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Abstract
Orthogonal matching pursuit (OMP) is an ef-
ficient approximation algorithm for computing
sparse representations. However, prior research
has shown that the representations computed by
OMP may be of inferior quality, as they deliver
suboptimal classification accuracy on several im-
age datasets. We have found that this problem
is caused by OMP’s relatively weak stability un-
der data variations, which leads to unreliability
in supervised classifier training. We show that
by imposing a simple nonnegativity constraint,
this nonnegative variant of OMP (NOMP) can
mitigate OMP’s stability issue and is resistant to
noise overfitting. In this work, we provide exten-
sive analysis and experimental results to examine
and validate the stability advantage of NOMP.
In our experiments, we use a multi-layer deep
architecture for representation learning, where
we use K-means for feature learning and NOMP
for representation encoding. The resulting learn-
ing framework is not only efficient and scalable
to large feature dictionaries, but also is robust
against input noise. This framework achieves the
state-of-the-art accuracy on the STL-10 dataset.

1. Introduction
We consider computing high-level image representations
with which we can more easily classify images. Such high-
level representations are typically derived by encoding low-
level image descriptors into a suitable feature space based
on a feature dictionary. Much work has been devoted to un-
supervised feature dictionary learning over the past years
(see Bengio et al., 2013). Recently, it has been shown
that the K-means algorithm is usually sufficient for this
task (Coates & Ng, 2011a), providing a very efficient so-
lution for dictionary learning.
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On the contrary, efficient encoder design for computing
data representations based on learned dictionaries has re-
ceived less attention. A good encoder usually finds repre-
sentations that are sparse, with the hope that the new rep-
resentations are linearly separable in the feature space and
will simplify classifier training. Imposing this sparse prior,
however, often invokes a considerable amount of compu-
tations. For example, the classical approach to sparse cod-
ing involves solving an expensive `1 minimization problem
(Lee et al., 2006; Raina et al., 2007), which is less applica-
ble for large-scale machine learning problems.

There have been several attempts to use efficient approxi-
mation algorithms for sparse encoding (see Coates & Ng,
2011a). One example is the soft-threshold encoder, which
finds sparse representations by simply dropping entries
smaller than a certain threshold (Nair & Hinton, 2010;
Kavukcuoglu et al., 2010). Such encoder has been shown
to work well in benchmarks containing abundant labeled
training samples. In contrast, efficient greedy algorithms,
such as Orthogonal Matching Pursuit (OMP) (Pati et al.,
1993), are less successful in computing effective represen-
tations. OMP is reported to deliver suboptimal classifica-
tion accuracy on popular benchmarks.

In this work, we show that OMP in fact is not a poor en-
coder. We have found that a key to making OMP perform
well is to introduce nonnegativity constraints. Nonnegativ-
ity constraints have long been exploited for learning sparse,
additive features. For example, nonnegative matrix factor-
ization (NMF) has been shown to learn parts-based rep-
resentations (Lee & Seung, 1999). By further including
sparseness constraints into NMF, it has been observed that
Gabor-like low-level features can be learned (Hoyer, 2004).
In addition, nonnegativity contraints are biologically plau-
sible for modeling human vision systems in computational
neuroscience research (Hoyer, 2003). However, despite the
large corpus of nonnegative feature learning algorithms in
the literature, little is known about the utility of nonnega-
tivity constraints in encoding sparse representations.

We found that imposing nonnegativity constraints can
∗T.-H. Lin is now with Intel Labs, Santa Clara CA, USA.
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largely alleviate a stability issue of OMP, namely that OMP
may fail to find nearby representations for data with small
variations (Donoho et al., 2006; Rozell et al., 2008). The
instability of the computed representations can lead to con-
fusions in classifier training and inferior classification ac-
curacy. We argue that under nonnegativity constraints,
OMP’s stability is enhanced, and in addition, will increase
with pairwise separation among dictionary atoms. This
means that with a better trained dictionary where atoms are
well separated, the encoder can be much more stable.

We have validated the effectiveness of the nonnegative
OMP encoder (NOMP), a variant of OMP that is as effi-
cient, through experiments on the CIFAR-10, CIFAR-100
(Krizhevsky & Hinton, 2009), and STL-10 datasets (Coates
et al., 2011). We present two major findings:

• The proposed NOMP encoder outperforms the prior
OMP encoder in classification accuracy by large mar-
gins. Like prior sparsity-seeking encoders such as
OMP, NOMP can tackle datasets containing a small
amount of labeled training data. In contrast, to achieve
comparable accuracy performance, other fast feed-
forward encoders, such as the soft-threshold encoder,
would have to use supervised classifier training in-
volving substantially more labeled training data.

• With a moderate amount of labeled training samples,
NOMP is competitive in classification accuracy with
the state-of-the-art deep neural networks, and is much
faster and easier to train.

2. Related Work
Sparse coding is a promising method for object classifica-
tion (e.g., Ranzato et al., 2007). Coates and Ng (2011a)
point out that the effectiveness of sparse coding is con-
tributed largely by its encoding capability that finds sparse
data representations. However, to encourage sparsity in
representations, solving the related `1-minimization prob-
lem can be computationally expensive. A considerable
amount of work is dedicated to designing efficient `1-
minimization algorithms (e.g., Lee et al., 2006).

For computational efficiency, researchers have also devel-
oped fast nonlinear encoders, such as the tanh function, to
compute sparse solutions. In particular, these nonlinear en-
coders may be trained to approximate solutions computed
by `1-sparse coding (Kavukcuoglu et al., 2008; Gregor &
LeCun, 2010). Moreover, it has been shown that the simple
soft-threshold encoder, max(0,DT x − α) for some small
α > 0, can be competitive in some cases (Nair & Hinton,
2010; Kavukcuoglu et al., 2010; Coates & Ng, 2011a). In
this work, we take a different path in which OMP is em-
ployed to encode sparse representations.

Nonnegative matrix factorization (Paatero & Tapper, 1994;
Lee & Seung, 1999) and nonnegative sparse coding (Hoyer,
2004) are related feature extraction methods that enjoy
much empirical success. While their use is often moti-
vated by the nonnegative nature of applications (for ex-
ample, document analysis), theoretical studies suggest that
nonnegativity constraints themselves can be powerful. It
has been shown that nonnegativity constraints can ensure a
unique sparse solution without `1-regularization (Donoho
& Stodden, 2003; Bruckstein et al., 2008). Slawski and
Hein (2011) further show that thresholded nonnegative
least squares can be resistant to overfitting of noise even
in underdetermined sparse recovery.

Following this line of research, we show that nonnegativ-
ity constraints can be useful when efficient approximation
algorithms such as OMP are used in encoding sparse repre-
sentations, especially for image classification purposes. We
are not the first to propose a nonnegative variant for OMP.
In fact, nonnegative extensions have been repeatedly pro-
posed in the literature (Bruckstein et al., 2008; Sindhwani
& Ghoting, 2012). However, as far as we know, we are
the first to identify and analyze the stability advantage of
nonnegativity constraints for OMP.

3. Encoding Sparse Representation with
Nonnegativity Constraints

Suppose that we are given a feature dictionary of n atoms
(column vectors) and a data vector. OMP encodes data rep-
resentations by selecting a small number k of the atoms,
such that their linear combination best approximates the
data vector. Its selection procedure only needs k succes-
sive iterations: in each iteration, the atom that can maxi-
mally reduce the residual error is selected. Such a greedy
iterative solver, however, can be sensitive to data variations.
The greedy selection process can amplify small differences
in data and lead to large deviations in their representations.

In this section, we introduce a variant of OMP, named non-
negative OMP (NOMP), and show its improved stability in
computing data representations. Throughout this work, we
learn feature dictionaries using the spherical K-means al-
gorithm (also known as “gain shape” vector quantization)
(Coates & Ng, 2011a) unless otherwise noted.

3.1. Nonnegative OMP

Given a nonnegative dictionary D ∈ Rm×n and a nonneg-
ative data vector x, NOMP finds an approximate solution
to the following nonnegatively constrained problem:

min
z
‖x−Dz‖2 s.t. ‖z‖0 ≤ k, zi ≥ 0 ∀i (1)

That is, we would like to find sparse nonnegative coeffi-
cients z ∈ Rn that can approximately reconstruct the data
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x using the corresponding k dictionary atoms, where k is a
relatively small integer. NOMP iterates the following steps
for up to k rounds:

1. Initialize the residual vector r(0) = x and round
number l = 1. Select the atom dil

that has the
highest positive correlation with the residual, il =
arg maxi

〈
di, r(l−1)

〉
. Terminate if the largest corre-

lation is less than or equal to zero.

2. Approximate the coefficients of the selected atoms by
nonnegative least squares.
z(l) = arg minz

∥∥∥x−∑l
h=1 dih

zih

∥∥∥
2
s.t. zih

≥ 0

3. Compute the new residual r(l) = x − Dz(l). Incre-
ment l by 1.

While following the high-level iterative structure of OMP,
NOMP uses two special mechanisms. First, NOMP selects
the atom that has the highest positive correlation with the
residual, in contrast to OMP which considers both posi-
tive and negative correlations. NOMP may exit iterations
early if there are no more atoms with positive correlations.
Second, NOMP computes the sparse code using nonneg-
ative least squares instead of conventional unconstrained
least squares. Note that solving nonnegative least squares is
considerably more expensive than solving its unconstrained
variant. Empirically, we usually find it sufficient to approx-
imate the solution by solving unconstrained least squares
and truncating any resulting negative coefficients to zero.1

Given the structural similarity between NOMP and OMP,
existing efficient OMP implementations, such as batch
OMP (Rubinstein et al., 2008), can easily be adopted by
NOMP. These implementations usually exploit both the
sparsity in coefficients and incremental updates between it-
erations. With a large dictionary and small k, the overall
computation required is dominated by computing a single
round of atom correlations DT x. Note that the computa-
tion of least squares is not the dominating cost. In this case,
NOMP has a running time comparable to other similar en-
coders, including OMP and soft-threshold encoders.

3.2. Nonnegative OMP as an Encoder

To use NOMP as an encoder, we need to ensure the nonneg-
ativity of both dictionary and input.2 We define a nonlinear
mapping S : R m

2 → Rm
≥0 that transforms the input data

xin ∈ R m
2 into a nonnegative vector x that is double-sized,

1Although truncating the negative coefficients may result in
the residual vector having nonzero correlations with the selected
atoms, these correlations must be negative. The selected atoms
thus will not be re-selected in later iterations, and NOMP’s con-
vergence property is not affected.

2Although pixel intensities are nonnegative, data preprocess-
ing such as mean subtraction can generate negative values.

Table 1. A comparison in data dimensionality between uncon-
strained encoders and NOMP to compute a length-n feature vec-
tor from a length-m/2 data vector.

xin x D z
UNCNSTRN. m

2
m
2

m
2
× n

2
n
2ENCODERS

NOMP m
2

m m× n n

S(xin) = [max(0,xin),max(0,−xin)] where 0 denotes
the zero vector with all its components being zero. For ex-
ample, a length-2 data vector [1,−1] is transformed to a
length-4 vector [1, 0, 0, 1]. This transformation has been
used in modeling the receptive fields in human vision sys-
tems (Hoyer, 2003). Given nonnegative data, the K-means
algorithm ensures a nonnegative dictionary will be learned.

Interestingly, prior research has observed that applying
this sign splitting transformation with other unconstrained
encoders leads to improved classification results (Ngiam
et al., 2011; Coates & Ng, 2011a). This splitting, however,
is applied after the encoding step, for weighting the posi-
tive and negative feature vector values differently in a clas-
sifier. In this case, unconstrained encoders can be viewed
as nonnegative encoders with a dictionary [D−D]. NOMP
generalizes this formulation by using a double-sized non-
negative dictionary that has no such special symmetric
structures, and can be expected to be more powerful in clas-
sification. Nevertheless, we will see that the advantage of
NOMP is beyond this generalization. Table 1 compares the
data dimensionality in unconstrained encoders and NOMP.

Note that the nonnegative formulation allows only additive
features, and cannot express cancellation between features
efficiently. For image data, this limitation is less of a prob-
lem. The classical NMF result suggests that the nonneg-
ativity constraint can lead to parts-based representations
(Lee & Seung, 1999). For deep, high-level representa-
tions, the nonnegativity constraint in fact is preferred, since
nonzero entries in the representations correspond to activa-
tions of low-level features, and the cancellation between
low-level features would be less meaningful.

3.3. Stability of Nonnegative OMP Under Noisy Data

To use sparse representations for classification, it is im-
portant that the data representations are stable under ex-
pected small data variations. Unstable data representations
can confuse supervised classifier training and result in poor
classification performance. In this section, using noise as a
proxy for small data variations, we assess the robustness of
an encoder, and argue that a robust encoder is more stable
under these data variations.

OMP is known to obey a local stability under noise
(Donoho et al., 2006). That is, OMP can tolerate suffi-
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Figure 1. Grey(green)-shaded area denotes where the residual
vector sits that the algorithm would select d1(d2) as the next atom.
NOMP can tolerate larger variations in the residual.

ciently small data noise and still find a sparse representation
with the same support (the same nonzero entries). Figure
1(a) illustrates this local stability. Suppose we have two
atoms d1 and d2 in the dictionary. Given the residual vec-
tor shown in the figure, OMP would select d1 as the next
atom because the projection of the residual vector onto d1

is larger than its projection onto both d2 and −d2. This
selection procedure allows the residual to be affected by
small noise. If this deviation is small enough such that the
deviated residual does not fall out of the shaded area, the
same atom d1 will still be selected by OMP. However, a
slightly larger noise may cause OMP to select −d2 as the
next atom, and subsequently the computed representation
may differ by a large error due to a different support set.

In contrast, NOMP can tolerate a larger noise as illustrated
in Figure 1(b). In NOMP, only the projections of the resid-
ual onto positive d1 and d2 are considered, giving a larger
noise-tolerant area. Denoting the angle separating d1 and
d2 as δ and considering the same residual vector, the noise-
tolerant area for NOMP to choose d1 spans an angle of
π/2 + δ/2, larger than OMP’s π/2. This also suggests
that NOMP’s noise-tolerant region grows when the two dic-
tionary atoms are further separated, while OMP’s noise-
tolerant region has a fixed size no matter how the angle
between atoms is varied.

Formally, the following theorem shows that NOMP can tol-
erate sufficiently small noise in data and computes repre-
sentations with the same support.

Theorem 1. Suppose a data vector x has a nonnegative
k-sparse representation z using a nonnegative dictionary
D, i.e., x = Dz. Given a noisy data vector x + n, NOMP
finds a sparse representation that has the same support as
z if the noise n satisfies

‖n‖2 <
√

2
2 (1− µk)zmin (2)

where µ is the coherence of the dictionary, or the maximum
correlation between any two atoms in the dictionary, and
zmin is the smallest nonzero entry in z.

Proof. We begin the proof by considering the first itera-
tion in NOMP. Assuming the z’s k nonzeros are located in
the first k entries in descending order of magnitudes, for
NOMP to select a correct nonzero entry, we need

max
1≤h≤k

〈x + n,dh〉 > max
h>k
〈x + n,dh〉 (3)

We can bound both sides of (3):

〈x + n,d1〉 = z1 +
∑k

i=2
zi 〈di,d1〉+ 〈n,d1〉

≥ z1 + 〈n,d1〉
(4)

〈x + n,dh〉 =
∑k

i=1
zi 〈dj ,dh〉+ 〈n,dh〉

≤ z1µk + 〈n,dh〉
(5)

Combining (3)-(5) yields

〈n,dh〉 − 〈n,d1〉 < z1(1− µk) (6)

Note that all the atoms are nonnegative. This allows us to
further bound the left-hand side of (6).

〈n,dh〉 − 〈n,d1〉 ≤ ‖n‖2 ‖dh − d1‖2 ≤
√

2 ‖n‖2 (7)

Swapping (7) into (6) gives us a bound for the noise that
NOMP selects a correct nonzero entry in the first iteration.

‖n‖2 <
√

2
2 (1− µk)z1 (8)

We can repeatedly apply the same procedure to derive
bounds in later NOMP iterations. In the l-th iteration, we
can find the following bound analogous to (8).

‖n‖2 <
√

2
2 (1− µk)zl (9)

Therefore, satisfying the k conditions derived in the k
NOMP iterations guarantees finding the correct support set,
and (2) suffice to satisfy all k conditions.

This upper bound for tolerable noise is larger than OMP’s
bound by a factor of

√
2, previously derived using the same

technique (Donoho et al., 2006). We note that this bound is
loose and empirically NOMP can tolerate even larger noise.
We will provide empirical results in Section 4.

3.4. Improving Stability with Multiple Dictionaries

We have seen that NOMP enjoys a stronger stability than
OMP. However, fundamentally, the stability of greedy pur-
suit algorithms is limited by the coherence of feature dic-
tionaries, as strongly correlated atoms in the dictionary can
cause more unstable atom selections. In practice, it is not
easy to ensure all dictionary atoms to be equally separated,
suggesting that NOMP’s encoding will be particularly un-
stable to data related to strongly correlated atoms. A simple
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Figure 2. Impact of noise on the stability of OMP and NOMP.
NOMP is more stable under noise and shows less overfitting.

strategy to mitigate this problem is to make use of multiple
separate dictionaries such that it is unlikely that a data in-
put will have unstable representations across the majority
of the dictionaries. One can then train multiple separate
classifiers, each corresponding to one dictionary, and use a
majority vote to combine the predictions.34

4. Empirical Validation of NOMP’s Stability
In this section, we empirically validate NOMP’s stability
for data under noise, and under variations. We use a dictio-
nary learned from 6× 6 images patches from CIFAR-10.

For noisy data, we sample 10,000 image patches x from
CIFAR-10, and generate 2,500 noisy versions x∗ of each
patch with different Gaussian noise. Both clean and noisy
samples, x and x∗, are encoded to sparse codes z and z∗,
respectively. We measure the mean-squared-error (MSE)
of sparse codes ‖z∗ − z‖2 to assess the stability of the en-
coders. The sparsity bound k of both OMP and NOMP are
varied during the experiments, denoted as (N)OMP-k.

As shown in Figure 2(a), the MSE of sparse codes com-
puted by OMP grows with a larger k. Using more atoms
to approximate the input runs the risk of overfitting to
data noise, and consequently leads to more unstable sparse
codes. In contrast, in Figure 2(b), NOMP finds sparse
codes with smaller MSE across all SNRs. In fact, the MSE
even drops with a larger k due to the fact that NOMP would
terminate by itself when no more additive atoms can be
found, effectively reducing overfitting. This result suggests
NOMP-20 potentially is a better encoder than OMP-5.

Next we test the stability of sparse codes for images of grat-
ing under small rotations. We generate 8,000 6× 6 images
of grating and rotate each image by some small angle.5 For

3Note that this technique does not improve the classification
result when using the soft-threshold encoder. The soft-threshold
encoder is stable regardless of the properties of dictionaries.

4In our implementation, we learn separate dictionaries by us-
ing different initializations to K-means. The predictions reported
in Section 6 are combined from 7 dictionaries and classifiers.

5The grating is generated by I(x, y) = b+ a sin(ω(x cos θ+
y sin θ − φ)) where ω is the spatial frequency, θ is the orien-
tation, and φ is the phase (Berkes & Wiskott, 2005). We set

Table 2. Stability of the codes of grating images under rotations.

ANGLE 0 0.01π 0.02π 0.03π 0.04π
OMP-5 1.00 0.71 0.54 0.43 0.34
NOMP-20 1.00 0.92 0.80 0.68 0.57

Feature maps 

 Feature maps 

 Feature maps 

NOMP 

THRESH 

THRESH 

SVM 

Layer 1 

Layer 2 

Layer 3 
Feature vector 

Figure 3. The learning architecture adopted in this work. Note
that we use different encoders to compute representations for clas-
sifier (NOMP) and for higher-level encoding (soft-threshold).

each pair of grating and its rotation, we compare the simi-
larity between their sparse codes with the normalized corre-
lation. As shown in Table 2, the codes computed by NOMP
are more stable under small rotations while the codes com-
puted by OMP quickly become very different.

5. A Multi-Layer Learning Framework for
Classification with NOMP

We adopt a popular architecture that stacks multiple layers
of convolutional feature encoders (Lee et al., 2009; Coates
& Ng, 2011b). At each layer, overlapping patches from the
input feature maps are encoded using a feature dictionary.
The computed representations are then pooled (max or av-
erage) over a small neighborhood to generate feature maps
for further encoding in the next layer, or pooled over the
whole image to form an image representation.

Standard preprocessing steps are applied on image data to
generate data vectors for layer-1. These include mean sub-
traction, contrast normalization , and ZCA-whitening, fol-
lowed by sign-splitting as described in Section 3.2.

However, unlike the popular architecture, we use different
encoding methods to compute feature vectors for classifi-
cation, and compute feature maps for higher-layer encod-
ing, as illustrated in Figure 3. In particular, we use NOMP
to compute sparse representations for classification, and a
soft-threshold function to generate sparse codes for higher
layers.6 We do so because feature maps computed with
NOMP are very sparse and are difficult to be further en-
coded efficiently, and therefore use the soft-threshold func-
tion for less-sparse representations. Empirically, we found
that using a soft-threshold function that truncates 90% co-
efficients works well. Note that between layers, only a fea-

ω = {0.5, 1, 1.5, 2} and φ = 0 to π with a step size π/20.
6Note that this adds only very little computation, as DT x is

already computed by NOMP.
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Figure 4. Single-layer classification accuracy on full CIFAR-10
with abundant training samples (5000 labeled samples per class).

ture vector normalization step is performed. This makes the
learning framework very simple as compared to other exist-
ing frameworks, which require some form of data whiten-
ing (Coates & Ng, 2011b; Hui, 2013).

For even faster computation, the nonnegativity constraint
allows us to enforce a sparse high-layer dictionary, given
that high-layer inputs are sparse and only additive atoms
are allowed. By exploiting the sparsity in computations,
both training and encoding can be made significantly faster.
A simple strategy to enforce sparse dictionaries is to drop
entries with small values. We typically set atoms to have
only 10% nonzeros for layer-2 and above. This shows no
harm to classification accuracy in our experiments. Finally,
the representations computed at different layers are con-
catenated as a image feature vector for use in classification,
for which we employ a linear classifier (L2-SVM).7

6. Validating NOMP with Classification
6.1. Performance on the CIFAR-10 Dataset

6.1.1. SINGLE LAYER PERFORMANCE

We first evaluate NOMP using the full CIFAR-10 dataset
with a single layer encoder. CIFAR-10 is a dataset with
abundant labeled training samples (5000 for each class).
We encode 6 × 6 patches, pool the sparse codes over the
four quadrants of an image, and concatenate the four rep-
resentations. For comparison purposes, this architecture
is identical to those used in the literature (Coates & Ng,
2011a; Goodfellow et al., 2012).8 We compare NOMP with
both OMP and the soft-threshold encoder, one of the best
known encoders for CIFAR-10. We choose k as 20 and 5
for NOMP and OMP, respectively, in the experiments.9

7The feature vectors are standardized by rescaling the values
to [0, 1] for each dimension. Note that this preserves the sparsity
of feature vectors due the nonnegativity.

8Accuracy is optimized over max- and average-pooling; gen-
erally, NOMP performs best with max-pooling, and the soft-
threshold encoder with average pooling.

9This choice is cross-validated over k = {1, 3, 5, 10, 20}. In
general, choosing k is not difficult. For NOMP, overfitting is less
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Figure 5. Single-layer classification accuracy on CIFAR-10 with
fewer training samples (less than 1000 labeled samples per class).
In this experiment, we use a dictionary of 3200 features. Only
NOMP’s standard error is shown for the readability of the figure.

As shown in Figure 4, OMP achieves the worst accuracy
despite being a sparse encoder. As a point for comparison,
(Coates & Ng, 2011a) uses `1-sparse coding and reports
a 78.5% accuracy with 3200 features (compared to 74.5%
achieved by OMP). This suggests that OMP, although very
efficient, does not find good representations. With nonneg-
ativity constraints, NOMP is able to approach the accuracy
of `1-sparse coding (77.4%). This makes NOMP an at-
tractive encoder, especially for its high computational effi-
ciency as compared to `1-sparse coding.

Second, NOMP achieves accuracy comparable with the
soft-threshold encoder in the full CIFAR-10 dataset. Clas-
sification accuracy with soft-threshold-encoded representa-
tions, however, is only competitive under a large amount of
labeled training samples (Coates & Ng, 2011a). In contrast,
representations encoded by sparse encoders such as NOMP
do not need as many samples. In Figure 5, we reduce the
amount of labeled training samples in CIFAR-10, and com-
pare NOMP to other encoders using the accuracy numbers
reported by (Goodfellow et al., 2012). In this case, NOMP
achieves the highest accuracy of the group when there are
less than 1000 labeled samples per class, outperforming the
soft-threshold encoder, the `1-sparse coding, and even the
more sophisticated spike-and-slab sparse coding.

6.1.2. QUANTIFYING THE IMPACT OF NONNEGATIVE
TRAINING AND NONNEGATIVE ENCODING

Having shown that NOMP not only delivers classification
accuracy higher than OMP but also competitive with other
well-known encoders, we seek to understand why NOMP
performs well. NOMP differs with OMP in two ways: (1)
Nonnegative training learns a more flexible dictionary by
separating positive and negative channels (see Section 3.2).
(2) Nonnegative encoding enjoys a stronger stability than

of a problem, as the algorithm would terminate early by itself.
As such, it is safe to use a large k, and this tends to improve
performance. For OMP, setting k is trickier due to the trade-off
between representational power and overfitting. Usually a small
k (such as 5 or 10) works best for OMP. See Section 6.1.2.
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Table 3. Single-layer classification accuracy of CIFAR-10 using
various training and encoding methods. We report accuracy from
the 5-fold cross validation on the training set.

ENCODING
TRAIN OMP-5 OMP-20 NOMP-5 NOMP-20
R 69.2 67.3 69.2 74.6
RP 72.9 71.6 74.6 77.1
UNSPLIT 74.5 73.6 74.9 76.3
SPLIT 73.5 73.2 75.7 77.4

OMP (see Section 3.3). To measure individual impact of
nonnegative training versus nonnegative encoding, we con-
struct a dictionary Dn using a dictionary D trained from
unconstrained K-means, and pair this dictionary with non-
negative encoding. Dn is constructed as follows to have
a special symmetric structure as we do with unconstrained
encoding:

Dn =
[

max(0,D) max(0,−D)
max(0,−D) max(0,D)

]
(10)

In this experiment, we also include dictionaries formed by
random numbers (R) and randomly selected patches (RP)
for comparisons. The sparsity k of both OMP and NOMP
for encoding is also varied to examine the impact of en-
coder stability on classification accuracy.10

We can make several observations from the results shown
in Table 3. First, nonnegative encoding seems to contribute
to most of the success of NOMP, and nonnegative training,
in contrast, plays a minor role. We see higher classification
accuracy even when nonnegative training is replaced by un-
constrained training (76.3%). Across all dictionary training
methods, encoding with NOMP-20 consistently improves
classification accuracies by a significant margin.

Second, the stability of the encoders is strongly correlated
with classification accuracy, and this explains why nonneg-
ative encoding is particularly beneficial. In Section 4, we
observed that a large k in OMP results in unstable represen-
tations. Correspondingly, we see OMP-20 delivers lower
accuracy than OMP-5. In contrast, with NOMP, a larger k
gives more stable representations, and we see the accuracy
improves from NOMP-5 to NOMP-20. Note that these ob-
servations hold true regardless of the employed dictionary
training method, suggesting that nonnegative encoding for
improved encoder stability is of fundamental importance.

6.1.3. MULTI-LAYER PERFORMANCE

We next examine NOMP’s performance in a multi-layer,
deep architecture as described in Section 5. For compari-
son, the settings of the architecture are identical to (Coates

10In these experiments we use features that have 3200 × 4 =
12800 dimensions for the SVM.

Table 4. CIFAR-10 test accuracy in a multi-layer architecture.

400 EX/CLASS FULL DATA

OMP-5 (1 LAYER) 67.2 ± 0.3 75.2
OMP-5 (2 LAYERS) 67.9 ± 0.4 76.4
NOMP-20 (1 LAYER) 69.0 ± 0.3 78.0
NOMP-20 (2 LAYERS) 71.3 ± 0.4 80.9
NOMP-20 (3 LAYERS) 71.7 ± 0.3 81.4
NOMP-20 72.2 ± 0.4 82.9(3 LAYERS + MULTI DICT)
RF LERANING (3 LAYERS) 70.7 ± 0.7 82(COATES & NG, 2011B)

& Ng, 2011b), where the authors stack multiple layers of
soft-threshold encoders.11

As shown in Table 4, we can see that with NOMP, the
accuracy can be improved effectively by simply adding
more layers (78.0% to 81.4% in the full dataset, and 69.0%
to 71.7% in the reduced dataset). We note that the only
other known higher classification accuracy for the reduced
CIFAR-10 is 72.6% (Hui, 2013), in which the accuracy is
attained by exploiting view-invariant features rather than a
better encoder design. Finally, exploiting multiple dictio-
naries can further improve the classification accuracy.

The accuracy improvement in stacked OMP, however, is
relatively small. This may suggest that the nonnegative
constraint is also advantageous for high-layer feature en-
coding. To evaluate the impact of nonnegative encoding
in higher layers, we run another experiment that uses only
the representations derived at layer-2 for classification.12

In addition, we include a case where the nonnegative con-
straint is only enforced in layer-2. This allows us to isolate
the impact of nonnegativity on layer-2.

Table 5 shows that two-layer OMP alone in fact achieves
very poor accuracy (67.3%). Surprisingly, by only adding
nonnegativity on layer-2, the accuracy can be drastically
improved (77.2%) to almost the same as that in two-layer
NOMP (77.3%). We hypothesize that the improvement is
a result of avoiding unwanted cancellations between high-
level features. A nonzero value in a high-level feature can
be interpreted as the “presence” of the corresponding low-
level feature. Therefore, cancellations between positive
and negative values is less meaningful. Adding the non-
negativity constraint eliminates this possibility and again,
prevents overfitting in the model.

We note that the current state-of-the-art accuracy of full
CIFAR-10 is achieved by deep neural networks (e.g.,

11The patch sizes and features sizes are 6× 6, 9× 9, 15× 15,
and 3200, 6400, 6400 for the three layers, respectively.

12Instead of concatenating representations found at all layers as
described in Section 5.
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Table 5. Accuracy from 5-fold cross validation on full CIFAR-
10 training set, using only representations constructed in layer-
2. T denotes soft-threshold encoding, and NT denotes soft-
thresholding with nonnegative sign splitting.

ACCURACY

LAYER-1 (T) + LAYER-2 (OMP) 67.3
LAYER-1 (T) + LAYER-2 (NOMP) 77.2
LAYER-1 (NT) + LAYER-2 (NOMP) 77.3

Table 6. Classification accuracy of CIFAR-100.

TEST ACC.
OMP-5 (1 LAYER) 49.0
NOMP-20 (1 LAYER) 53.3
NOMP-20 (3 LAYERS) 57.7
NOMP-20 (3 LAYERS + MULTI DICT) 60.8
STOCHASTIC POOLING 57.5(ZEILER & FERGUS, 2013)
MAXOUT (GOODFELLOW ET AL., 2013) 61.4

Goodfellow et al., 2013). The power of such methods, how-
ever, depends on the amount of available labeled training
samples. As we will see in the next section, NOMP is very
competitive when labeled training data is limited.

6.2. Performance on the CIFAR-100 Dataset

The strength of NOMP lies in its ability to tackle datasets
with limited labeled training data. The CIFAR-100 dataset
is one of such datasets: it has many more classes (100
classes), and fewer labeled training samples per class (500
samples for each class), as compared to the CIFAR-10
dataset (5000 samples per class). We use the same hyper-
parameters in this experiment as used in the CIFAR-10 ex-
periments. As shown in Table 6, 3-layer NOMP achieves
a very competitive accuracy (57.7%). Further, exploiting
multiple dictionaries has a big impact. The accuracy can be
largely improved (60.8%) and approaches the state-of-the-
art accuracy achieved by maxout networks, an advanced
extension of deep neural networks with dropout training.

6.3. Performance on the STL-10 Dataset

Finally, we evaluate NOMP on the STL-10 dataset, which
features very few labeled training examples (100 examples
for each of the 10 classes) and larger 96×96 images. Due to
its relatively large image size, much prior research chose to
downsample the images to 32× 32. We examine NOMP’s
performance on both the downsampled and original-sized
dataset.13 The results are shown in Table 7.

13For the downsampled dataset, we use the same setting for the
multi-layer framework as in CIFAR-10. For the original dataset,
we use 10× 10, 19× 19, and 38× 38 patches for layer-1, layer-2
and layer-3, respectively. 2 × 2 max-pooling is inserted between
layers. For both experiments, we use feature size 3200, 6400, and
6400 for the three layers, respectively.

Table 7. Classification accuracy of STL-10.

TEST ACC.
THRESH (1 LAYER, DOWNSAMPLED) 54.8 ± 0.4
OMP-5 (1 LAYER, DOWNSAMPLED) 58.1 ± 0.5
NOMP-20 (1 LAYER, DOWNSAMPLED) 59.0 ± 0.5
NOMP-20 (2 LAYERS, DOWNSAMPLED) 60.4 ± 0.5
NOMP-20 (1 LAYER) 64.6 ± 0.6
NOMP-20 (3 LAYERS) 67.5 ± 0.5
NOMP-20 (3 LAYERS + MULTI DICT) 67.9 ± 0.6
SPARSE CODING (1 LAYER, DOWNSAMPLED) 59.0 ± 0.8(COATES & NG, 2011A)
RF LERANING (3 LAYERS, DOWNSAMPLED) 60.1 ± 1(COATES & NG, 2011B)
HMP (BO ET AL., 2012) 64.5 ± 1

First, we note that the classification accuracy follows sim-
ilar trends as in CIFAR-10. With a single layer, NOMP
achieves accuracy similar to `1-sparse coding. Using two
layers of NOMP, the accuracy is also slightly better than
that of three layers of stacked soft-threshold encoders.

Second, we found that image size has a huge impact on
classification accuracy. Using the original image size,
single-layer NOMP achieves an accuracy (64.6%) higher
than all of the previously reported numbers. With 3 layers,
NOMP achieves 67.5% accuracy, a new state-of-the-art ac-
curacy. This result highlights the importance of efficient
and scalable training and robust encoding algorithms.

7. Conclusion
In this work, we have studied greedy sparse encoders for
use in unsupervised sparse representation learning. We
have found that the stability of OMP, known to be relatively
weak, is the cause of its suboptimal classification accuracy.
We have shown that this issue can be largely alleviated by
simply adding a nonnegativity constraint. The proposed
NOMP encoder is not only very efficient, but also deliv-
ers competitive accuracy to other best known encoders, in-
cluding deep neural networks, when the amount of labeled
training samples is limited. This makes NOMP very attrac-
tive to building large-scale image classification systems.
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