
Sparse Coding Trees with Application to Emotion Classification

Hsieh-Chung Chen, Marcus Z. Comiter, H. T. Kung, and Bradley McDanel
Harvard University, Cambridge, MA

Abstract

We present Sparse Coding trees (SC-trees), a sparse
coding-based framework for resolving misclassifications
arising when multiple classes map to a common set of fea-
tures. SC-trees are novel supervised classification trees that
use node-specific dictionaries and classifiers to direct input
based on classification results in the feature space at each
node. We have applied SC-trees to emotion classification
of facial expressions. This paper uses this application to
illustrate concepts of SC-trees and how they can achieve
high performance in classification tasks. When used in
conjunction with a nonnegativity constraint on the sparse
codes and a method to exploit facial symmetry, SC-trees
achieve results comparable with or exceeding the state-of-
the-art classification performance on a number of realistic
and standard datasets.

1. INTRODUCTION
Automated emotion classification from facial expres-

sions is an important component of security, medical, and
market-research software [11]. As such, methods to detect
users’ emotional states through accurate, unobtrusive, and
hardware-efficient means are greatly needed. Although in-
dividuals all feel the same types of emotions, there exists
substantial variation between the ways individuals express
these emotions. The importance of subtleties in expressions
as well as differences in the subjects’ physiology, pose, and
environmental conditions make the problem challenging.
Addressing these challenges is essential in the construction
of an emotion classifier.

For this and other challenging applications, we present
Sparse Coding trees (SC-trees), a novel type of supervised
classification tree. SC-trees use node-specific dictionar-
ies and classifiers to direct input images to children nodes,
whose own dictionaries and classifiers are more specialized,
and therefore able to perform more accurate classification.
An example SC-tree is shown in Figure 1. SC-trees can be
viewed as a general methodology of using tree branching
for rectifying a class conflict, or the consistent misclassi-
fication that occurs when two or more distinct classes are

grouped together during classification. By analogy, a class
conflict is similar to a hash table collision in which two dis-
tinct values are hashed to the same hash value.

Input

Sparse	
 Coding	

Classifier	
 (e.g.,	
 SVM)	

Group/Label	
 Assignment	

label

label label

Figure 1. Illustration of an SC-tree. Each node has a node-specific
dictionary for use with sparse coding and classifier that together
assign a coarse label to an input image, and then dispatches the
input image to a child node or outputs a final label.

SC-trees are a natural framework to incorporate expert
knowledge. For example, a model based on expert knowl-
edge may reveal that both the expressions “happiness” and
“fear” often share a common feature of displaying teeth (see
Figure 5). With this knowledge, an SC-tree may include a
branch to a child node that is able to resolve the confusion
between these two expressions. Alternatively, the structure
of SC-trees can be guided by purely data-driven methodolo-
gies, in which coarse classification results form a confusion
matrix that is used to derive the SC-tree’s branching rules.
In Section 6.1 we show an example of how expert-derived
models and data-driven models arrive at similar branch-
ing rules, suggesting that SC-trees can incorporate expert
knowledge both in designing branching rules and validat-
ing the branching rules found through purely data-driven
methods. This ability to incorporate expert knowledge is
especially useful when there is insufficient training data for
automatic derivation of these rules.

A node in an SC-tree makes branching decisions by clas-
sifying sparse codes of the input in the feature space. As
image data with emotion labels is relatively scarce in this
domain, we introduce Mirrored Nonnegative Sparse Cod-
ing (MNNSC), a novel extension of sparse coding that ex-
ploits facial symmetry to improve statistical accuracy of the
classifier at each node. MNNSC leverages two key insights:

1. Nonnegativity: Imposing nonnegativity constraints
during sparse coding has been shown to reduce over-
fitting for a given number of dictionary atoms [14].

2. Mirroring: By exploiting facial symmetry, mirror-
ing achieves reflection invariance, which is similar to
the translation invariance achieved by local maximum
pooling often seen in deep learning [13, 35]. This tech-
nique allows us to use smaller dictionaries, improving
both offline training and online encoding time.

We emphasize MNNSC’s usefulness in two important
scenarios. First, MNNSC can learn improved feature rep-
resentations with relatively limited training data. Second,
MNNSC allows for the use of greedy encoders. We provide
empirical results for both scenarios in Section 5.3.

SC	
 SC-­‐Tree	

Basic	
 SC	
 	
 70.1	
 73.6	

NNSC	
 	
 71.5	
 76.9	

MNNSC	
 	
 75.1	
 79.9	

Figure 2. Overview of improvements in classification average re-
call on the baseline CK+ dataset achieved by SC-trees, mirroring,
and the nonnegativity constraint. NNSC denotes SC with a non-
negativity constraint, and MNNSC denotes SC with both mirroring
and a nonnegativity constraint.

We present extensive experimental evidence validating
SC-tress and MNNSC in Section 5, demonstrating results
comparable with or exceeding the state of the art. As
sparse coding is well known to be effective for classification
tasks [18], in this paper we focus on showing our improve-
ments through SC-trees and MNNSC over basic sparse cod-
ing. For validating SC-trees, we perform tests on standard
baseline datasets (to establish the beneficial properties of
SC-trees on well-posed datasets), as well as datasets with
greater subject and intra-class emotion variation (to test SC-
trees when applied to more freely-posed datasets). Figure 2
previews a summary of results on the CK+ dataset.

Further, given the superior performance of SC-trees
with MNNSC, we independently examine MNNSC to val-
idate its discriminative power and explain how it can fa-
cilitate accurate classification within SC-tree nodes. We
report performance results of MNNSC on a number of
emotion-specific real-world datasets, and demonstrate how
implementing sparse coding with a nonnegativity constraint
and mirroring separately improves classification results, as
shown in the rows of Figure 2, ultimately together achieving
state-of-the-art results in emotion-specific classification.

2. BACKGROUND
2.1. Related Work in Emotion Classification

There are several common pre-processing steps applied
to the raw input images in order to make them more
amenable to classification methods: (1) Facial segmenta-
tion locates the subject’s face in the frame, commonly by
using face or eye detectors. (2) Facial registration corrects
for rotational variations in the subject, as well as appropri-
ately cropping and scaling the image to a consistent rep-
resentation [7]. (3) Equalization normalizes the intensity
of pixels between images. These preprocessing steps have
been shown to impact classification accuracy [33][26], and
are used in this paper.

Existing approaches to emotion classification fall into
one of two categories based on feature selection: geometry-
based or appearance-based. Geometry-based approaches
use expert knowledge to identify and model landmarks in
the face that discriminate between emotions, such as the
shape of the subject’s lips. Appearance-based approaches
operate directly on pixel data and extract data-driven sta-
tistical models of emotions. This latter approach includes
methods that compute transformations to a feature space
that improves classification accuracy. Our proposed method
is appearance-based, and also incorporates expert knowl-
edge in forming the branching structure of the SC-trees in
order to address easily confused emotion classes

Various types of feature representations have been used
as input to classifiers in this problem domain. Box-filters,
which are rectangular image filters, are a well-known tech-
nique in the signal processing community [33][20]. Gabor
filters are linear filters, and are commonly used for detect-
ing edges in an image [33]. Local binary patterns are an-
other textural feature representation and have been applied
to smile detection [28].

Final classification in this domain most-often uses Sup-
port Vector Machines (SVMs) due to their accuracy and re-
silience to overfitting [33]. Additionally, bagging has been
shown to increase stability in classification accuracy [8].

The symmetry of the face has been used in other con-
texts for expression recognition, specifically with detecting
asymmetric facial expressions [27]. However, in this con-
text, the symmetry of the face is exploited in order to detect
differences in the two sides of the face, rather than to im-
prove feature representations as in our method.

2.2. Related Work in Sparse Coding

Sparse coding is a framework for approximating data us-
ing a few prominent exemplar patterns, called features. A
dictionary of suitable features is learned from data, for ex-
ample by unsupervised clustering. By encoding an input
signal, such as an image, only in terms of its most promi-
nent features, sparse coding computes a sparse representa-

tion vector that produces more stable statistical models in
the presence of noise or missing data, and is well known
for its effectiveness in extracting features for classification
purposes [18]. One method to find this dictionary (D) is
to train it offline from a set of data points xi in the form
of n× 1 vectors1 using matrix factorization with a sparsity
constraint [19]:

min
D∈E,αi∈Rt×1

1

N

N∑
i=1

1

2
||xi −Dαi||22 + λ||αi||1 (1)

E = {D ∈ Rn×t | ∀j, ||dj ||22 = 1} (2)

for a certain λ > 0, where N is the number of training
samples, xi is an input sample, αi is the sparse code of xi,
and D is the dictionary of t columns with dj being the jth

column (i.e., atom) in D. Penalizing the `1 norm of αi in
this formulation has the effect of inducing sparse solutions,
or solutions with few non-zero values. As such, when en-
coded with this dictionary, images are represented as the
linear combination of a small number of atoms, many of
which represent particular regions of the face such as the
teeth, lips, and cheeks. Further, we impose the additional
nonnegativity constraint, αi ∈ Rt×1≥0 and D ∈ Rn×t≥0 in (1),
(4), and (3), which has been shown to reduce over fitting in
practice [14]. Figure 3 shows examples of dictionary atoms
trained with this formulation.

There are two families of encoding algorithms on which
we provide empirical results in this paper: basis pursuit and
greedy algorithms, both of which are widely used. The
Least Absolute Shrinkage and Selection Operator (LASSO)
is a basis pursuit algorithm, which computes the sparse rep-
resentation αi of an input patch xi given a dictionary D
under `1-minimization [5]:

min
αi∈Rt×1,D

0.5||xi −Dαi||22 + λ||αi||1 (3)

It is known that `1-minimization leads to sparse codes
and can be robust to irrelevant features [2][23]. For
higher computational efficiency, there are greedy algo-
rithms for `0-minimization such as Orthogonal Matching
Persuit (OMP) [31] and CoSaMP [22], which solves for:

min
αi∈Rt×1,D

||xi −Dαi||22 s.t. ||αi||0 < K (4)

where K is a small constant.
Authors including Lee et al. [12] have shown that non-

negativity constraints, which force image data to be ex-
plained as an additive sum of parts, are not only a reason-
able model for data, but also produce more accurate classi-
fication results. Lin and Kung [14] have shown that, when
paired with greedy approximation algorithms for Eq. 4,

1For example, 64 × 32 half-images are unrolled to become 2048 × 1
vectors.

nonnegative sparse coding produces stable and state-of-the-
art results.

Sparse coding is also starting to be applied within the
expression recognition community. Mahoor et al. [17]
have applied sparse representations to automatic facial ac-
tion unit recognition. Liu et al. [15] have recently pro-
posed Histograms of Log-Transformed Nonnegative Sparse
Coding (HLNNSC) to advance facial expression recogni-
tion. However, we have found that for difficult domains
such as emotion classification, in which only subtle differ-
ences exist between some classes and media can be cap-
tured in extreme conditions, new approaches (such as the
sparse-coding trees introduced in this paper) for resolving
classification conflicts are needed in using sparse coding.

Figure 3. Examples of atoms trained with Eq. 1 from the node-
specific dictionary for “fear” and “happiness” classes. The atom
highlighted in red corresponds to a feature learned from “fear”
samples and the one in blue corresponds to a feature learned from
“happiness” samples. Similar to results reported by Lee [12] and
Hoyer [9], the nonnegativity constraint leads to learned atoms
which correspond to local parts.

3. SC-TREES
3.1. Overview

We now present an overview of SC-trees, a novel type of
classification tree. SC-trees seek to correct common mis-
classification patterns in classification problems. We may
identify the patterns that need to be corrected either offline
by using expert knowledge, online by using data-driven
methods, or with a combination of the two methods.

As a contrast, in a basic sparse coding-based classifier,
input vectors are coded using a learned dictionary, and the
resulting sparse codes are used as input to a classifier such
as an SVM. However, for challenging scenarios where input
vectors from distinct classes may have the same or similar
sparse codes, resulting classification often consistently con-
fuses two distinct classes. For example, many images from
the “fear” class are consistently labeled as “happiness”, as
noted earlier.

For classification purposes, such an example constitutes
a consistent failure of sparse coding-based classification al-
gorithms. However, because we observe misclassifications
during training, we can learn which of the classes are con-
sistently confused with one another. As this confusion be-
tween distinct classes is consistent, this suggests the use of
a new tailored basis (i.e., dictionary that can distinctly en-
code and discern these classes). Then, all images whose
coarse classification label is one of the confused classes

can be subsequently encoded with this new dictionary, and
then properly classified. This is the key insight that SC-trees
leverage.

3.2. Building an SC-tree

SC-trees are built one node at a time from the top down.
There are three steps in building each node: learning a node-
specific dictionary for use in sparse coding, learning a node-
specific classifier such as an SVM, and learning branching
rules from this node to children nodes and leaves (which
provide final classifications). We now detail each step.

1. Dictionary Learning: A dictionary is learned as de-
scribed in Eq. 1. The input to this step is a set of unla-
beled vectors.

2. Classifier Learning: The second step trains a node-
specific classifier using the sparse codes found from
encoding input with the dictionary learned in the pre-
vious step. We achieve best results for the task of clas-
sifying facial expressions using MNNSC (Section 4),
but in general a number of sparse coding algorithms
(including kernelized sparse coding [29]) can be used
in encoding. In this paper, we use a multi-class linear
SVM.

3. Branching Rules Derivation: The final step is deter-
mining the branching rules from the node. Groups con-
sisting of two or more commonly confused classes are
used to branch from the current node to a new child
node trained specifically to differentiate classes within
the group. Groups that consist of a single class simply
output a final classification label.

As noted earlier, these groups are determined using
expert knowledge, data-driven methods, or a combi-
nation of the two approaches. For data driven meth-
ods, we first obtain a confusion matrix C using the
node’s dictionary and classifier. Once we have calcu-
lated C, we can find groups of “conflicting classes”
that are hard to differentiate. To find these groups, we
can apply standard clustering methods such as spec-
tral clustering to an inter-class affinity matrix A =
1
2 (C + CT) [24]. See Figure 4 for an example of the
data-driven branching method.

Alternatively, branching rules can be directly specified
based on expert knowledge such as by branching on
classes that are known to be qualitatively similar. We
demonstrate building an SC-tree using expert knowl-
edge in Section 6.1.

3.3. Using an SC-tree

Once the SC-tree has been trained, it can be used for
classification. Given an input vector, the SC-tree performs

fea
r

ha
pp

ine
ss

an
ge

r

co
nte

mpt

dis
gu

st

sa
dn

es
s

fea
r

ha
pp

ine
ss

an
ge

r

co
nte

mpt

dis
gu

st

sa
dn

es
s

su
rpr

ise

fear

happiness

anger

contempt

disgust

sadness

surprise
anger

contempt

sadness

disgust

fear

happiness

surprise

Figure 4. For the CK+ dataset, the root node of the SC tree is a
coarse seven-way emotion classifier. This produces a 7 × 7 con-
fusion matrix (shown above to the left), where darker shades cor-
respond to higher counts. We apply spectral clustering to this and
find 3 groups of classes (shown above to the right) that determine
the structure of the tree. In this example, samples classified as
“surprise” by the coarse classifier are labeled as “surprise” as fi-
nal output (as it is the only class in the group). Samples classified
as “happiness” or “fear” are directed to one child node, and the
remaining samples are directed to a second child node.

the following actions to provide a classification label: First,
initialize the root node as the active node a. Second, encode
the input vector into a sparse code using the active node a’s
dictionary, and then obtain a coarse classification label of
the encoded input using a’s classifier. Third, based on the
coarse classification label, follow the branching rules to ei-
ther branch to a child node, or output a label and terminate.
Fourth, if branched to a child node ci, the ci becomes the
active node a, and return to the second step.

3.4. Resolving Misclassification in Practice

The essence of SC-trees is their ability to correct for con-
sistent misclassification between groups of classes. We now
turn our attention to an example of this misclassification
in practice, and show how SC-trees resolve the following
problem: in our experiments, we find that fear is often con-
fused with happiness when using MNNSC without SC-trees
for classification. Figure 5 shows examples of images from
the “fear” class that are misclassified as “happiness”. Inter-
estingly, we see the subjects in each of these images display
their teeth, a trait that these images share with image exam-
ples in the “happiness” class. However, in the “fear” class,
the subjects display teeth in a manner such that the corners
of the lips are not turned up as in a happiness, but rather are
stretched out. This small but significant difference is a main
discriminating feature between the two classes.

We can get greater insight into this phenomenon by ex-
amining the difference between a general dictionary trained
without SC-trees and an SC-tree child node’s dictionary
trained specifically for differentiating fear and happiness,
shown in Figure 3. Unlike the general dictionary, the child
node’s dictionary captures both variations of displaying
teeth: displaying teeth with the corners of the lips turned

Figure 5. These images, taken from the “fear” class, are examples
of images that are misclassified as “happiness” in using a MNNSC
classification pipeline without SC-trees. Note that the subjects in
each of these images display their teeth. SC-trees, branching on a
(“happiness”, “fear”) grouping, corrects these misclassifications.

upwards in “happiness”, and displaying teeth with the cor-
ners of the mouth stretched outwards in “fear”. We note
that the introduction of SC-trees increases the overall recall
rate, and more specifically, increases the recall rate for the
“fear” class substantially (38%), correcting all but one of
the misclassifications of “fear” as “happiness”.

4. Mirrored Nonnegative Sparse Coding
We now present an overview of MNNSC, a sparse cod-

ing algorithm augmented with nonnegativity and a mirror-
ing procedure. In Section 5, we show that SC-trees that use
MNNSC at each node for the sparse coding step achieve
best results on all datasets. Note that MNNSC uses a dic-
tionary trained with nonnegative matrix factorization.

4.1. Nonnegativity Constraint

A danger in sparse coding is overfitting to the input sig-
nal. This can hurt classification by making the encoding
sensitive to small variations or noise in the signal. Rather
than directly enforcing a hard sparsity constraint, nonneg-
ativity allows sparse coding to have an automatic stopping
point in searching for nonzero coefficients. This determinis-
tic algorithm provides a fundamental solution to overfitting.
For example, Figure 6 shows the difference between uncon-
strained and nonnegative sparse coding for our application
domain. With unconstrained sparse coding, as sparseness
decreases past its optimal point, we see a decrease in perfor-
mance, a consequence of overfitting to the signal. However,
with the nonnegativity constraint, the algorithms are forced
to terminate when no more atoms have positive correlation
with the signal, therefore avoiding overfitting and leading
to higher performance. We denote sparse coding with this
nonnegativity constraint as NNSC.

4.2. Mirroring

Our mirroring procedure splits the input image vertically
in half and reflects the right patch such that both patches
have the same orientation (i.e., both resemble the right side
of the face). Then, both patches are encoded using a learned
dictionary. Following encoding, the two patches are ag-
gregated via a maximum pooling operation in the feature
space, as illustrated in Figure 7. We denote sparse coding

NNSC-LASSO

SC-LASSO

NNSC-OMP

SC-OMP

Figure 6. The nonnegativity constraint allows code with lower
sparseness to be used without overfitting to the signal. We use
sparseness as defined by Hoyer [9]. The circled points denote the
optimal sparseness for each encoding method. The unconstrained
variants of OMP and LASSO decrease in performance past the
optimal sparseness. This figure uses the GENKI-4K dataset.

with a nonnegativity constraint and mirroring procedure as
MNNSC.

max
pooling split

Sparse coding
(LASSO/OMP)

flip

Sparse coding
(LASSO/OMP)

Figure 7. Illustration of the benefit of our mirroring procedure. Im-
ages resembling reflections of one another will have similar feature
representations — we call this reflection invariance. The colored
blocks indicate active elements in the sparse codes.

This mirroring procedure allows the sparse codes to re-
flect the features with the stronger response from either side
of the face. This often results in more robust representa-
tion for facial images that are not well posed. As shown in
Figure 8, the feature vectors following mirroring are mainly
characterized by the side of face with the clearer view.

Reconstruction using the clearer side of input image

(a) Original images! (b) Reconstructed images!

Figure 8. Examples of original and reconstructed images under
mirroring. The input images (on the left side) are split in half
vertically (indicated by the red and blue box), encoded, and then
maximum pooling is applied to the sparse codes. As such, note
that each reconstructed image (on the right side) is determined by
the side of face with the stronger response (corresponding to the
blue box).

5. EXPERIMENTS
In this section, we empirically validate SC-trees. We

provide results on two popular datasets, and show that SC-
trees provide a substantial increase in average recall over
sparse coding algorithms, achieving best results when used
in conjunction with MNNSC. We also provide results of
MNNSC in isolation on two additional datasets. Note that
we need to validate MNNSC in isolation so we can evaluate
its effectiveness as part of the directing mechanism used in
SC-trees. As the search space is relatively small, all param-
eters for dictionary and classifier learning are found using
grid-search [30].

5.1. Datasets

We validate the SC-tree classifier on both the Cohn-
Kanade Extended dataset (CK+) [16] and the Emotions in
the Wild dataset (EitW) [4][3]. The CK+ dataset contains
labeled video sequences of 118 subjects taken in a con-
trolled, laboratory environment. Each subject is recorded
in a series of still images captured in controlled conditions
progressing from a neutral to one of seven emotions (anger,
contempt, disgust, fear, happiness, sadness, and surprise).
We extract the last frame of each sequence for classifier
training and testing (a total of 373 images). The EitW
dataset contains short video and audio segments of subjects
displaying emotions in movies, and the same emotions as
the CK+ dataset, excluding contempt. We extract the mid-
dle frame of each sequence for classifier training and testing
(a total of 300 images) and do not use the audio component.

Additionally, we further validate MNNSC on two
emotion-specific datasets: GENKI-4K [32][10] and
Affective-MIT Facial Expression Dataset (AM-FED) [21].
The GENKI-4K dataset is the publicly available subset of
the larger GENKI dataset [34], and consists of real-world
images downloaded from the Internet labeled either “happi-
ness” or “neutral”. The AM-FED dataset consists of images
of subjects taken with a commodity webcam in real-world
environments. As these datasets contain only a single la-
beled emotion (“happiness”) and neutral frames, we do not
use SC-trees.

For all datasets, the images are preprocessed by crop-
ping the region of interest (ROI) around the mouth, which is
found using OpenCV’s Haar-feature based cascading clas-
sifier [1], scaling the ROI to 64 by 64 pixels, converting
to gray scale, and normalizing such that each image has a
unit norm. For the EitW dataset, the same preprocessing is
employed except that the pre-cropped images of the entire
face included with the dataset and obtained by the method
used in [3] were used as input. Note that while using these
pre-cropped frames ignores difficulties in adjusting for pose
and other variations present in this uncontrolled environ-
ment, we choose to use these precise frames as input to
our pipeline in order better focus and understand the bene-

Dataset
CK+ EitW

Method

SC-tree MNNSC 79.9 33.0
MNNSC 75.1 29.4

SC-tree NNSC 76.8 29.7
NNSC 71.5 28.1

SC-tree Basic SC 73.6 28.6
Basic SC 70.1 26.5

Table 1. Performance results (average of per class recall) on the
CK+ and Emotions in the Wild (EitW) dataset demonstrating the
increase in average recall achieved by SC-Trees with a number of
sparse coding algorithms (all using LASSO). Note that for both
datasets, the best results are achieved with SC-trees used in con-
junction with MNNSC.

fits of SC-trees in isolation, as attempting to simultaneously
address this other difficulty would complicate analysis and
understanding of our results.

5.2. SC-tree Performance Results

Table 1 shows the increase in average recall achieved
through the use of SC-trees with three different sparse
coding algorithms: MNNSC, nonnegative sparse coding
(NNSC), and K-SVD (Basic SC). These results are calcu-
lated by taking the average of each class’ recall. This mea-
sure is appropriate, as the number of images in each class
differs by a large margin. The structure of the SC-tree is
derived using data-driven methods, arriving at the structure
shown in Figure 4.

For the purposes of generating results on these
two datasets, we employ “leave-one-subject-out” cross-
validation for training/testing [16]: for a given human sub-
ject, we take all images of that subject as the testing set, and
use the remaining images of all other subjects as the training
set, repeating this procedure for all subjects in the dataset.

On the CK+ dataset, SC-trees provide a 2.5-5% increase
in average recall as compared to using each sparse coding
algorithm without the SC-trees. Of the three sparse coding
methods, MNNSC gives the best performance. We achieve
comparable results to other data driven methods [25], but
cannot compare directly as they report the accuracy over
all frames rather than the average of per class recall as we
do. However, we note that there is a large discrepancy be-
tween class sizes (the distribution is 45, 17, 55, 25, 69, 28,
82 for “anger”, “contempt”, “disgust”, “fear”, “happiness”,
“sadness”, and “surprise”, respectively). As such, under the
metric used in [25], an increase in the accuracy of, for ex-
ample, surprise at the expense of contempt could lead to
a substantial increase in the overall score, as surprise has
many more examples than contempt. Further, because “sur-
prise” does not generally get confused with the other emo-
tions (as noted in Figure 4) taking the accuracy across all
frames skews the overall score even further. In our metric,
we do not have this issue as we report the average per-class

Dataset
GENKI-4K AM-FED

Method

MNNSC-LASSO 97.0 92.3
NNSC-LASSO 96.7 91.2

SC-LASSO 95.1 89.7
MNNSC-OMP 96.2 92.1
NNSC-OMP 95.7 88.8

SC-OMP 93.1 86.0
Gabor 95.7 88.9

Reported* 96.1 [33] 90.0 [21]

*Best results reported in prior literature
Table 2. Performance results in area under the ROC curve (A′)
comparing LASSO and OMP sparse coding methods on datasets
containing “happiness” and “neutral”. Note that MNNSC-LASSO
performs the best on both datasets, with MNNSC-OMP perform-
ing comparably.

recall.
A similar pattern of results is seen testing on the Emo-

tions in the Wild dataset. We again see that the best re-
sults are achieved with MNNSC, and that SC-trees provide
the largest boost in average recall (3.6% increase) when
MNNSC is used. We note that [3] reports baseline clas-
sification accuracy of 27.2% on the Emotions in the Wild
dataset using the videos as input. While we can not make
a direct comparison between our results and these baseline
numbers (as we do not include neutral frames in our classi-
fication problem, nor do we use the full videos), these base-
line numbers demonstrate the difficulty of this dataset.

5.3. MNNSC-LASSO and MNNSC-OMP Perfor-
mance Results

Table 2 shows the area under the ROC curve (A′)
of MNNSC compared to other sparse coding-based ap-
proaches using a number of settings, as well as the results of
Gabor filters and results reported in the literature, demon-
strating that data-driven sparse coding approaches out-
perform those based on hand-designed features. For both
datasets, MNNSC using nonnegative LASSO (MNNSC-
LASSO), gives the best performance. In generating results
for GENKI-4K and AM-FED datasets, an 80/20 train and
test split with cross-validation is used.

We have done our best to reproduce the results of other
work and achieved results comparable to those reported in
the literature for each dataset. We have implemented our
own version of Gabor encoding, which uses a filter bank of
40 filters at different frequencies and orientations. These
parameters were selected from the previous state-of-the-
art result for this problem [33], and we followed the same
methodology outlined in Section III.c of that paper.

Mirroring substantially improved performance for both
LASSO (MNNSC-LASSO) and OMP (MNNSC-OMP) on
the AM-FED dataset. Recall that this dataset is composed
of images captured in less-constrained conditions, and con-

tains large variations in lighting conditions and poses. By
exploiting symmetry, we can better handle these difficult
scenarios provided at least one of the mirrored sides has the
information we wish to detect.

Overall, LASSO gives better results than OMP, and
outperforms OMP at all ranges of training data. This is
reflected in Figure 9 for the GENKI-4K dataset. Simi-
lar trends are observed for the AM-FED dataset as well.
However, Figure 9 also demonstrates that as the amount
of training data increases, the gap between MNNSC-
OMP and MNNSC-LASSO decreases substantially. There-
fore, MNNSC-OMP, given enough training data, can
have comparable performance with MNNSC-LASSO. This
observation can motivate the choice of encoder, given
MNNSC-OMP’s significantly lower running time relative
to MNNSC-LASSO. We discuss these efficiency gains fur-
ther in Section 6.2.

MNNSC-LASSO
NNSC-LASSO
SC-LASSO
MNNSC-OMP
NNSC-OMP
SC-OMP
Gabor

Figure 9. Performance evaluation of LASSO and OMP with re-
spect to amount of training data (as a percent of the GENKI-4K
dataset). The x-axis is plotted in log-scale.

6. ANALYSIS AND DISCUSSION
6.1. SC-tree Branching Rules Based on Expert

Knowledge

Given the increasing amount of data available in the do-
main, our methods in this paper have been primarily data-
driven. However, fundamentally the definition of emotions
themselves are built upon models set forth by domain ex-
perts [6]. As such, in this section, we show that an SC-
tree’s branching rules can also be derived using expert do-
main knowledge, and then discuss the benefits of utilizing
both data-driven and expert knowledge-based SC-trees in
conjunction with one another.

In designing an SC-tree using expert knowledge, we
look to the Facial Action Coding System, or FACS [6].
FACS codes facial expressions using combinations of Ac-
tion Units (AUs), or small, localized muscle movements.
An example AU is “cheek raiser”, in which the cheek mus-
cles are tensed and move upwards. Using combinations of

AUs, any facial expression can be encoded by hand.

Figure 10. Histograms displaying the frequency of AU use within
each emotion class for the CK+ data. The correlation between
the frequency vectors represented by these histograms are used to
incorporate the expert knowledge of Action Units and the FACS
system in forming branching rules for the SC-trees.

To design the branching structure of the expert
knowledge-based SC-tree, we utilize the correlation of AUs
used in encoding different emotions, as coded by trained
FACS coders. To do this, we use the CK+ dataset, which
contains AU codings for each emotion sequence in the
dataset. Using the expert knowledge embedded in the AU
coding system, we find the frequency of AU usage among
different classes of emotions, as shown in Figure 10. Us-
ing correlations between the frequency of use of AUs be-
tween classes, we discover groups very similar to those
found through data driven methods. Namely, the groups
(g1:{“happiness”, “fear”, “surprise”}, g2:{“anger”, “con-
tempt”, “disgust”,“sadness”}), are the same as those found
by data driven methods, shown in Figure 4, except that “sur-
prise” is now grouped with “happiness” and “fear”.

This underscores an important characteristic of SC-trees:
even in a data-driven framework, there are additional bene-
fits from incorporating model information to compliment
the data-driven SC-tree. First, the model-based SC-tree
structure can be used to inform and refine the structure of
the data-driven SC-tree. Second, training a model-based
SC-tree in addition to the data-driven SC-tree allows us to
cross-validate each tree with one another. This can be par-
ticularly helpful in controlling for over-fitting when deriv-
ing the tree structure from the confusion matrix obtained
through data-driven methods, as discussed in Section 3.2.

6.2. Efficiency

We now examine the efficiency of the methods presented
in this paper. Two main considerations in this regard are:

1. Dictionary Size: A smaller dictionary reduces encod-
ing cost and more easily fits within memory, an impor-
tant consideration in memory-constrained devices.

2. Choice of Encoding Algorithm: The choice of en-
coding algorithm represents a trade-off between ac-
curacy and computational efficiency. For example,
greedy matching pursuit algorithms such as OMP are

attractive for scenarios where efficiency is important.
However, these greedy algorithms only find local min-
ima, and often produce worse results for classification
tasks when compared to computationally more inten-
sive methods such as LASSO.

NNSC-LASSO
MNNSC-LASSO
NNSC-OMP
MNNSC-OMP

Figure 11. Mirroring allows the dictionary to be used more effi-
ciently, and therefore has lower reconstruction error compared to
the non-mirrored counterparts.

The two components of MNNSC (the mirroring proce-
dure and the nonnegativity constraint) address these consid-
erations. Mirroring enables more “efficient” dictionaries,
as high level features on either side of the face can be rep-
resented by the same atom. Therefore, a smaller dictionary
(almost half as many atoms) can be used to achieve the same
level of reconstruction error when compared to the counter-
part without mirroring, as shown in Figure 11. In addressing
the efficiency of encoding algorithms, we find that the addi-
tion of the nonnegativity constraint greatly reduces the per-
formance gap between OMP and LASSO given sufficient
training data, as seen in Figure 9. Therefore, given enough
training data, computationally-efficient encoding methods
such as OMP may be used in favor of computationally ex-
pensive methods such as LASSO. We note that these con-
siderations may have implications when using our pipeline
on computationally- and power-constrained mobile devices.

7. CONCLUSION
In this paper, we present SC-trees, a novel type of clas-

sification tree that splits based on node-specific dictionaries
and classifiers. Although SC-trees can use a number of dif-
ferent sparse coding algorithms, we find that for classifying
facial expressions, best results are achieved with Mirrored
Nonnegative Sparse Coding (MNNSC), a novel sparse cod-
ing algorithm that supplements a traditional sparse coding
pipeline with a nonnegativity constraint and mirroring in
order to increase the average recall of the method. Further,
SC-trees are a natural avenue through which to incorpo-
rate expert knowledge and models. We apply SC-trees to
the emotion classification problem, and validate SC-trees
on standard community benchmark datasets. and achieving
results comparable with or exceeding the state of the art.

8. ACKNOLEDGEMENTS
This research was supported in part by gifts from the In-

tel Corporation. The authors would like to thank Stephen
Tarsa for his thoughtful suggestions in improving the paper.

References
[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal

of Software Tools, 2000. 6

[2] Emmanuel J Candes, Justin K Romberg, and Terence
Tao. Stable signal recovery from incomplete and in-
accurate measurements. Communications on pure and
applied mathematics, 59(8):1207–1223, 2006. 3

[3] Abhinav Dhall, Roland Goecke, Jyoti Joshi, Karan
Sikka, and Tom Gedeon. Emotion recognition in the
wild challenge 2014: Baseline, data and protocol. In
Proceedings of the 16th International Conference on
Multimodal Interaction, pages 461–466. ACM, 2014.
6, 7

[4] Abhinav Dhall, Roland Goecke, Simon Lucey, and
Tom Gedeon. Collecting large, richly annotated facial-
expression databases from movies. IEEE MultiMedia,
(3):34–41, 2012. 6

[5] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert
Tibshirani, et al. Least angle regression. The Annals
of statistics, 32(2):407–499, 2004. 3

[6] Paul Ekman and Wallace V Friesen. Facial action cod-
ing system. 1977. 7

[7] Ian Fasel, Bret Fortenberry, and Javier Movellan. A
generative framework for real time object detection
and classification. Computer Vision and Image Un-
derstanding, 98(1):182–210, 2005. 2

[8] Trevor Hastie, Robert Tibshirani, Jerome Friedman,
T Hastie, J Friedman, and R Tibshirani. The elements
of statistical learning, volume 2. Springer, 2009. 2

[9] Patrik O Hoyer. Non-negative matrix factorization
with sparseness constraints. The Journal of Machine
Learning Research, 5:1457–1469, 2004. 3, 5

[10] The MPLab GENKI-4K Dataset.
http://mplab.ucsd.edu. 6

[11] Raffi Khatchadourian. We know how you feel, Jan-
uary 2015. 1

[12] Daniel D Lee and H Sebastian Seung. Learning the
parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, 1999. 3

[13] Honglak Lee, Roger Grosse, Rajesh Ranganath, and
Andrew Y Ng. Convolutional deep belief networks
for scalable unsupervised learning of hierarchical rep-
resentations. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, pages
609–616. ACM, 2009. 2

[14] Tsung-Han Lin and H. T. Kung. Stable and efficient
representation learning with nonnegativity constraints.
Proceedings of the 31st International Conference on
Machine Learning, 32, 2014. 2, 3

[15] Ping Liu, Shizhong Han, and Yan Tong. Improv-
ing facial expression analysis using histograms of log-
transformed nonnegative sparse representation with a
spatial pyramid structure. In Automatic Face and
Gesture Recognition (FG), 2013 10th IEEE Inter-
national Conference and Workshops on, pages 1–7.
IEEE, 2013. 3

[16] Patrick Lucey, Jeffrey F Cohn, Takeo Kanade, Jason
Saragih, Zara Ambadar, and Iain Matthews. The ex-
tended cohn-kanade dataset (ck+): A complete dataset
for action unit and emotion-specified expression. In
Computer Vision and Pattern Recognition Workshops
(CVPRW), 2010 IEEE Computer Society Conference
on, pages 94–101. IEEE, 2010. 6

[17] Mohammad H Mahoor, Mu Zhou, Kevin L Veon,
Seyed Mohammad Mavadati, and Jeffrey F Cohn. Fa-
cial action unit recognition with sparse representation.
In Automatic Face & Gesture Recognition and Work-
shops (FG 2011), 2011 IEEE International Confer-
ence on, pages 336–342. IEEE, 2011. 3

[18] Julien Mairal, Francis Bach, Jean Ponce, and
Guillermo Sapiro. Online dictionary learning for
sparse coding. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, pages
689–696. ACM, 2009. 2, 3

[19] Julien Mairal, Francis Bach, Jean Ponce, and
Guillermo Sapiro. Online learning for matrix factor-
ization and sparse coding. The Journal of Machine
Learning Research, 11:19–60, 2010. 3

[20] MJ McDonnell. Box-filtering techniques. Computer
Graphics and Image Processing, 17(1):65–70, 1981.
2

[21] Daniel McDuff, Rana El Kaliouby, Thibaud Senechal,
May Amr, Jeffrey F Cohn, and Rosalind Picard.
Affectiva-mit facial expression dataset (am-fed): Nat-
uralistic and spontaneous facial expressions collected”
in-the-wild”. In Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2013 IEEE Conference
on, pages 881–888. IEEE, 2013. 6, 7

[22] Deanna Needell and Joel A Tropp. Cosamp: iterative
signal recovery from incomplete and inaccurate sam-
ples. Communications of the ACM, 53(12):93–100,
2010. 3

[23] Andrew Y Ng. Feature selection, l 1 vs. l 2 regular-
ization, and rotational invariance. In Proceedings of
the twenty-first international conference on Machine
learning, page 78. ACM, 2004. 3

[24] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al.
On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems,
2:849–856, 2002. 4

[25] Raymond Ptucha and Andreas Savakis. Lge-ksvd:
Flexible dictionary learning for optimized sparse rep-
resentation classification. In Computer Vision and
Pattern Recognition Workshops (CVPRW), 2013 IEEE
Conference on, pages 854–861. IEEE, 2013. 6

[26] Elias Rentzeperis, Andreas Stergiou, Aristodemos
Pnevmatikakis, and Lazaros Polymenakos. Impact of
face registration errors on recognition. In Artificial In-
telligence Applications and Innovations, pages 187–
194. Springer, 2006. 2

[27] Thibaud Sénéchal, Jay Turcot, and Rana El Kaliouby.
Smile or smirk? automatic detection of spontaneous
asymmetric smiles to understand viewer experience.
In Automatic Face and Gesture Recognition (FG),
2013 10th IEEE International Conference and Work-
shops on, pages 1–8. IEEE, 2013. 2

[28] Caifeng Shan. Smile detection by boosting pixel dif-
ferences. Image Processing, IEEE Transactions on,
21(1):431–436, 2012. 2

[29] Sareh Shirazi, Mehrtash T Harandi, Brian C Lovell,
and Conrad Sanderson. Object tracking via non-
euclidean geometry: A grassmann approach. In Appli-
cations of Computer Vision (WACV), 2014 IEEE Win-
ter Conference on, pages 901–908. IEEE, 2014. 4

[30] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Practical bayesian optimization of machine learning
algorithms. Technical report, 2012. 6

[31] Joel A Tropp and Anna C Gilbert. Signal recovery
from random measurements via orthogonal matching
pursuit. Information Theory, IEEE Transactions on,
53(12):4655–4666, 2007. 3

[32] http://mplab.ucsd.edu. The MPLab GENKI
Database, GENKI-4K Subset. 6

[33] Jacob Whitehill, Gwen Littlewort, Ian Fasel, Marian
Bartlett, and Javier Movellan. Developing a practical
smile detector. In Proc. IEEE Int. Conf. Automatic
Face and Gesture Recognition, 2008. 2, 7

[34] Jacob Whitehill, Gwen Littlewort, Ian Fasel, Marian
Bartlett, and Javier Movellan. Toward practical smile
detection. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 31(11):2106–2111, 2009. 6

[35] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas
Huang. Linear spatial pyramid matching using sparse
coding for image classification. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 1794–1801. IEEE, 2009. 2

http://mplab.ucsd.edu

