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In these slides…
Machine learning (ML) is applied to performance counters in order to model 
workloads and predictively optimize frequency/voltage

• Deep machine learning (ML) methods are popular due to successes in computer 
vision, natural language processing, etc. 

• We demonstrate that ML improves statistical accuracy over techniques like 
regression in complicated scenarios, for which accurate models are elusive

• At the architecture level, we use ML to capture hidden structure in counter data 
that corresponds to cross-layer user/OS/chip interactions

• Multi-layer (i.e. “deep”) ML models first extract canonical features, and then their 
interrelationships to find high-dimensional patterns over time on little training data 

• Our methods rely on pattern matching, and can be implemented in circuitry with 
simple low-precision inner product computations 

• We demonstrate 3x improvement in look-ahead range and a 50% power reduction 
during throughput dips for web surfing on an ARMv7a/Android Gingerbread device

Hierarchical sparse coding improves accuracy and look-ahead range for 
predicting instruction throughput dips, giving more time for chip adjustment



User-driven workloads, e.g. web surfing, have many opportunities for dynamic power 
optimization using DVFS, when instruction throughput drops temporarily

BBENCH on gem5, Single Core ARM v7a
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But, anticipating dips in CPU activity requires modeling complicated interactions 
between users, OS/apps, and chip architecture

e.g. Process Management, 
Web Page Caching Policy

OS & Application 

e.g. Browsing habits, multi-
tasking habits

e.g. Data or Instruction 
cache configuration

User & Workload Chip Architecture

Instead of modeling by hand, machine learning extracts “hidden” structure from 
raw data, yielding statistical models with better prediction and training 

requirements than standard regression methods



From hardware-counter time series data, we extract common patterns using a 
clustering algorithm; clusters become atoms in a feature dictionary

d1

d3

d2

Expressing raw data in terms of a few prominent features removes noise, and 
generalizes a few training examples for good statistical accuracy under variation

Counter Name Description

cpu.committedInsts # Committed Instructions

cpu.num_fp_register_reads # times fp registers read

cpu.dtb.read_accesses DTB Read accesses

cpu.dtb.read_hits DTB Read hits

cpu.dtb.read_misses DTB Read misses

cpu.dtb.flush_entries # entries flushed from DTB

…

Data Vector: Sparse Code:



Deep architectures use multiple layers to first find simple features within short 
windows, and then find feature interrelationships over larger time scales

Sparse Coding 
Layer 1

Sparse Coding 
Layer 2

Predictor

Feature 
Dictionary

Feature 
Dictionary

Feature 
Interrelationship

Dictionary

SVM 

Concatenated Sparse Feature Vector: zt,1

Feature Interrelationship Vector: zt,2

Event Signal:   t = {0,1}

Measurement
Vector:  xt

Measurement
Vector: xt-1

Our prediction method, hierarchical sparse coding + linear SVM classification, 
relies on pattern matching, and can be built into circuitry with low-precision inner-

product computations



Compared to predictions based on regression modeling or heuristics, learned 
feature-space signatures yield useful predictions with 3x longer look-ahead, giving 

more time for chip adjustment

Prediction 
Accuracy

Look-Ahead (500us windows)

Highest Pred. Acc. 

Longest Range

Signatures captured over the longest time scales give stable long term predictions, 
with up to 8ms heads-up.



Counter
Values

Time

Absent a system model, regression extrapolates observed data  to predict future states 
based on the assumption that counter values change smoothly over time

This assumption only holds over small time scales and at high sampling rates, meaning 
that regression-extrapolated predictions are only useful for short ranges

Predicted
Trend

Regression 
Fit

Past States              Future States



Baseline Power Consumption 
as Gating Efficiency Increases

Power Consumption with DVFS, as False 
Positive Recovery Cost Decreases

Power savings are subject to a predictor’s false alarms, so we model Pdyn relative to 
baseline power (i.e. gating efficiency) and the cost of false positive recovery 

For a 0.33 gating-efficient design, with a recovery cost of +0.25 additional switching 
activity, predictive DVFS reduces PDyn by 50% with 1 ms heads up for chip adjustment 



Summary and next steps…
Online deep learning holds promise for chip optimizations, though 
implementation will come in parts…

• Offline learning may yield good static rules that capture much of low-hanging fruit
• Architectures for low-power dictionary learning are being explored
• “Small data” deep learning must be better explored, to optimize accuracy under 

time-biased training data

• Past successes: wireless link prediction
• Past failures: branch prediction, cache prefetching (scenarios are easy-enough that 

standard tools perform just as well as ML!)
• Others…?

Instruction throughput prediction for DVFS is a first-step application, and we 
will explore others that may lead to larger gains
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