Stable and Efficient Representation Learning with Nonnegativity Constraints

Tsung-Han Lin and H.T. Kung

HARVARD School of Engineering and Applied Sciences

Unsupervised Representation Learning

Why Sparse Representations?

- Prior knowledge is better encoded into sparse representations
 - Data is explained by only a few underlying factors
 - Representations are more linearly separable

<u>Simplifies supervised</u> <u>classifier training</u>: sparse representations work well even when labeled samples are few

Computing Sparse Representations

Sparse approximation: $\min_{\mathbf{z}} \|\mathbf{x} - \mathbf{D}\mathbf{z}\|_{2}$ s.t. $\|\mathbf{z}\|_{0} \le k$

Computing Sparse Representations

Sparse approximation: $\min_{\mathbf{z}} \|\mathbf{x} - \mathbf{D}\mathbf{z}\|_{2}$ s.t. $\|\mathbf{z}\|_{0} \le k$

- <u>L1 relaxation approach</u>: good classification accuracy, but computation is expensive
- <u>Greedy approach (e.g., orthogonal matching pursuit)</u>: fast, but yields suboptimal classification accuracy

CIFAR-10 classification with single-layer architecture

	L1-regularized	OMP	
Classification accuracy (%)	78.7	76.0	[Coates 20

Major Findings

- Weak stability is the key to OMP's suboptimal performance
- By allowing only additive features (via nonnegativity constraints), classification with OMP delivers higher accuracy by large margins
- **Competitive** classification accuracy with deep neural networks

Stability of Representations

Orthogonal Matching Pursuit (OMP) Select *k* atoms from a dictionary *D* that minimize |*x-Dz*|

Select the atom that has the largest **correlation** with the residual

Orthogonal Matching Pursuit (OMP) Select *k* atoms from a dictionary *D* that minimize |*x-Dz*|

Select the atom that has the largest **correlation** with the residual

Estimate the coefficients of the selected atoms by **least squares**

Update the **residual** using current estimate

Orthogonal Matching Pursuit (OMP) Select *k* atoms from a dictionary *D* that minimize |*x-Dz*|

Select the atom that has the largest correlation with the residual

Estimate the coefficients of the selected atoms by **least squares**

Update the **residual** using current estimate

OMP

Nonnegative OMP

Use only additive features by constraining the atoms and coefficients to be nonnegative

Allowing Only Additive Features

Allowing Only Additive Features

Enforce nonnegativity to eliminate cancellation

On input:

On dictionary:

- Any nonnegative sparse coding algorithms
- We use spherical K-means

On representation:

• Encode with nonnegative OMP (NOMP)

Evaluate the Stability of Representations

Correlation between representation A and B

Encoder	Rotation angle δ				
	0	0.01π	0.02π	0.03π	0.04π
OMP	1	0.71	0.54	0.43	0.34
NOMP	1	0.92	0.80	0.68	0.57

Classification: NOMP vs OMP

Number of Features

NOMP Outperforms When Fewer Labeled Samples Are Available

STL-10: 10 classes, 100 labeled samples/class, 96x96 images

airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck

60.1%

This work

Hierarchical matching This work pursuit (2012)

CIFAR-100: 100 classes, 500 labeled samples/class, 32x32 images

61.4%

Maxout network (2013)

aquatic mammals, fish, flowers, food containers, fruit and vegetables, household electrical devices, household furniture, insects, large carnivores, large man-made outdoor things, large natural outdoor scenes, large omnivores and herbivores, medium-sized mammals, non-insect invertebrates, people, reptiles, small mammals, trees, vehicles

Conclusion

- Greedy sparse encoder is useful, giving a scalable unsupervised representation learning pipeline that attains state-of-the-art classification performance
- Proper choice of encoder is critical: the stability of encoder is a key to the quality of representations