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ABSTRACT
We propose a data-driven geolocation method on microblog
text. Key idea underlying our approach is sparse coding, an
unsupervised learning algorithm. Unlike conventional posi-
tioning algorithms, we geolocate a user by identifying fea-
tures extracted from her social media text. We also present
an enhancement robust to erasure of words in the text and
report our experimental results with uniformly or randomly
subsampled microblog text. Our solution features a novel
two-step procedure consisting of upconversion and iterative
refinement by joint sparse coding. As a result, we can reduce
the amount of input data required by geolocation while pre-
serving good prediction accuracy. In the light of information
preservation and privacy, we remark potential applications
of these results.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering ; I.2.6 [Artificial Intelli-
gence]: Learning—Unsupervised feature learning
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Geolocation; joint sparse coding; text subsampling; Twitter

1. INTRODUCTION
Traditionally, geolocation involves the detection and re-

lated computational processing of beacon signals used in a
positioning system such as GPS. We consider a data-driven
framework for geolocation that leverages the increased avail-
ability of geotagged social media data. In particular, we aim
to develop an algorithm for estimating geocoordinates of a
social network user by learning features from the user’s social
media text. We also extend the algorithm to take lossy, sub-
sampled text data as input to geolocation prediction while
preserving accurate geolocation estimates.

Geolocation information serves valuable context for so-
cial media. Recent research [1, 2] has experimented with la-
tent variable models trained on the Twitter microblog text
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(“tweets”) for geolocation. To achieve decent geolocation ac-
curacy, a geographic topic model must be trained with a suf-
ficient amount of labeled training examples. The fact that
only 2.2% of tweets are geotagged [3] indicates the difficulty
of supervised learning.

In this paper, we describe a model-free, geolocation method
driven by a relatively small labeled dataset. Our key compo-
nent is sparse coding, an unsupervised algorithm that learns
a feature mapping for the raw text input. It is advantageous
for prediction algorithms to operate on sparse (feature) rep-
resentations of the raw data. We exploit the mapping to
build a lookup table of reference geocoordinates and search it
using the sparse feature vector computed on the text input.
We apply k-Nearest Neighbor (k-NN) similarity matching in
the feature domain for geolocation.

This paper also studies the preservation of geographic in-
formation after discarding words in the text. While the cause
of such discarding could be unknown or randomly intro-
duced, a purposeful usage would be to enhance privacy of
a user, especially if the computing for geolocation is done
remotely (e.g., in the cloud). We demonstrate robustness
of our approach by experimenting with uniformly and ran-
domly subsampled tweet text. While subsampling is a simple
method of dimensionality reduction, we face the difficulty
unique for text data where information erasure is highly ir-
regular depending on which word gets discarded.

To address this challenge, we propose a novel two-step pro-
cedure consisting of upconversion and refinement inspired by
joint sparse coding for image super-resolution [4]. We will
show that the refinement step can be iteratively repeated to
produce better geolocation estimates.

Geolocation based on comprehending social media text is
an ongoing, hard research problem [1, 2, 5]. Prediction with
heavily subsampled text (e.g., 50% of words in the text) is
even more challenging. Our work here assesses the feasibility
of a learning approach robust to subsampling. The results of
this paper may be useful to develop secure applications for
devices with limited computing power.

Rest of this paper is organized as follows. In Section 2, we
describe our data-driven framework for text-based geoloca-
tion. Section 3 will present our approach based on subsam-
pled text data. In Section 4, we discuss the results from an
experimental evaluation on the CMU GeoText dataset [6],
and Section 5 concludes the paper.

2. TEXT-BASED GEOLOCATION VIA
SPARSE CODING

To alleviate the scarcity of labeled training examples in
practice, we focus on unsupervised feature learning based
on sparse coding and dictionary training.



2.1 Sparse coding for text data
We use sparse coding as the basic means to extract fea-

tures from text. A text document, however, cannot be di-
rectly applied to sparse coding. Instead, we convert text to
a numeric form in a procedure called “embedding.” Let vo-

cab denote a collection of unique words appearing in docu-
ments with size V = |vocab|. In binary-bag-of-words (BW)
embedding scheme, a text document containing W words
is represented as a bit vector wBW ∈ {0, 1}V . The ith
element in wBW is 1 if the word vocab[i] has appeared
in the text. We also use word-sequence (WS) embedding
wWS ∈ {1, . . . , V }W , where wi, the ith element in wWS ,
represents vocab[wi]. Sparse coding takes in an unit in-
put vector called patch drawn from data. We denote patch
x ∈ RN , a consecutive subvector taken from wBW or wWS

for an input to sparse coding.
Given an input x ∈ RN , sparse coding solves for a repre-

sentation y ∈ RK in the following optimization problem:

min
D,y
‖x−Dy‖22 + λψ(y) (1)

where input x is represented as a sparse linear combination
of basis vectors in an overcomplete dictionary D ∈ RN×K

(K > N). The solution y is the feature representation for
x. The system x = Dy is underdetermined (i.e., more un-
knowns than equations) and needs an extra constraint for
assuring unique solution. As in the second term of Eq. (1),
sparse coding regularizes on the `0- or `1-norm of y for ψ(.)
with λ > 0. Because the `0-norm of a vector is the number
of nonzero elements, it can precisely serve the regularization
purpose. Finding the sparsest `0-minimum solution in gen-
eral, however, is known to be NP-hard. The `1-minimization
with LASSO [7] or Basis Pursuit [8] is often preferred. Re-
cently, it is known that the `0-based greedy algorithms such
as Orthogonal Matching Pursuit (OMP) [9] can run fast.

Dictionary learning for sparse coding is done by an un-
supervised, data-driven process incorporating two separate
optimizations. It first computes sparse code for each train-
ing example using the current dictionary. Then, the recon-
struction error from the computed sparse codes is used to
update each basis vector in the dictionary. We use K-SVD
algorithm [10] for dictionary learning.

2.2 Preprocessing patches
We can enhance the quality of unsupervised learning by

preprocessing patches. For example, binary-bag-of-words em-
bedding produces highly sparse bit vectors that are diffi-
cult for sparse coding to learn meaningful features. We can
preprocess the patches of embedded text by removing the
mean value and scaling with standard deviation. Another
technique called whitening makes input data less redundant
such that dictionary learning can be more effective. Com-
bining these into one integrated procedure, we preprocess a
batch of n input patches taken from embedded text vectors
by whitening.

1. Remove mean x(i) := x(i) − 1
n

∑n
i=1 x(i);

2. Compute covariance matrix C= 1
n−1

∑n
i=1x

(i)x(i)>;

3. Do eigendecomposition [U,Λ] = eig(C);

4. Compute xwhite = (Λ+εI)−1/2U>x, where ε is a small
positive value for regularization.

2.3 Baseline geolocation method
Our baseline geolocation method consists of the following

steps in the training phase.

1. (Text embedding) perform binary or word-sequence
embedding of text data using vocab;

2. (Unsupervised learning) feed patches drawn from un-
labeled embedded text vectors to sparse coding and
learn basis vectors for dictionary D;

3. (Feature extraction) using the dictionary D learned
during unsupervised learning, for given labeled train-
ing patches {(x(1), l(1)), (x(2), l(2)), . . . }, perform sparse

coding on {x(1),x(2), . . . } and obtain sparse codes

{y(1),y(2), . . . } with their associated labels;

4. (Feature pooling) aggregate features by max pooling
over a group of M sparse codes extracted from the
same document and obtain pooled sparse code z such
that the jth element in z, zj = max(y1,j , y2,j , . . . , yM,j)
where yi,j is the jth element from yi, the ith sparse
code in the pooling group;

5. (Tabularization of reference geocoordinates) build a
lookup table of geocoordinates associated with pooled
sparse codes z from labeled data patches.

Note that each label contains geocoordinates in the form
l(i) = {lat, lon}.

The baseline method works in the following manner for the
testing phase. When text data (tweets) of unknown geocoor-
dinates arrive, we perform preprocessing, feature extraction
via sparse coding, and max pooling. Using the max-pooled
sparse code of the tweets, we find the k pooled sparse codes
from the lookup table that are closest in cosine similarity.
We take the average geocoordinates of the k-NNs.

2.4 Grid-based voting scheme for k-NN
We accompany a simple voting scheme for k-NN. We lay

out a grid over the all k-NN geocoordinates. Each k-NN casts
a vote to its corresponding grid. We identify the grid that re-
ceives the most votes and take the average of geocoordinates
in the selected grid as the final geolocation estimate.

3. GEOLOCATION FROM SUBSAMPLED
TEXT

Using a linear subsampling matrix (i.e., uniform or ran-
dom), we consider two blind subsampling strategies. First,
we subsample after binary-bag-of-words embedding. Secondly,
we can subsample the raw text before embedding. Blind text
subsampling concerns a tradeoff between amount of input
data required for geolocation and prediction accuracy. This
section proposes an enhancement robust to the effect of blind
text subsampling on degradation of geolocation accuracy.

3.1 Subsampling binary-bag-of-words
Given wBW , we perform either uniform or random sub-

sampling. For uniform subsampling, every αth component
of wBW is discarded for some integer α. Similarly, random
subsampling discards the equivalent number of components
randomly from wBW . As a result, the subsampled embedded
vector has a smaller dimension than the original binary bag-
of-words vector. Subsampling wBW has an identical effect as
embedding the raw text based on subsampled vocab.
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Figure 1: Patches {xf ,xs} from full and subsampled text

3.2 Subsampling raw text
Unlike wBW , wWS converts text to a numeric form while

retaining the ordering of words. Thus subsampling wWS is
subsampling raw text vector. Uniform subsampling discards
every αth words, and random subsampling discards the same
number of words randomly. The subsampled raw texts are
embedded based on the binary-bag-of-words scheme, result-
ing the final subsampled vector of dimension V .

3.3 Joint sparse coding for upconversion and
refinement

The effect of subsampling raw text is more devastating
than subsampling binary-bag-of-words vectors. In this sec-
tion, we propose a variation of joint sparse coding that can
recover the original text and refine the recovery from the
subsampled text for better geolocation performance.

Let us denote the pair {xf ,xs} patches drawn from the
binary-bag-of-words vectors embedded on full and subsam-
pled text, as seen in Figure 1. The sparse coding problems
for xf ∈ RN and its subsampled counterpart xs ∈ RN are

min
Df ,yf

‖xf −Dfyf‖22 + λf‖yf‖1 (2)

and

min
Ds,ys

‖xs −Dsys‖22 + λs‖ys‖1 (3)

where Df and Ds are dictionaries from full and subsampled
text, respectively. Image super-resolution [4] takes advan-
tage of the shared sparse code between the high- and low-
resolution pair of patches for the same image such that one
can recover a high-resolution image from the low-resolution
version. Similarly, if the sparse code for the full and sub-
sampled is shared (i.e., yf = ys), we can attempt to re-
cover the full by using the subsampled. We formulate a new
joint optimization that forces the sharing of the sparse code
v = yf = ys between the full and subsampled pair of patches

min
Du,Dd,v

‖xf −Duv‖22 + ‖xs −Ddv‖22 + λv‖v‖1 (4)

where Du is the upconversion dictionary, and Dd for down-
conversion.

In the unsupervised learning stage, we first solve for Du,
Dd, and v via joint sparse coding of Eq. (4). Using the
learned Du, we obtain an upconversion estimate x̂f = Duv.
We can refine x̂f in another joint optimization

min
Dr,Dq,w

‖xf −Drw‖22 + ‖x̂f −Dqw‖22 + λw‖w‖1. (5)

Here, we explicitly look for Dr and Dq that make the re-
finement of x̂f possible. In the supervised learning stage,
we perform sparse coding with (labeled) subsampled data
patches using the learned Dd and yield joint sparse codes
v. The joint sparse codes are applied to feature pooling and
tabularization of reference geocoordinates in steps 4 and 5
of baseline geolocation method.

Joint&Sparse&Coding&(training)&
xf
xs

Joint&sparse&coding&
(for&upconversion)&

DuDdv

DuDdvpled xs. We first solve for v via joint sparse coding of Eq. (4).
Using Du, we obtain an upconversion estimate x̂f = Duv.

We can refine the upconversion x̂f in another joint opti-
mization

min
Dr,Dq,w

⌅xf � Drw⌅2
2 + ⌅x̂f � Dqw⌅2

2 + ⇥⌅w⌅1. (5)

Using the joint sparse code w and Dr, we obtain the re-
fined upconversion x̃f = Drw. We can iteratively repeat the
refinement step. For enhanced geolocation with subsampled
text, we use the refined feature vector w.

4. EXPERIMENTS
We compare geolocation accuracies of previously men-

tioned methods on both uniformly and randomly subsam-
pled text data. Geolocation accuracy is evaluated using the
CMU GeoText dataset [8].

4.1 Data
GeoText is a geo-tagged microblog corpus comprising

377,616 tweets by 9,475 users from 48 contiguous US states
and Washington D.C. Each document in the dataset is con-
catenation of all tweets from a single user whose location
information is provided as GPS-assigned latitude and longi-
tude values. The document is a sequence of integer numbers
ranging 1 to 5,216, where each number represents the posi-
tion in vocab.

4.2 Methodology
Dataset processing. In our experiment, we cut the dataset
into five folds such that fold = user_id % 5, following Eisen-
stein et al. [1]. Folds 1–4 are used for training, and fold 5 for
testing. We have embedded the entire text data from each
user to binary and word-sequence vectors. From these vec-
tors, we uniformly or randomly subsample the input text by
a range of � = 2, 3, 4, 6, and 9. We sparse code patches of
a configurable size N taken from the subsampled input. We
use patch sizes of N = 64 for feature extraction.
Training. In unsupervised learning, we precondition patches
with PCA whitening prior to sparse coding. The parameters
for sparse coding are experimentally determined. We have
used a dictionary size K ⇤ 10N , sparsity 0.1N ⇥ T ⇥ 0.4N
(T is number of nonzero elements in sparse code y). For max
pooling, we use pooling factors M in 10s.

In supervised learning, we have trained linear multiclass
SVM and softmax classifiers, using max pooled sparse codes
as features. In our results, we report the best average per-
formance of the two. We have exhaustively built the lookup
table of reference geocoordinates for k-NN. This results up
to 7,500 entries (depending on how much of labeled dataset
is allowed for supervised learning). In reducing prediction
errors, we find k-NN works well for 20 ⇥ k ⇥ 30. We use
higher k (200 ⇥ k ⇥ 250) with voting-based grid selection
scheme. We have varied grid sizes suggested by Roller et
al. [9] and decided on 5� for most purposes.
Metrics. For geolocation, we use the mean and median dis-
tance errors between the predicted and ground-truth geo-
coordinates in kilometers. We note that it is required to
approximate the great-circle distance between any two lo-
cations on the surface of earth. We use the Haversine for-
mula [10]. For classification tasks, we adopt multiclass clas-
sification accuracy as the evaluation metric.

4.3 Results

5. CONCLUSION
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Figure 2: Full system pipelines

When subsampled tweets from unknown geocoordinates
arrive, the geolocation pipeline consists of upconversion and
refinement. We can iteratively repeat the refinement step.
For enhanced geolocation with subsampled text, we use the
refined feature vector w. Figure 2 illustrates our full pipelines.

4. EVALUATION
In this section, we empirically evaluate the proposed ap-

proaches using the CMU geo-tagged microblog corpus [6].
We train our baseline geolocation method using the full data
samples. We also train our method with uniformly and ran-
domly subsampled raw text and binary-bag-of-words (em-
bedded) text vectors to analyze the effect of subsampling
on the accuracy degradation. We will discuss the improved
geolocation performance by our joint sparse coding method
for upconversion and refinement on subsampled text data.

4.1 Data
GeoText is a Twitter text dataset comprising 377,616

tweets by 9,475 users from 48 contiguous US states and
Washington D.C. Each document in the dataset is concate-
nation of the entire tweets by a single user collected over
one week. All documents include the user location informa-
tion provided as GPS-assigned latitude and longitude values.
The document is a sequence of integer numbers ranging 1 to
5,216, where each number represents the position in vocab.

4.2 Experimental methodology
For all our experiments, we have cut the dataset into five

folds such that fold = user_id % 5, following Eisenstein et
al. [1]. Folds 1–4 are used for training, and fold 5 for testing.
We have embedded the entire text data from each user to
binary-bag-of-words and word-sequence vectors and applied
uniform or random subsampling by α = 2, 3, 4, and 6.

We precondition patches with PCA whitening before sparse
coding. After numerous experiments, we have determined
to use patch size N = 64. We have used OMP, a greedy-`0
sparse encoder, and K-SVD for dictionary learning. Other
sparse coding parameters are also determined experimen-
tally. We have used a dictionary size K ≈ 10N , sparsity
level S for 0.1N ≤ S ≤ 0.4N (S is number of nonzero ele-
ments in y). We use max pooling factors M in 10s.

In supervised learning, we have built the table of reference
geocoordinates for k-NN, using the max-pooled sparse code
as the feature for lookup. This results in the lookup table
of more than 7,500 entries. We have found good geolocation
accuracy with 10 ≤ k ≤ 40.

For the metric of performance evaluation, we use the me-
dian distance error between the predicted and ground-truth
geocoordinates measured in kilometers. We note that related
previous research has regarded median distance error more
important than the mean. It is required to approximate the
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Figure 3: Median geolocation errors of subsampling binary-
bag-of-words against various sampling factors
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Figure 4: Median geolocation errors of uniform and random
subsampling the raw text with α = 2.

great-circle distance between any two locations on earth be-
cause of its round surface. We use the Haversine formula [11].

4.3 Results and discussion
In Figure 3, we present the effect of grid-based voting

scheme on the geolocation errors using uniformly subsam-
pled binary-bag-of-words text. Notice that the grid-based
voting scheme is robust to subsampling binary-bag-of-words
text. However, the effect of subsampling raw text is stronger
than subsampling binary-bag-of-words vectors, and we have
experienced that the grid-based voting scheme is not as effec-
tive when applied to subsampled raw text. Therefore we use
our proposed upconversion and iterative refinement scheme
by joint sparse coding that is robust to subsampling raw
text. We present the median geolocation errors of uniform
and random 2x subsampling (i.e., α = 2) on the raw text in
Figure 4. We gradually increase the number of refinement
steps to observe changes in the geolocation error. Applying
our baseline geolocation method on full text gives 568 km
error. As expected, discarding 50% of words significantly in-
creases geolocation errors, 794 km for uniform subsampling
and 757 km for random subsampling. Remarkably, multiple
iterations of refinement step can help mitigate the geolo-
cation error caused by heavy subsampling. After five itera-
tions of refinement step, geolocation error for uniform sub-
sampling decreases to 652 km and random subsampling to
636 km. Notice that these geolocation errors are only 84 km
and 68 km higher than using the full text.

Figure 5 depicts the median geolocation errors against var-
ious uniform subsampling factors (in 1/α) for subsampling
only, subsampling with enhancement by upconversion, and
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Figure 5: Median geolocation errors of uniform subsampling
and enhancements against various sampling factors

subsampling with enhancements by both upconversion and
single or multiple (5) iterations of refinement. As uniform
and random subsampling results are comparable, we only re-
port uniform subsampling results. Compared to subsampling
only, upconversion and multiple iterations of refinement af-
ter subsampling is more robust to increased sampling factor.

5. CONCLUSION
We have presented a geolocation method based on sparse

coding of microblog text data. We achieve the median ge-
olocation errors of 568 km for full and 636 km even under 2x
subsampling on the GeoText dataset. The proposed up-
conversion and iterative refinement scheme by joint sparse
coding proves to be successful in drawing out the correlation
between the full and subsampled text pair. The geolocation
accuracy degradation is only by 12%, even if we have halved
words in the text. The main contributions of this paper are
the refinement scheme and its application to geolocation for
subsampled microblog text. For future work, we plan to im-
prove feature learning schemes by introducing hierarchy and
evaluate our methods using both US and worldwide data.
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