
Workload Prediction for Adaptive Power Scaling
Using Deep Learning

Stephen J. Tarsa, Amit P. Kumar, and H.T. Kung
Harvard University, Cambridge, MA

Intel Corporation, Microarchitectures Research Lab, Santa Clara, CA

Abstract—We apply hierarchical sparse coding, a form of
deep learning, to model user-driven workloads based on on-chip
hardware performance counters. We then predict periods of low
instruction throughput, during which frequency and voltage can
be scaled to reclaim power. Using a multi-layer coding structure,
our method progressively codes counter values in terms of a
few prominent features learned from data, and passes them to
a Support Vector Machine (SVM) classifier where they act as
signatures for predicting future workload states. We show that
prediction accuracy and look-ahead range improve significantly
over linear regression modeling, giving more time to adjust
power management settings. Our method relies on learning
and feature extraction algorithms that can discover and exploit
hidden statistical invariances specific to workloads. We argue
that, in addition to achieving superior prediction performance,
our method is fast enough for practical use. To our knowledge,
we are the first to use deep learning at the instruction level for
workload prediction and on-chip power adaptation.

I. INTRODUCTION

Mechanisms like dynamic voltage and frequency scaling
(DVFS) enable adaptive power management, and promise to
improve operating efficiency by tailoring device parameters
to workloads at runtime. Such adaptation requires anticipat-
ing future circuit states, and online workload modeling is
one predictive approach that minimizes static or steady-state
assumptions about workloads. This flexibility is important
since performance characteristics like power consumption vary
widely by user and application mix [1] [2].

In this paper, we use statistical relationships learned from
hardware performance counters to predict periods of low
instruction throughput, during which voltage and frequency
can be scaled to reclaim power. We target predictions that are
long-range and low-latency, meaning that look-ahead time is
maximized to allow for chip adjustment, and predictive models
update quickly when workloads change.

The most popular method for workload prediction is
regression [3] [4] [5], which fits a polynomial to counter
measurements and extrapolates future states. However, we
show that regression accuracy degrades at long ranges, as
future states are unlikely to be a simple extrapolation of prior
measurements. Moreover, to capture fine-grained behaviors,
regression coefficients must continually be updated even if the
high-level workload is the same.

Instead, we implement modeling and prediction using
hierarchical sparse coding and Support Vector Machine (SVM)
classification, as depicted in Figure 1. This approach first codes
counter measurements in terms of a few atoms selected from a

This material is based on research sponsored in part by the Intel Corporation
c� 2014 IEEE - ICICDT ’14

dictionary of patterns, or features, learned from training data.
These feature vectors are then concatenated and coded again
to capture feature interrelationships over a larger spatial scale.
An SVM classifies the resulting sparse vectors with a common
label when they precede an event of interest.

The process of sparse coding cuts away noise from mea-
surement data, and improves SVM classification accuracy
when data is subject to non-Gaussian variations. In addition,
hierarchical models can capture statistical patterns embedded
in large state spaces from a modest number of training exam-
ples. We show that training time can be reduced even more
by bootstrapping feature dictionaries using a canonical set of
Layer 1 features, which are common across workloads. As
a result, when workloads change, only a small number of
training samples are required to update our predictor.

We adopt hierarchical sparse coding to capture compli-
cated signature patterns appearing over time, and show that
this improves prediction range over regression and heuristic
techniques. This is because data vectors that have been hierar-
chically sparse coded are classified in a transformed domain:
the feature space. By performing statistical inference on feature
vectors, we exploit workload-specific invariant patterns that are
typically “hidden,” or not immediately observable in the raw
data domain. In this paper, we use clustering on training data
to extract this hidden structure. This form of deep learning has
yielded major application gains in fields like computer vision,
speech recognition, and machine translation (e.g. [6] [7]). To
our knowledge, we are the first to apply sparse hierarchical
models to chip performance data for adaptive optimization.

Sparse'Coding'
Layer'1'

Sparse'Coding'
Layer'2'

Predictor'

Feature''
Dic8onary'

Feature''
Dic8onary'

Feature'
Interrela8onship'

Dic8onary'

SVM''
'

Concatenated'Sparse'Feature'Vector:'zt,1'

Feature'Interrela8onship'Vector:'zt,2'

Event'Signal:'''t'='{0,1}'

Measurement'
Vector:''xt'

Measurement'
Vector:''xtI1'

`

Fig. 1. We sparse-code vectors of counter values in two layers to extract
patterns over time, and use SVM classification to identify events of interest.

II. TARGET SCENARIO AND DATA COLLECTION

A. Device, Workloads, and Event Prediction
We collect performance counter data using gem5, an

architecture-level simulator with full system support, including
frame buffer rendering and an interactive shell [8]. Snapshots
of counter values are taken every 500µs from a simulated 1.0
GHz ARM v7a chip.

 0
 0.2
 0.4
 0.6
 0.8

 1

In
st

. T
hr

ou
gh

pu
t

Execution Time

Fig. 2. A plot of committed instructions per cycle for BBENCH shows
that nearly 20% of the web surfing phase exhibits low instruction-throughput,
and is a target for DVFS. These intervals arise due to data I/O, and also
intermittently during computations, due to architecture-level interactions of
chip components. We use deep learning to find predictive signatures for this
latter class of dips, which make up 7.3% of the surfing phase.

Our primary workload is the BBENCH benchmark [9],
running atop Android Gingerbread. Figure 2 plots committed
instructions/cycle for three phases of activity: OS boot, web
browser startup, and a web surfing phase. During surfing, web
sites are loaded from off-chip using Android’s built-in browser,
and Javascript code simulates user link clicks. We see that
instruction throughput drops below 25% during nearly 20%
of the surfing phase, making these intervals a good target
for DVFS. Here, low instruction throughput arises under two
sets of circumstances: first, while waiting on web page I/O,
and second, during computation-dominated intervals due to the
architecture-level interactions of chip components. This latter
class of intermittent dips make up 7.3% of the overall work-
load, and are difficult to predict with heuristics. By applying
hierarchical sparse coding, we will find predictive signatures
for these dips, and reclaim power by voltage/frequency scaling.

To generalize gains from our approach, we also report
prediction performance for the ASIMBENCH/Moby bench-
mark suite [10]. This set of workloads includes examples of a
game, audio and video playback, and document manipulation
applications running under Android ICS. Though these work-
loads capture additional application behaviors, they lack the
simulated user interactions of BBENCH that cause pertinent
statistical patterns to recur over time. We therefore present
these limited results with the caveat that incorporating user
interaction is a necessary next-step to assess power savings.

Our workload prediction scenario is related to the well-
studied problem of workload phase detection. Phase detection
is often motivated by the desire to identify large stable regions
of a workload, which ensure that overheads resulting from
optimization-driven adjustments can be sufficiently amortized.
Detection techniques like working set signatures, basic block
vectors, and conditional branch counters (see [11] for a review)
apply a threshold to one or more hardware counters to identify
deviations relative to a long-term average. We will show
that more sophisticated statistical techniques are necessary to
implement long-range prediction.

However, phase detection can serve as a useful complimen-
tary technique. This lightweight method for detecting changes
in long-term workload characteristics can trigger additional
training to update our statistical models. Futhermore, as we
will show in Section IV B, short unstable workload regions
have few prediction opportunities, since the number of recur-
rent patterns is limited; detecting rapid phase changes is one
potential way of short-circuiting ineffective predictions within
these regions.

B. Performance Counter Configuration
Our sparse-coding predictor will use deep learning to

discover signatures that span multiple measurement windows
over time, and multiple counters across the chip. Counters
capture events like committed instructions, data table hits,
misses, flushes, etc. This approach contrasts with standard
regression modeling that focuses on one or two counters most
correlated with the metric of interest, e.g. in [4].

Typically, the choice of performance counters to include on
a chip is based on both the desired performance monitoring
data, as well as layout and design constraints. In this section,
we use gem5 to also characterize the statistical properties
of counter configurations. This allows us to choose a small
number of counters that still give good prediction performance.

First, we collect data from 120 simulated hardware counters
during the execution of our test workloads. This data represents
a superset of possible hardware configurations. Every 500µs,
deltas from previous values are recorded, and we use the
resulting data vectors to calculate a correlation matrix. We
then group together counters whose correlational magnitude
exceeds 0.98, since these counters are statistically interchange-
able due to their near-total correlation. By choosing one
counter from each group, we then have a minimal configuration
that provides comprehensive architecture-level statistics.

We identify 34 different groups from the 120 possible coun-
ters studied on our ARM v7a-chip. We find, for example, that
the number of integer register reads is interchangeable with
the number of committed integer operations, though these are
collected from different locations on the chip. Such statistics-
driven counter selection is useful to control the data-collection
overhead of our predictor without sacrificing accuracy.

Principal Component Analysis (PCA), a standard technique
for dimensionality reduction, was also applied. Even though
PCA found a lower dimensional basis for our data, that
representation relies on linear combinations of all 34 counters.
Therefore, this analysis does not allow us to reduce the
number of counters deployed on-chip, though it implies that
compressive techniques such as random linear combination are
worth investigating to reduce acquisition costs [12] [13].

III. HIERARCHICAL SPARSE CODING

Sparse coding [14] formalizes dictionary learning and
feature extraction by the following minimization:

min kX �DZk2 s.t. kz
i

k0 k for i = 1...t (1)

with X an n ⇥ t data matrix containing t snapshots of n
counters, D an n ⇥ m dictionary of m features, Z a sparse
m⇥t matrix of feature coefficients, and k a sparsity constraint.
We also put non-negativity constraints on D and Z to improve
coding stability for classification under data variation [7].

Sparse coding generalizes k-means, a method for finding
clusters in data and representing vectors by their associated
cluster centroid [15]. In sparse coding, when k = 1, cluster
centroids become dictionary atoms, and data-to-cluster assign-
ments correspond to Z’s coefficients. When k > 1, a data
vector is represented by a sparse, positive, linear combination
of k cluster centroids, rather than just one. K-SVD [14] trains
D by iteratively fixing Z and using rank-one approximation
to update D’s columns, and then fixing D to update Z by

Orthogonal Matching Pursuit (OMP) [16]. After training, OMP
computes sparse representations relative to D for new data
vectors.

We choose sparse coding over alternative learning methods
such as Convolutional Neural Networks for several reasons:
first, a sum of commonly occurring patterns is an appropriate
intuitive model for performance counters on a chip with mul-
tiple concurrently operating functional circuits. Second, sparse
coding yields good classification performance using a linear
SVM when few labeled training examples are available [7].
And third, both K-SVD and OMP consist primarily of inner-
product computations that can be built in hardware, e.g. [17].

We sparse code data hierarchically, as depicted in Figure 1.
At Layer 1, canonical features present in 500µs measurement
windows are extracted from raw counter data. At Layer 2, we
concatenate sparse feature vectors from multiple measurement
windows over time, and again cluster vectors to capture feature
co-occurrences. Finally, the outputs of Layer 2 are fed to a
linear SVM that implements prediction by assigning a common
label to vectors preceding our target event. When detecting one
among many events, multiple SVMs or decision trees can be
used at this last step. As previously mentioned, we convert
each snapshot of counter values into a delta from the previous
measurement window. Furthermore, we normalize values to
lie between 0 and 1, ensuring that learning using distance
minimization treats approximation error in all counters equally.

Sparse hierarchical models are a primary driver of break-
throughs associated with deep learning for three major rea-
sons. First, imposing sparsity on signals is a powerful de-
noising step that is critical when dealing with natural data
variations. Second, by hierarchically learning features and their
interrelationships, the model can express feature combinations
not directly represented in training data. This means that a
few training examples can be generalized for good statistical
performance on a larger data set. Third, hierarchical models
often include a non-linear pooling step that corrects for align-
ment variations by maximizing feature response over shifted
measurement patches, similar to a convolutional filter. In this
paper, we found little gain from pooling since gem5’s timing
is deterministic and repeatable, however we expect this tool be
important when we expand to data measured from hardware.

IV. WORKLOAD PREDICTION

A. BBENCH Performance
We first present results comparing prediction performance

between hierarchical sparse coding, linear regression, and
static heuristics, for detecting sub-25% instruction-throughput
dips during BBENCH. We define prediction accuracy as the
portion of all 500 µs windows that are correctly labeled, based
on whether their instruction throughput is above or below 25%:

Accuracy = True Positives+True Negatives
Total # of Windows Classified

We also care about false alarm statistics, especially since there
is a recovery cost associated with false positive alarms. We
therefore measure precision and recall. Precision is the number
of correctly predicted dips over the total number of alarms:

Precision = True Positives
True Positives+False Positives

 93

 94

 95

 96

 97

 2 4 6 8 10 12 14 16

Pr
ed

ic
tio

n
Ac

cu
ra

cy

Look-Ahead Range (Windows)

Heuristic
Regression w=8

S.C. w=1
S.C. w=2
S.C. w=4
S.C. w=8

False Alarm Statistics
Sparse Coding, w=2

Look-
Ahead Acc. Prec. Recall

1 97.3% 0.79 0.76
2 96.2% 0.74 0.60
4 95.1% 0.64 0.50
8 94.6% 0.62 0.33
12 94.3% 0.61 0.21
16 94.2% 0.62 0.16

Fig. 3. Throughput dips make up nearly 7.3% of the surfing phase’s
computations, and the dotted black line depicts accuracy if we make no
positive dip predictions at all. Curves above this line have positive predictive
value overall, whereas curves below the dashed line make enough incorrect
predictions to be worse than doing nothing. Precision and recall are shown for
sparse coding over w=2 windows, and characterize the value of positive dip
predictions: precision tells how often positive alarms are correct, and recall
tells how many dips that occur in the workload are correctly identified. For
example, curves below the dashed do-nothing baseline have prec. < 0.50,
since positive alarms are mistaken on average.

Recall is the number of correctly predicted dips over the total
number of dips that actually occur during the workload:

Recall = True Positives
True Positives+False Negatives

Sparse coding dictionaries are trained using the entire web
surfing phase of our dataset, and SVM accuracy is measured
under cross-fold validation. This captures the best-case sce-
nario, in which data volume is always sufficient for training,
regardless of acquisition time. We code over w = 1, 2, 4, 8
trailing measurement windows of 500µs snapshots to find
predictive effects over different time scales. Since parameters
such as dictionary size and sparsity constraints may impact
performance, we test a wide range of model configurations,
and skim off the best performing (we analyze how model
configuration affects performance in Section VI).

To compare, we fit regression coefficients for linear pre-
dictors of different orders based on the instruction throughput
metric directly. In Figure 3, we show data from an order-8
regression, which performed best. Regressions are computed
using a sliding window of measurement data, and curves are
extrapolated and thresholded to implement dip prediction.

We also compare to a heuristic based on the observation
that one dip often precedes another. The heuristic waits until a
dip has been observed, and naı̈vely assumes that another will
follow. This represents the simplest predictor.

Figure 3 plots overall prediction accuracy against look-
ahead range. First, we see that the static heuristic works only at
short look-ahead ranges, when it can pick up the latter portions
of dips spanning multiple measurement windows. Regression
successfully extends prediction range, and captures dips that
can be extrapolated from prior measurements. However, sparse
coding consistently has best accuracy and range for look-
ahead ranges of 3 windows or more. Furthermore, we see
that regression and heuristics make so many mistakes at long
ranges that they are worse than doing nothing. In contrast,
sparse coding always has positive predictive power, even at
a range of 16 windows. Practically, by extending look-ahead
range from 6 windows to 16, range is increased by almost 3x.

B. ASIMBENCH/Moby Performance
In this section, we present prediction accuracy for work-

loads in the ASIMBENCH/Moby benchmark suite, which
include a video game, audio and video playback, and viewers

TABLE I. PREDICTION ACCURACY BY WORKLOAD

Workload Name Phase Description % Low Instr.
Throughput

S.C. Pred. Acc.
Look-Ahead=2 Look-Ahead=4

Adobe Reader All Display PDF file 11.2% 92.2% 89.9%

Frozen Bubble Phase 1 Initialize and begin game 13.6% 92.0% 88.9%
Phase 2 64.6% 94.0% 86.0%

k9 Mail All Display e-mails 19.3% 89.6% 86.5%

KingSoft Office

Phase 1

Open .doc/.xls/.ppt files

14.9% 88.7% 85.5%
Phase 2 – – –
Phase 3 – – –
Phase 4 70.2% 93.4% 85.4%

MXPlayer Phase 1 13.8% 91.0% 88.0%
Phase 2 Play a video – – –
Phase 3 6.6% 98.7% 97.8%

ttpod Phase 1 Play mp3 13.0% 91.1% 88.7%
Phase 2 11.8% 97.6% 95.1%

for PDF and Microsoft Office documents. For each workload,
we report the percentage of computation time during which
instruction throughput is below 25%, and the prediction accu-
racy using signatures spanning 2 windows.

Applying a phase detection filter as discussed in Section
II, we see that some workloads can naturally be divided
into distinct stable regions. For example, the Frozen Bubble
video game has two phases: in the first, application data is
loaded and game state initialized, and in the second, the game
enters a regular frame-rendering loop. We therefore break out
performance per phase, and report only on workload regions
with at least 8,000 measurement snapshots. This conservatively
ensures that models can be trained. Benchmark descriptions
and overall prediction accuracy are shown in Table I.

Hierarchical sparse coding performs best when workloads
have recurring patterns. In this set of benchmarks, media
workloads that are cyclic and driven by a regular sampling rate
have best prediction performance. For Frozen Bubble Phase 2,
MXPlayer Phase 3, and ttpod Phase 2, dip prediction is nearly
perfect: 94.0%, 98.7%, and 97.6%, respectively.

For Frozen Bubble and ttpod, an order-8 regression yields
sub-60% accuracy, indicating that cyclic dips are not extrapo-
lations of prior counter values sampled every 500µs. Though
adapting measurement sampling rate to workloads may im-
prove regression, our method needs no such workload-specific
adjustment. Furthermore, adjustment may not be possible in
cases like video streaming or games, since frame rates are
variable, and affected by background computation and I/O.

We also find that short phases with a high degree of
irregular variation lead to few useful long-range signatures.
Fitting this description are the k9 Mail benchmark, and most
applications’ initialization Phase 1’s. Here, phase detection
for stable-region identification could be used to short-circuit
predictions that are unlikely to be useful. However, for k9
Mail, we note that the lack of user interaction over a large
time scale is a potential limit on prediction opportunities.

V. DYNAMIC POWER FOR VOLTAGE SCALING

The false negative and false positive rates of a predictor
impact power savings due to missed opportunity costs and
recovery costs for incorrect scaling decisions. Given these, we
model realized dynamic power during instruction throughput
dips when our predictive frequency/voltage scaling is applied:

Pdyn = Pr(True Pos.) ⇤ (V
rd

)2(f
rd

)(a
rd

)

+ Pr(False Neg.) ⇤ (V
o

)2(f
o

)(a
rd

) (2)
+ Pr(False Pos.) ⇤ (V

o

)2(f
o

)(a
o

+ a
plt

)

For simplicity, this model assumes constant capacitance and
linear frequency/voltage scaling. As in [18], we proportionally
scale power by the amount of realized switching activity in

 93

 94

 95

 0 500 1000 1500 2000 2500 3000 3500 4000

Pr
ed

ic
tio

n
Ac

c.

Training Time (# Windows)

1 Layer
2 Layer

Fig. 5. Initially, sparse coding models initially converge to a local maximum
prediction accuracy, based on the predictive power of single-window features.
When more variations driven by underlying interrelationships are observed,
additional training is needed to capture their predictive power. A 2 layer model
learns these second-order effects from roughly 3x fewer training samples.

different scenarios. a
o

= 0.75 represents ordinary operation,
based on the observed average activity during BBENCH.
a
rd

represents reduced activity during dips in instruction
throughput. Finally a

plt

represents additional penalty activity
to compensate for incorrect scaling decisions.

When instruction throughput drops, gating is used to reduce
switching activity. However, gating mechanisms are imperfect
and design specific, so we use a gating efficiency term g to
compare different scenarios. a

rd

is therefore defined as a
rd

=
1.0� (0.75) ⇤ g for an instruction throughput drop of 75%.

The model consists of terms representing power consump-
tion for correct predictions, false negatives, and false positives,
respectively. When a dip is correctly predicted, voltage and
frequency are reduced from V

o

= 1.0 to V
rd

= 0.25, and
f
o

= 1.0 to f
rd

= 0.25. For false negatives, voltage and
frequency remain at V

o

= 1.0 and f
o

= 1.0. For false positives,
we penalize incorrect scaling with increased switching activity:
(a

o

+a
plt

). This assumes that we detect higher-than-predicted
activity, and execute additional recovery steps.

Figure 4 plots Pdyn per dip for our best sparse coding
model, against look-ahead range. Gating efficiency establishes
the do-nothing baseline power consumption during a dip, so
we vary g = 0.15...0.66 to capture savings for a range of chip
designs. Power savings are also parameterized by the recovery
cost a

plt

, which we vary from +10% to +40% switching
activity. When the recovery cost is +25% activity, predictive
voltage scaling successfully reduces power consumption with
a 4 window heads up, or 2ms. If we can tolerate only a 1ms
chip adjustment time, then this savings is a 50% gain over a
g = 0.33 gating-efficient design without voltage scaling.

VI. DICTIONARY TRAINING AND CONFIGURATION

For low-latency prediction, we must ensure that sparse
coding dictionaries can be trained quickly under changing
workloads. To this end, we first demonstrate the impact of
hierarchy on training time. Figure 5 shows prediction accuracy
as the number of training samples increases, comparing a 2
layer hierarchical model to an equivalent 1 layer model that
codes concatenated measurement vectors directly.

Prediction accuracy for both models follows the same basic
shape. With few training samples, predictors capture single-
window effects, and converge to a local maximum. As data is
added, variations arising from underlying feature interrelation-
ships are observed. Initially, this added data complexity dilutes
the training set, hurting prediction. However, when enough
samples are acquired to fully capture second-order effects,
prediction converges to a new, higher maximum. Here, we see
that hierarchically treating feature interrelationships reduces
training data requirements by roughly 3x.

htk
Highlight

htk
Highlight

 0.35

 0.5

 0.65

 0.8

 0.95

 2 4 6 8 10 12 14 16

Po
w

er
 C

on
su

m
pt

io
n

Look Ahead Range (Windows)

Baseline(Power(
Consump1on((
as(Ga1ng(
Efficiency(
Increases(

(

g=0.33(

aplt=(0.25(g(=(0.15!

g(=(0.66!

"!

 0.35

 0.5

 0.65

 0.8

 0.95

 2 4 6 8 10 12 14 16

Po
w

er
 C

on
su

m
pt

io
n

Look Ahead Range (Windows)

Power&
Consump-on&
with&DVFS,&as&
False&Posi-ve&
Recovery&Cost&
Decreases&

&

g=0.33&

aplt=&0.25&
aplt&=&+0.40!

aplt=&+0.10!

"!

Fig. 4. Our power model measures savings during dips relative to a chip’s baseline do-nothing power consumption. On the left, baseline power consumption
is parameterized by a chip’s gating efficiency g; when gating efficiency is low (e.g. g = 0.15), then do-nothing power consumption is higher, and predictive
DVFS leads to significant power reduction. On the right, power under predictive DVFS is partly determined by the cost of false positive recovery, a

plt

; if false
positives can be corrected-for with a small amount of additional switching activity (e.g. a

plt

= +0.25), then the gain of predictive DVFS is high.

TABLE II. PREDICTION ACCURACY BY MODEL CONFIGURATION

Layer 1 Layer 2
Config. # Dict Atoms # Dict Atoms Acc. Prec. Recall

Baseline 100 100 94.4% 58% 38%
Small Layer 1 Dict. 30 – 94.7% 62% 37%
Small Layer 2 Dict. – 30 94.2% 56% 30%

Small Layer 1 dictionaries improve precision, possibly from better de-noising. Large
Layer 2 dictionaries are needed to capture feature interrelationships, shown by recall.

TABLE III. LAYER 1 TRAINING BY WORKLOAD MIX

Layer 1 Training Workload Layer 2 Training Workload Pred Acc.
BBENCH BBENCH 94.5%
Adobe Reader BBENCH 93.4%
King Soft (Phase 4) BBENCH 94.2%
Bootstrapped (Rand. Sample) + BBENCH BBENCH 94.7%

Training Layer 1 using evenly mixed workloads leads to best performance.

Training time is also driven by dictionary sizes, a choice
with implications for overall prediction accuracy. Large dictio-
naries need more data to train more states. However, they can
over-fit if extra atoms capture patterns that do not meaningfully
reflect data clusters. In contrast, small dictionaries may only
have capacity to reflect local workload regions; when trained
over too large a region, atoms become coarse averages of many
features, washing out nuanced predictive effects.

In Table II, we examine the effect of changing Layer 1 and
Layer 2 dictionary sizes. When we fix the Layer 1 dictionary
to be small, we see that accuracy, precision, and recall change
little relative to a much larger Layer 1 dictionary. This suggests
that a few canonical features are enough to characterize
complicated workloads. In contrast, when we fix a small Layer
2 dictionary, recall drops relative to a much larger dictionary.
This indicates that a larger Layer 2 dictionary is required to
capture interrelationships among canonical features.

The utility of a small Layer 1 dictionary suggests that a
few features are sufficient even for complicated workloads, so
we examine if those features are universal. Table III shows
prediction accuracy when the Layer 1 dictionary is trained
on different workloads, with a 4 window look-ahead, and 2-
window signatures. We see that, even when the Layer 1 dic-
tionary is trained on out-of-band samples, useful prediction is
realized. Furthermore, bootstrapping on a mix of samples from
all workloads improves performance over training directly on
BBENCH. We conclude that a canonical set of Layer 1 features
exists across workloads, and that they can be burned-in over
a long period, and updated infrequently.

VII. CONCLUSION & FUTURE WORK

Deep learning holds much promise for workload modeling
and adaptive chip optimization. We believe this study is an
important first step to begin exploring those opportunities.

Three major directions for future work exist. First, we
must apply this methodology to more workloads, with user
interaction as a first-class characteristic. Second, we will exper-
imentally gather data from a hardware platform to verify that
predictive performance holds when timing and measurement
errors seep into data. We expect non-linear pooling, mentioned
in Section III, to be important in this context. Finally, predic-
tive DVFS is a first-cut use case, and we will look at other
scenarios to which we can apply deep learning. One possibility
is long-range workload prediction to schedule data prefetch.

REFERENCES

[1] K. Rajamani, H. Hanson et al., “Application-aware power management,”
in 2006 IEEE Intl. Symp. on Workload Characterization.

[2] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: studying
real user activity patterns to guide power optimizations for mobile
architectures,” in 2009 IEEE/ACM Intl. Symp. on Microacrhitecture.

[3] G. Contreras and M. Martonosi, “Power prediction for intel xscale R�
processors using performance monitoring unit events,” in 2005 IEEE
Intl. Symp. on Low Power Electronics and Design.

[4] K. Singh, M. Bhadauria, and S. McKee, “Real time power estimation
and thread scheduling via performance counters,” 2009 ACM SIGARCH.

[5] R. Zamani and A. Afsahi, “Adaptive estimation and prediction of power
and performance in high performance computing,” 2010 Computer
Science-Research and Development.

[6] R. Grosse, R. Raina, K. H., and A. Ng, “Shift-invariance sparse coding
for audio classification,” 2012 arXiv preprint arXiv:1206.5241.

[7] T.-H. Lin and H.-T. Kung, “Robust and efficient representation learning
with nonnegativity constraints,” 2014 Intl. Conf. on Machine Learning.

[8] Binkert, Beckmann et al., “The gem5 simulator,” 2011 ACM SIGARCH.
[9] A. Gutierrez, R. Dreslinski et al., “Full-System Analysis and Charac-

terization of Interactive Smartphone Applications,” in 2011 IEEE Intl.
Symp. on Workload Characterization.

[10] Y. Huang, Z. Zha, M. Chen, and L. Zhang., “Moby: A mobile
benchmark suite for architectural simulators,” 2014 IEEE Intl. Symp.
on Performance Analysis of Systems and Software (ISPASS).

[11] A. Dhodapkar and J. Smith, “Comparing program phase detection
techniques,” in 2006 IEEE/ACM Intl. Symp. on Microarchitecture.

[12] S. Tarsa and H.-T. Kung, “Output compression for ic fault detection
using compressive sensing,” in 2012 IEEE MILCOM.

[13] T.-H. Lin and H.-T. Kung, “Computing sparse representations in o (n
logn) time,” in 2013 Signal Proc. with Adaptive Sparse Structure Reps.

[14] R. Rubinstein, M. Zibulevsky, and M. Elad, “Eff. implement. of the
K-SVD alg. using batch orthog. matching pursuit,” CS Technion, 2008.

[15] J. Hartigan and M. Wong, “Algorithm as 136: A k-means clustering
algorithm,” 1979 Journal of the Royal Statistical Society.

[16] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in 1993 Conf. on Signals, Systems and Computers.

[17] A. Septimus and R. Steinberg, “Compressive sampling hardware recon-
struction,” in 2010 IEEE Intl. Symp. on Circuits and Systems.

[18] D. Brooks, V. Tiwari, and M. Martonosi, Wattch: a framework for
architectural-level power analysis and optimizations.

