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Introduction 

• Competing Cognitive Radio Network 

(CCRN) models mobile networks under 

competition 

– Blue Force (ally) vs. Red Force (enemy) 

– Dynamic, open spectrum resource 

– Nodes are cognitive radios 

 Comm nodes and jammers 

– Opportunistic data access 

– Strategic jamming attacks  
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Background: Competing Cognitive Radio Network 

• Formulation 1: Stochastic MAB 

– <AB, AR, R>  

 Blue-force (B) & Red-force (R) action sets:  
aB = {aBC, aBJ}  AB, aR = {aRC, aRJ}  AR 

 Reward: R  PD(r|aB, aR) 

– Regret Γ = maxaAB ∑T r(a) – ∑T r(aB
t) 

 Optimal regret bound in O(log T) [Lai&Robbinsʹ85] 

 

• Formulation 2: Markov Game 

– <AB, AR, S, R, T> 

 Stateful model with states S and probabilistic transition function 
T 

– Strategy π: S ⟶ PD(A) is probability distribution over action 
space 

 Optimal strategy π* = arg maxπ E[∑γ R(s,aB,aR)] can be computed 
by Q-learning via linear programming 



GLOBECOM 2015 – 5 

• Assume intelligent adversary 

– Hostile Red-force can learn as efficiently as Blue-force 

– Also, applies cognitive sensing to compute strategies 

 

• Consequences 

– Well-behaved stochastic channel reward invalid ⇒  

time-varying channel rewards 

 More difficult to predict or model 

– Nonstationarity in Red-force actions 

 Random, arbitrary changepoint ⇒ introduces dynamic 

changes 

 

New Problem Formulation 
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• Stochastic MAB problems model regret Γ using reward 

function r(a) 

– Γ = maxaAB ∑T r(a) – ∑T r(aB
t) 

 

• Using loss function l(a), we revise Γ 

– Revised regret Λ with loss function l(.) 

 Λ = ∑ l (aB
t) – minaAB ∑ l (a) 

 

• Loss version is equivalent to reward version Γ 

– But provides adversarial view as if: 

 “Red-force alters potential loss for Blue-force over time, 

revealing only lt(aB
t) at time t” 

 

Revised Regret Model 
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• Find best Blue-force action that minimizes Λ over time  

a* = arg mina ∑ lt(aB
t) – minaAB ∑ lt(a) 

 

• It’s critical to estimate  lt(.) accurately for new 

optimization 

– l(.) evolves over t, and intelligent adversary makes it 

difficult to estimate 

 

New Optimization Goals 
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• If lt(.)  convex set, optimal regret bound can be 

achieved by online convex programming [Zinkevichʹ03] 

– Underlying idea is gradient descent/ascent 

 

• What is gradient descent? 

– Find minima of loss by tracing estimated gradient (slope) 

of loss 

Our Approach: Online Convex Optimization 

x 

f (x) 

Initial guess 

Stop 

f (xF) 

xF x0 

initial_guess = x0 
 
search_dir = –f′(x) 
choose step h > 0 
x_next = x_cur – h f′(x_cur) 
stop when |f′(x)| < ε  
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• Sketch of key ideas 

– Estimate expected loss function for next time 

– Take gradient that leads to minimum loss iteratively 

– Test if reached minimum is global or local 

– When stuck at inefficiency (undesirable local min), use 

escape mechanism to get out 

– Go back and repeat until convergence 

Our New Algorithm: Fast Online Learning 
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New Algorithm Explained (1) 
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New Algorithm Explained (2) 
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New Algorithm Explained (3) 
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• Wrote custom simulator in MATLAB 

– Simulated spectrum with N = 10, 20, 30, 40, 50 channels 

– Varied number of nodes M = 10 to 50 

 Number of jammers in M total nodes varied 2 to 10 

– Simulation duration = 5,000 time slots 

  

• Algorithms evaluated 

1. MAB (Blue-force) vs. random changepoint (Red-force) 

2. Minimax-Q (Blue-force) vs. random changepoint (Red-
force) 

3. Proposed online (Blue-force) vs. random changepoint 
(Red-force) 

  

• All algorithmic matchups in centralized control 

Evaluation 
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Results: Convergence Time 
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Results: Average Reward Performance  

(N = 40, M = 20) 

New algorithm finds optimal strategy much more rapidly  

than MAB and Q-learning based algorithms 
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• Extended Competing Cognitive Radio Network (CCRN) to 
harder class of problems under nonstochastic 
assumptions  

– Random changepoints for enemy channel access & jamming 
strategies, time-varying channel reward 

 

• Proposed new algorithm based on online convex 
programming 

– Simpler than MAB and Q-learning 

– Achieved much better convergence property 

– Finds optimal strategy faster 

 

• Future work 

– Better channel activity prediction can help estimate more 
accurate loss function 

Summary 
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Support Materials 
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Proposed Algorithm 
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• Example: there are two comm nodes and two jammers 

for each BF and RF network 

– BF uses channel 10 for control, RF channel 1 

 

• At time t, actions are the following 

– AB
t = {aB,comm = [7 3], aB,jam = [1 5]} 

 aB,comm = [7 3] means BF comm node 1 transmit at channel 7, 

and comm node at 2 channel 3 

– AR
t = {aR,comm = [3 5], aB,jam = [10 9]} 

 

• How to figure out channel outcomes, compute rewards, 

and determine state? 

– Channel Activity Matrix 

 

Channel Activity Matrix, Outcome, Reward, State (1/2) 
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CH 
Blue Force Red Force 

Outcome 
Reward 

Comm  Jammer Comm Jammer BF  RF  

1 – Jam – – BF jamming success +1 0 

3 Tx – Tx – BF & RF comms collide 0 0 

5 – Jam Tx – BF jamming success +1 0 

7 Tx – – – BF comm Tx success +1 0 

9 – – – Jam RF jamming fail 0 0 

10 – – – Jam RF jamming success 0 +1 

Channel Activity Matrix, Outcome, Reward, State (2/2) 


