar-
sity relaxation as follows. Let D′ represent the incoherent
dictionary resulted from Algorithm 1. We repeat sparse
coding with D′ to find Y′

min
Y′

∥∥X−D′Y′
∥∥2

F s.t.
∥∥y′k

∥∥
0 ≤ K′ ∀k

5.3 Dense Sparse Coding and Overlapping
Pooling

The baseline deep learning scheme in Figure 6 does
batch sparse coding of {x1,x2,x3,x4} and max pooling
of {y1,y2} and {y3,y4}. We can enhance this baseline by
performing sparse coding on shifted xk’s and max pool-
ing over the resulting, overlapping sparse codes. This
is illustrated in Figure 7. The overlapping intervals are
formed by shifting (i.e., delaying) the elements in xk’s al-
together by τ . Note that τ = 1 gives the fully overlapped
intervals while there is no overlapping for τ = 4 · N,
which equals the baseline. (In our evaluation, we use
a 95% overlap between consecutive x’s.) Dense sparse
coding can substantially reduce chances to miss a fea-
ture with increased cost of computing. Overlapping pool-
ing further improves on the translational invariance of a
feature. Also, according to Krizhevsky et al. [15], over-
lapping pooling reduces overfit in classifiers.

!"#$%&'()*) !"#$%&'()+) !"#$%&'(),) !"#$%&'()-)

!"#$%&'()*+,-'

.#/'"))0+,-'1+23'
)4&$0#""+,-'5,2&$4#0%'

.'/$%)*)

0('1123$%)

4"5'"6$7)899($7)18'%1$):$'#;%$)
)%$8%$1$"#'<9"):9%)=/*>)/+>'/,>'/-?)

/*) /+) /,) /-)

.'/$%)+)

@52A$7)=/*>)/+>'/,>'/-?)B2#5)
7$"1$(/)9&$%('882"C)!"#$%&'(1)

.#/'"))0+,-'

!"#$%&'()*+,-'

.#/'"))0+,-'

.#/'"))0+,-'1+23'
)4&$0#""+,-'+,2&$4#0%'

Figure 7: Enhanced 2-layer deep learning with dense sparse
coding and overlapping max pooling

6 Evaluation

We evaluate the proposed baseline and enhanced infer-
ence schemes in comparison to classical machine learn-
ing approaches described in Section 3. We have imple-
mented a simple setup featuring three Wi-Fi nodes in a
custom MATLAB simulator and used OPNET Modeler
to test more elaborated, seven Wi-Fi node scenario.

6.1 Methodology

6.1.1 Flow generation

We generate flows based on the runs-and-gaps model ex-
plained in Section 2. The triplet 〈tr,sr, tg〉 describes the
generative pattern of a flow, where tr and tg are the run
and gap lengths in number of unit intervals (Ts), and
sr denotes the size of payload in bytes generated per
each unit interval of a run. A flow type can be con-
stant, stochastic, or mixed. A constant flow has deter-
ministic tr, sr, and tg values. For example, flow 1 with
〈2,100,4〉 creates the origin flow pattern (time series)
f1 = [100 100 0 0 0 0 100 100 0 0 . . .]. For a stochastic
flow, tr, sr, and tg are random variables. For example,
flow 6 with 〈Exp(0.5), Pareto(40,1), Exp(0.25)〉 has ex-
ponentially distributed run and gap lengths (with mean of
1/0.5 and 1/0.25 unit intervals, respectively), and Pareto-
distributed payload sizes. An instance of flow 6 could be
f6 = [518 97 0 0 0 0 0 0 32 0 . . .].

We consider 10 origin flows summarized in Table 1.
Notice we also use the normal (N) and uniform (U) dis-
tributions. We round fractions, discard negative numbers
drawn from a normal distribution and regenerate. Using
Ts = 10 msec, we generate 2,000 instances of time series
for each flow. We use the first 1,000 instances for training
and the other 1,000 for testing. Each instance is a vector

7

Table 1: Origin flows used for evaluation

Flow Type Generative triplet 〈tr,sr, tg〉
Flow 1 Constant 〈2,100,4〉
Flow 2 Constant 〈2,500,2〉
Flow 3 Constant 〈5,200,5〉
Flow 4 Constant 〈10,200,10〉
Flow 5 Stochastic 〈Exp(1), Pareto(100,2), Exp(0.1)〉
Flow 6 Stochastic 〈Exp(0.5), Pareto(40,1), Exp(0.25)〉
Flow 7 Stochastic 〈U(4,10), Pareto(100,2), Exp(0.5)〉
Flow 8 Stochastic 〈N(10,5), Pareto(40,1), N(10,5)〉
Flow 9 Mixed 〈1, Pareto(100,2), 1〉
Flow 10 Mixed 〈1, Pareto(100,2), Exp(0.25)〉

of 500 elements.

6.1.2 Preprocessing generated origin flow patterns

We precompute the mean run and gap lengths from the
generated origin flow patterns in the training dataset.
This is convenient because we enable simple lookup
(of the precomputed values) based on the classifi-
cation result of a measured flow in order to esti-
mate the origin run and gap properties. In Figure 8,
we have

[
s1

1 s1
2 0 0 0 s2

1 0 0 0 0 0 s3
1 s3

2 s3
3 0 0 . . .

]
, where

s1 = ∑
2
k=1 s1

k , s2 = ∑
1
k=1 s2

k , s3 = ∑
3
k=1 s3

k give total bytes
of the three bursts. We can then compute the mean burst
size for this pattern. We also compute {t1

r , t
2
r , t

3
r , . . .},

{t1
g , t

2
g , t

3
g , . . .}, and their mean values.

!"!"!#$!%&'(#
)*+,-!,+-'./012!

$#

!"!" !"#"

!"$"

!#!" !##" !#$"
%"%"%"

$!" $#"
$$"

Figure 8: Computing generated flow statistics

6.1.3 Evaluation metrics

We are foremost interested in the accuracy of classifying
a measured pattern x to its ground-truth origin flow pat-
tern f. We compute two metrics, recall (true positive rate)
and false alarm (false positive rate), to evaluate classifi-
cation performance:

Recall =
∑True positives

∑True positives + ∑False negatives

False alarm =
∑False positives

∑False positives + ∑True negatives

Without false alarm rate, we cannot truly assess the
probability of detection for a classifier using a computed
recall value because the classifier can be configured to
declare positive only, automatically achieving to guess
all positives correctly. Classification leads to inferring

Table 2: Wi-Fi parameter configuration for Scenario 1

Parameter Description Value
aSlotTime Slot time 20 µsec
aSIFSTime Short interframe space (SIFS) 10 µsec
aDIFSTime DCF interframe space (DIFS) 50 µsec
aCWmin Min contention window size 15 slots
aCWmax Max contention window size 1023 slots
tPLCPPreamble PLCP preamble duration 16 µsec
tPLCP SIG PLCP SIGNAL field duration 4 µsec
tSymbol OFDM symbol duration 4 µsec

other important properties of a flow from its training
dataset records. As our secondary evaluation metrics, we
calculate errors in estimating the original mean burst size
and mean gap length of the flow.

6.2 Scenario 1: Three Wi-Fi Nodes
Figure 9 depicts Scenario 1. In this simple scenario, we
infer the origin time series fA sent by source node A, us-
ing xA|B measured at receiver node B. Node C, another
source, contends with node A by transmitting its own
flow fC. We carry out cross-validation with all 10 flow
datasets by setting fA = fi ∀i ∈ {1, . . . ,10}, flow by flow
at once. When fA = fi, we randomly set fC = f j ∀ j 6= i.
Node C can change its flow pattern from f j to fk, while
node A still running fi, but fk is chosen such that k 6= i.

Node A
(source)

Node B
(receiver)

Node C

xA|B
IEEE 802.11 Wi-Fi

(DCF/CSMA)

fA = fi

fC = fj

Figure 9: Scenario 1

Wi-Fi setup. We have implemented a custom discrete-
event simulator in MATLAB, assuming the IEEE
802.11g our baseline Wi-Fi system. At its core, our
CSMA implementation is based on an open-source wire-
less simulator [2]. The backoff mechanism works as
follows. The contention window CW is initialized to
aCWmin. In case of timeout, CSMA doubles CW, other-
wise waits until the channel becomes idle with an ad-
ditional DCF interframe space (DIFS) duration. CSMA
chooses a uniformly random wait time between [1, CW].
CW can grow up to aCWmax of 1,023 slots. CW is decre-
mented only when the media is sensed idle. RTS and
CTS are disabled. The Wi-Fi configuration is summa-
rized in Table 2.

Inference schemes. We have implemented all of the
inference schemes in MATLAB. We consider ARMAX-

8

Table 3: Errors to estimate original mean burst size and mean
gap length with 5-sec observation window (error percentages
in parenthesis are for Scenario 2)

Scheme Origin burst size Origin gap length
estimation error estimation error

ARMAX 39.3% (45.9%) 28.1% (36.7%)
Naı̈ve Bayes 31.4% (37.5%) 15.8% (24.6%)
GMMs 23.2% (31.3%) 11.7% (18.1%)
DL (baseline) 18.7% (28.3%) 9.3% (16.2%)
DL (enhanced) 12.2% (22.8%) 6.8% (11.4%)

least squares, Naı̈ve Bayes classifiers, Gaussian mixture
models (GMM), and the two deep learning methods we
proposed. The baseline deep learning method has 2 lay-
ers implemented as described in Section 4. The enhanced
deep learning method also has 2 layers, but we addi-
tionally have implemented incoherent dictionary train-
ing, dense sparse coding, and overlapping max pooling
as described in Section 5. We call the size of vector x ob-
served length or observation window size and have varied
100, 200, 300, and 500.

Training. As mentioned in §6.1.1, the training dataset
for each flow has 1,000 instances. For flow i, we transmit
training examples {fi,k}1000

k=1 serially. (Note the notation
fi,k for kth instance of flow i.) We consider 1-vs-all linear
SVM classifiers for all inference schemes.

We train ARMAX with n previously transmitted ori-
gin flow patterns and m previous inputs—i.e., for flow
i, we feed {fi,k−1, . . . , fi,k−n} and {xi,k−1, . . . ,xi,k−m}—
at time k. After trying out various configurations, we
choose n = 2 and m = 3. The least squares directly es-
timate f̂ given x. SVMs for ARMAX are trained with f̂s.

For Naı̈ve Bayes, we extract the statistic y =[
µ̂run size µ̂gap length

]
from x by averaging run burst sizes

and gap lengths and use y as a feature with label li for
flow i to build empirical distributions p(y|x, li). Note
training Naı̈ve Bayes yields classifiers, so we do not need
to train any SVMs for Naı̈ve Bayes.

We use K = 10 GMMs. Like Bayes, we use the same
static y from x as a feature to train GMMs via the EM
algorithm. However, unlike Bayes, GMMs do not yield
classifiers. We train SVMs with the membership prob-
abilities from the trained K Gaussians evaluated on y
given li.

The proposed deep learning methods produce a max-
pooled sparse representation z(2) at the top of layer 2 for
given x. We use labeled z(2)’s to train SVMs.

Results. Figure 10 presents classification recall and
false alarm rate of each inference scheme for Scenario
1. Overall, deep learning (DL) yields consistently higher
recall at lower false alarm. When using a small observa-
tion window length to sample x, the recall gap between
the enhanced and baseline deep learning methods is no-
ticeably larger than the case of using a large observa-

tion window. This is because dense sparse coding and
overlapping max pooling in the enhanced deep learning
scheme substantially reduce the probability of missing a
feature. A possible explanation for poor ARMAX perfor-
mance could be that CSMA introduces significant non-
linear distortions. GMMs are on par with our baseline
deep learning. If optimized to their limits, GMMs seem
to be a reasonable alternative to deep learning for clas-
sification. This is not surprising since GMMs are really
a form of K-SVD. (Note also that our effort to fine-tune
GMMs was only fair as our focus in this paper was on
deep learning.)

100 200 300 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scenario 1

 Observed length (unit intervals)

 R
ec

al
l

100 200 300 500
0

0.1

0.2

0.3

0.4

0.5

0.6

 Observed length (unit intervals)

 F
al

se
 a

la
rm

 r
at

e

ARMAX
Naive Bayes
GMMs
DL (baseline)
DL (enhanced)

ARMAX
Naive Bayes
GMMs
DL (baseline)
DL (enhanced)

Figure 10: Classification recall and false alarm rate for Scenario 1

After classification, we predict the original mean burst
size and gap length of a flow based on lookup of the pre-
computed values from the training dataset (see explana-
tion in §6.1.2). The estimation errors in Table 3 are the
best case, obtained with the maximum observation win-
dow size of 5 seconds that we have tried.

6.3 Scenario 2: Wi-Fi Nodes in OPNET
Figure 11 illustrates Scenario 2 featuring seven Wi-Fi
nodes simulated in OPNET. This scenario is important
for several reasons. First, we can configure more realis-
tic application profiles for simulated nodes. We can also
scale the simulation. Lastly, we can validate our schemes
with OPNET’s built-in Wi-Fi protocols, particularly the
IEEE 802.11g, which should be more complete than our
MATLAB simulator. Scenario 2 preserves nodes A, B,
C and their activities the same as Scenario 1. There are
five additional Wi-Fi nodes that communicate in typical
Internet styles as summarized in Table 4.

9

!"#$%&%
'()*+)%,-./"01$/2%!"#$%,%

!"#$%3%

!"#$%4%

!"#$%5%
!"#$%+%

!"#$%6%

Figure 11: Scenario 2

Table 4: Configuration summary of Scenario 2

Node Role Main networking activity
A Flow source Transmits fi
B Receiver Intercepts flows as Wi-Fi router/AP
C Flow source Transmits f j ∀ j 6= i
D Flow source Multimedia streaming over RTP/UDP/IP
E Flow dest. HTTP with page size ∼ U[10,400]B
F Flow dest. ftp file transfer with size 50000B
G Flow dest. DB access with inter-arrival ∼ Exp(3)sec

We test the same inference schemes and keep the
training methodology of Scenario 1. In Figure 12, we
plot classification recall and false alarm rate of each
scheme evaluated under Scenario 2. With more nodes
and increased traffic, the overall classification perfor-
mance is worse. Again, we can clearly see the benefits
of dense sparse coding and overlapping pooling for en-
hanced deep learning that consistently outperforms the
other schemes over various observation window sizes.
For a small observation window in particular, recall for
enhanced deep learning is substantially higher while
achieving the lowest false alarm rate. Table 3 shows
the estimation errors (in parenthesis) to predict original
properties of the flows, the mean burst size and mean gap
length, after classification.

7 Conclusion

We have addressed the problem of inferring the origi-
nal properties of a flow sampled from a received Wi-Fi
traffic mix. This inverse problem is challenging because
CSMA significantly changes the origin pattern of the
flow while scheduling with other flows in competition.
Machine learning can provide tools to harness complex-
ity and nonlinearity, but it requires to apply adept domain
knowledge or application-specific insights to configure
the overall learning pipeline and fine-tune all model pa-
rameters to their meticulous detail.

100 200 300 500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scenario 2

 Observed length (unit intervals)

 R
ec

al
l

100 200 300 500
0

0.1

0.2

0.3

0.4

0.5

0.6

 Observed length (unit intervals)

 F
al

se
 a

la
rm

 r
at

e

ARMAX
Naive Bayes
GMMs
DL (baseline)
DL (enhanced)

ARMAX
Naive Bayes
GMMs
DL (baseline)
DL (enhanced)

Figure 12: Classification recall and false alarm rate for Scenario 2

Learned from our initial, unsuccessful attempt to
straightforwardly integrate sparse coding and dictionary
learning into SVM classification, we have set up multiple
layers of sparse feature extraction and max pooling that
enable deep learning from received flow patterns. Multi-
layer sparse coding allows us to learn local, atomic fea-
tures such as run and gap sizes of a flow accurately at
the lowest layer and global features such as periodicity
in traffic patterns at higher layers. Max pooling summa-
rizes often too many extracted features while providing
translation invariance. We have explained how the pro-
posed approaches incorporate these ideas and validated
their superior performance.

In summary, contributions of this paper include a
novel formulation of an inverse problem to recover ori-
gin flow patterns in Wi-Fi, identification of the key at-
tributes for successful machine learning approaches to
solve such inverse problems (i.e., the use of sparse rep-
resentation of features, multi-layer inference, and pool-
ing), and demonstration of the sound working of these
methods in recovering original flow properties. We have
chosen not to discuss possible applications of this paper
in security and network anomaly detection. We plan to
address such applications in our future work.

Acknowledgment

We thank anonymous reviewers of ICAC for their valu-
able comments in revising the final version of this paper.
This material is based on research sponsored in part by
Intel Corporation.

10

References
[1] IEEE 802.11TM Wireless Local Area Networks.

http://www.ieee802.org/11/.

[2] MATLAB Wireless Network Simulator.
http://wireless-matlab.sourceforge.net.

[3] Software-defined Networking: The New Norm for Networks.
Open Networking Foundation (White Paper), 2012.

[4] AHARON, M., ELAD, M., AND BRUCKSTEIN, A. K-SVD: An
Algorithm for Designing Overcomplete Dictionaries for Sparse
Representation. IEEE Trans. on Sig. Proc. 54, 11 (2006).

[5] BASU, S., MUKHERJEE, A., AND KLIVANSKY, S. Time Series
Models for Internet Traffic. In INFOCOM (1996).

[6] BOSER, B. E., GUYON, I. M., AND VAPNIK, V. N. A Training
Algorithm for Optimal Margin Classifiers. In COLT (1992).

[7] BOUREAU, Y.-L., PONCE, J., AND LECUN, Y. A Theoreti-
cal Analysis of Feature Pooling in Visual Recognition. In ICML
(2010).

[8] CIOFFI, J., AND KAILATH, T. Fast, Recursive-least-squares
Transversal Filters for Adaptive Filtering. IEEE Trans. on Acous-
tics, Speech and Signal Processing 32, 2 (1984), 304–337.

[9] CLAFFY, K. C., POLYZOS, G. C., AND BRAUN, H.-W. Appli-
cation of Sampling Methodologies to Network Traffic Character-
ization. In ACM SIGCOMM (1993).

[10] COATES, A., AND NG, A. Selecting Receptive Fields in Deep
Networks. In NIPS. 2011.

[11] DEMPSTER, A. P., LAIRD, N. M., AND RUBIN, D. B. Max-
imum Likelihood from Incomplete Data via the EM Algorithm.
Journal of Royal Statistical Society, Series B 39, 1 (1977).

[12] DUFFIELD, N., LUND, C., AND THORUP, M. Estimating Flow
Distributions from Sampled Flow Statistics. In ACM SIGCOMM
(2003).

[13] EFRON, B., HASTIE, T., JOHNSTONE, I., AND TIBSHIRANI, R.
Least Angle Regression. Annals of Statistics 32 (2004), 407–499.

[14] HEISELE, B., HO, P., AND POGGIO, T. Face Recognition with
Support Vector Machines: Global versus Component-based Ap-
proach. In ICCV (2001).

[15] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Ima-
geNet Classification with Deep Convolutional Neural Networks.
In NIPS (2012), vol. 1, p. 4.

[16] KUNG, H. T., LIN, C.-K., LIN, T.-H., TARSA, S. J., VLAH,
D., HAGUE, D., MUCCIO, M., POLAND, B., AND SUTER, B.
Location-dependent Runs-and-gaps Model for Predicting TCP
Performance over UAV Wireless Channel. In MILCOM (2010).

[17] LAWRENCE, S., GILES, C. L., TSOI, A. C., AND BACK, A. D.
Face Recognition: A Convolutional Neural Network Approach.
IEEE Trans. on Neural Networks 8, 1 (1997), 98–113.

[18] LIN, T., LIU, S., AND ZHA, H. Incoherent Dictionary Learning
for Sparse Representation. In ICPR (2012).

[19] LJUNG, L., Ed. System Identification (2nd ed.): Theory for the
User. Prentice Hall, 1999.

[20] OLSHAUSEN, B., AND FIELD, D. Emergence of Simple-cell
Receptive Field Properties by Learning a Sparse Code for Natural
Images. Nature 381, 6583 (1996), 607–609.

[21] PATI, Y. C. et al. Orthogonal Matching Pursuit: Recursive Func-
tion Approximation with Applications to Wavelet Decomposi-
tion. In Asilomar Conference on Signals, Systems and Computers
(1993).

[22] RAINA, R., BATTLE, A., LEE, H., PACKER, B., AND NG, A. Y.
Self-taught Learning: Transfer Learning from Unlabeled Data. In
ICML (2007).

[23] RAMIREZ, I., SPRECHMANN, P., AND SAPIRO, G. Classifica-
tion and Clustering via Dictionary Learning with Structured In-
coherence and Shared Features. In IEEE CVPR (2010).

[24] RIESENHUBER, M., AND POGGIO, T. Hierarchical Models of
Object Recognition in Cortex. Nature 2, 11 (1999), 1019–1025.

[25] SNYMAN, J. A. An Introduction to Basic Optimization Theory:
Classical and New Gradient-based Algorithms. Springer, 2005.

[26] TIBSHIRANI, R. Regression Shrinkage and Selection via the
Lasso. Journal of Royal Statistical Society, Series B 58 (1994).

[27] WRIGHT, J., YANG, A., GANESH, A., SASTRY, S., AND M., Y.
Robust Face Recognition via Sparse Representation. IEEE Trans.
on Pattern Analysis and Machine Intelligence 31, 2 (2009), 210–
227.

[28] ZHANG, Q., AND LI, B. Discriminative K-SVD for Dictionary
Learning in Face Recognition. In IEEE CVPR (2010).

11

