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Why Sparse Representations?

• Prior knowledge is better encoded into sparse 
representations
– Data is explained by only a few underlying factors
– Representations are more linearly separable

Feature B

Feature A Simplifies supervised 
classifier training: sparse 
representations work well 
even when labeled 
samples are few  



Computing Sparse Representations
Sparse approximation:
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Computing Sparse Representations
Sparse approximation:

• L1 relaxation approach: good classification accuracy, 
but computation is expensive

• Greedy approach (e.g., orthogonal matching pursuit): 
fast, but yields suboptimal classification accuracy

L1-regularized OMP
Classification 
accuracy (%) 78.7 76.0

[Coates 2011]

CIFAR-10 classification with single-layer architecture



Major Findings

• Weak stability is the key to OMP’s suboptimal 
performance

• By allowing only additive features (via 
nonnegativity constraints), classification with 
OMP delivers higher accuracy by large margins

• Competitive classification accuracy with deep 
neural networks
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Allowing Only Additive Features
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Allowing Only Additive Features
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Enforce nonnegativity to eliminate cancellation
On input:
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On dictionary:

On representation:

• Any nonnegative sparse 
coding algorithms

• We use spherical K-means

• Encode with nonnegative 
OMP (NOMP)



Evaluate the Stability of Representations

Encoder Rotation angle δ
0 0.01π 0.02π 0.03π 0.04π

OMP 1 0.71 0.54 0.43 0.34
NOMP 1 0.92 0.80 0.68 0.57

Grating A

Encode by 
OMP/NOMP

Feature dictionary learned 
from image datasets

Representation A

Correlation between representation A and B

Grating B

Rotate by some 
small angle δ

Representation B

Measure change by 
their correlation



Classification: NOMP vs OMP

Classification accuracy on CIFAR-10
NOMP has ~3% 
improvement over OMP



NOMP Outperforms When Fewer 
Labeled Samples Are Available  

Classification accuracy on CIFAR-10 
with fewer labeled training samples



STL-10: 10 classes, 100 labeled samples/class, 96x96 images

64.5%
Hierarchical matching 

pursuit (2012)

67.9%
This work

61.4%
Maxout network (2013)

60.1%
This work

airplane, bird, 
car, cat, deer, 
dog, horse, 
monkey, ship, 
truck

CIFAR-100: 100 classes, 500 labeled samples/class, 32x32 images

aquatic mammals, fish, flowers, food 
containers, fruit and vegetables, 
household electrical devices, 
household furniture, insects, large 
carnivores, large man-made outdoor 
things, large natural outdoor scenes, 
large omnivores and herbivores, 
medium-sized mammals, non-insect 
invertebrates, people, reptiles, small 
mammals, trees, vehicles



Conclusion

• Greedy sparse encoder is useful, giving a 
scalable unsupervised representation learning 
pipeline that attains state-of-the-art 
classification performance 

• Proper choice of encoder is critical: the 
stability of encoder is a key to the quality of 
representations
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