Fast Online Learning of Antijamming and Jamming Strategies

Y. Gwon, S. Dastangoo, C. Fossa, H. T. Kung

December 9, 2015

Presented at the 58th IEEE Global Communications Conference, San Diego, CA

This work is sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

- Introduction
- Background: Competing Cognitive Radio Network
- Problem
- Model
- Solution approaches
- Evaluation
- Conclusion

- Competing Cognitive Radio Network (CCRN) models mobile networks under competition
 - Blue Force (ally) vs. Red Force (enemy)
 - Dynamic, open spectrum resource
 - Nodes are cognitive radios
 - Comm nodes and jammers
 - Opportunistic data access
 - Strategic jamming attacks

Network-wide competition

Background: Competing Cognitive Radio Network

- Formulation 1: Stochastic MAB
 - <*A_B*, *A_R*, *R*>

Blue-force (B) & Red-force (R) action sets: $a_B = \{a_{BC}, a_{BJ}\} \in A_B, a_R = \{a_{RC}, a_{RJ}\} \in A_R$ Reward: $R \sim PD(r|a_B, a_R)$

- Regret $\Gamma = \max_{a \in AB} \sum_{T} r(a) \sum_{T} r(a_B^t)$ Optimal regret bound in $O(\log T)$ [Lai&Robbins'85]
- Formulation 2: Markov Game
 - $<A_B, A_R, S, R, T>$

Stateful model with states S and probabilistic transition function T

- Strategy $\pi: S \rightarrow PD(A)$ is probability distribution over action space

Optimal strategy π^* = argmax_{π} E[$\sum \gamma R(s, a_B, a_R)$] can be computed by Q-learning via linear programming

- Assume intelligent adversary
 - Hostile Red-force can learn as efficiently as Blue-force
 - Also, applies cognitive sensing to compute strategies
- Consequences
 - Well-behaved stochastic channel reward invalid ⇒ time-varying channel rewards

More difficult to predict or model

Nonstationarity in Red-force actions

Random, arbitrary changepoint ⇒ introduces dynamic changes

Stochastic MAB problems model regret Γ using reward function r(a)

$$- \Gamma = \max_{a \in AB} \sum_{T} r(a) - \sum_{T} r(a_B^{t})$$

- Using loss function I(a), we revise Γ
 - Revised regret Λ with loss function *I*(.)

 $\Lambda = \sum I(a_B^t) - \min_{a \in AB} \sum I(a)$

- Loss version is equivalent to reward version Γ
 - But provides *adversarial view* as if:

"Red-force alters potential loss for Blue-force over time, revealing only $I^t(a_B^t)$ at time t"

- Find best Blue-force action that minimizes Λ over time $a^* = \operatorname{argmin}_a \sum l^t (a_B^t) \min_{a \in AB} \sum l^t (a)$
- It's critical to estimate *I*^t(.) accurately for new optimization
 - *I*(.) evolves over t, and intelligent adversary makes it difficult to estimate

Our Approach: Online Convex Optimization

- If *I*^t(.) ∈ convex set, optimal regret bound can be achieved by online convex programming [Zinkevich'03]
 - Underlying idea is gradient descent/ascent
- What is gradient descent?
 - Find minima of loss by tracing estimated gradient (slope) of loss

- Sketch of key ideas
 - Estimate expected loss function for next time
 - Take gradient that leads to minimum loss iteratively
 - Test if reached minimum is global or local
 - When stuck at inefficiency (undesirable local min), use escape mechanism to get out
 - Go back and repeat until convergence

- Wrote custom simulator in MATLAB
 - Simulated spectrum with N = 10, 20, 30, 40, 50 channels
 - Varied number of nodes *M* = 10 to 50
 Number of jammers in *M* total nodes varied 2 to 10
 - Simulation duration = 5,000 time slots
- Algorithms evaluated
 - 1. MAB (Blue-force) vs. random changepoint (Red-force)
 - 2. Minimax-Q (Blue-force) vs. random changepoint (Redforce)
 - 3. Proposed online (Blue-force) vs. random changepoint (Red-force)
- All algorithmic matchups in centralized control

Results: Convergence Time

Results: Average Reward Performance (N = 40, M = 20)

New algorithm finds optimal strategy much more rapidly than MAB and Q-learning based algorithms

- Extended Competing Cognitive Radio Network (CCRN) to harder class of problems under nonstochastic assumptions
 - Random changepoints for enemy channel access & jamming strategies, time-varying channel reward
- Proposed new algorithm based on online convex programming
 - Simpler than MAB and Q-learning
 - Achieved much better convergence property
 - Finds optimal strategy faster
- Future work
 - Better channel activity prediction can help estimate more accurate loss function

Support Materials

Algorithm 4 (CCRN online gradient descent learning) 1: choose a^1 randomly 2: while $t \ge 1$ execute a^t and observe r^t 3: compute $\hat{l}^t(a^t)$ 4: $\text{if } |\hat{l^*} - \hat{l}^t(a^t)| < \epsilon$ 5: $a^{t+1} := a^t$ 6: continue 7: end 8: $\begin{array}{l} a_{-}^{t} := a^{t} - \delta_{-} \text{ such that } \|a^{t}\|_{0} = \left\|a_{-}^{t}\right\|_{0} \\ a_{+}^{t} := a^{t} + \delta_{+} \text{ such that } \|a^{t}\|_{0} = \left\|a_{+}^{t}\right\|_{0}^{0} \end{array}$ 9: 10: $\nabla \hat{l}^t := \min\{\hat{l}^t(a_-^t), \hat{l}^t(a_+^t)\}$ 11: if $\nabla \hat{l}^t < \hat{l}^t(a^t)$ 12: $a^{t+1} := \arg \min_{x \in \{a^t_-, a^t_+\}} \hat{l}^t(x)$ 13: else 14: $a^{t+1} := a^t - w + u$ 15: 16: end 17: end

Channel Activity Matrix, Outcome, Reward, State (1/2)

- Example: there are two comm nodes and two jammers for each BF and RF network
 - BF uses channel 10 for control, RF channel 1
- At time *t*, actions are the following

$$- A_B^{t} = \{a_{B,comm} = [7 \ 3], a_{B,jam} = [1 \ 5]\}$$

> $a_{B,comm}$ = [7 3] means BF comm node 1 transmit at channel 7, and comm node at 2 channel 3

$$- A_R^t = \{a_{R,comm} = [3 5], a_{B,jam} = [10 9]\}$$

- How to figure out channel outcomes, compute rewards, and determine state?
 - Channel Activity Matrix

Channel Activity Matrix, Outcome, Reward, State (2/2)

СН	Blue Force		Red Force		Outcome	Reward	
	Comm	Jammer	Comm	Jammer	Outcome	BF	RF
1	-	Jam	-	-	BF jamming success	+1	0
3	Тх	-	Тх	-	BF & RF comms collide	0	0
5	-	Jam	Тх	-	BF jamming success	+1	0
7	Тх	-	-	-	BF comm Tx success	+1	0
9	-	-	-	Jam	RF jamming fail	0	0
10	-	-	-	Jam	RF jamming success	0	+1