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Abstract—Competing Cognitive Radio Network (CCRN) co-
alesces communicator (comm) nodes and jammers to achieve
maximal networking efficiency in the presence of adversarial
threats. We have previously developed two contrasting ap-
proaches for CCRN based on multi-armed bandit (MAB) and Q-
learning. Despite their differences, both approaches have shown
to achieve optimal throughput performance. This paper addresses
a harder class of problems where channel rewards are time-
varying such that learning based on stochastic assumptions
cannot guarantee the optimal performance. This new problem is
important because an intelligent adversary will likely introduce
dynamic changepoints, which can make our previous approaches
ineffective. We propose a new, faster learning algorithm using
online convex programming that is computationally simpler and
stateless. According to our empirical results, the new algorithm
can almost instantly find an optimal strategy that achieves the
best steady-state channel rewards.

I. INTRODUCTION

Cognitive radios have emerged as a new means to alleviate
the spectrum shortage problem. Spectrum is the scarcest
(hence, most expensive) resource to build a wireless network,
and significant research has focused on improving spectral
efficiency and the utility of static allocation methods. In dy-
namic spectrum access (DSA), an unlicensed or the secondary
user is granted an opportunistic access of a licensed spectrum,
provided that the user has a proper sensing mechanism to
detect the licensees of the channel (i.e., the primary users) and
yield discreetly. Generally speaking, cognitive radio research
has largely centered around DSA and its commercial aspects.

This paper addresses tactical networking aspects of cog-
nitive radios. In particular, we extend the decision-theoretic
framework of Competing Cognitive Radio Network (CCRN)
[1], [2] for online learning. We develop a new, fast learning
algorithm based on gradient descent that further enhances the
performance of cognitive comm and jamming nodes operating
under heightened adversarial conditions. The new algorithm
aims for faster convergence to optimal antijamming and jam-
ming strategies under dynamic changepoints introduced by an
intelligent adversary.

Throughout the paper, we use two hypothetical tactical
networks, namely Blue Force Network (BFN or the ally)
and Red Force Network (RFN or the enemy). They clash in
a competition to dominate the access to an open spectrum.
Differentiated from previous work, RFN can now introduce
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dynamic changepoints to its channel access and jamming
strategies. Subsequently, BFN must address this new challenge
where stochastic assumptions on channel reward are no long
valid—i.e., channel reward is time-varying. Computing a strat-
egy from reward sampling as in multi-armed bandit (MAB)
approaches could suffer from either being too reactive (slow)
or having no convergence at all.

Online convex programming [3], [4] motivates the new
approach taken in this paper. We first revise the CCRN regret
model from the reward-based to a loss version, which allows
us to weigh in adversarial viewpoint. This works as if RFN
were choosing a loss function for BFN depending on the
channel reward performance and sensing BFN node actions.
We propose a fast online learning method from computing the
gradient of loss function at each horizon. The BFN loss func-
tion, however, is not convex, and we cannot straightforwardly
apply online convex programming. Therefore, we will propose
a new algorithm that addresses such nonconvexity.

The rest of the paper is organized as follows. In Section
II, we discuss related work and provide the context of this
work. Section III reviews CCRN. Section IV presents a revised
mathematical framework for CCRN under dynamic, time-
varying adversarial strategy. Section V explains the intuition
behind online convex optimization and its applicability for
the nonstochastic assumptions of our new problem. We pro-
pose a new algorithm, namely CCRN online gradient descent
learning. In Section VI, we evaluate our new method and
compare its performance to the two previous methods based on
MAB and reinforcement Q-learning in a numerical simulation.
Section VII concludes the paper.

II. RELATED WORK

This paper extends Competing Cognitive Radio Network
(CCRN) by introducing nonstochastic elements. The stochastic
multi-armed bandit (MAB) is the basis for one of our previous
approaches [1]. In 1933, Thompson [5] introduced a sequential
decision problem, later known as stochastic MAB, and pro-
posed a heuristic called Thompson sampling that remained an
effective strategy to date. In Bellman 1954 [6], MAB problems
were formulated as a class of Markov decision process (MDP).
Gittins 1979 [7] proved the existence of a Bayes optimal
indexing scheme for MAB problems. Lai & Robbins 1985 [8]
introduced the notion of regret, derived its lower bound using
the Kullback-Leibler divergence, and constructed asymptot-
ically optimal allocation rules. Anantharam et al. 1987 [9]
extended Lai & Robbins for multi-player setting. Whittle 1988
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[10] introduced PSPACE-hard restless MAB problems and
showed that suboptimal indexing schemes are possible. Rivest
& Yin 1994 [11] proposed Z-heuristic that achieved a better
empirical performance than Lai & Robbins. Auer et al. 2002
[12] proposed Upper Confidence Bound (UCB), an optimistic
indexing scheme.

Another of our previous approaches [2] models a stochastic
Markov game [13] and searches for an optimal solution with
reinforcement learning [14]. In particular, Minimax-Q [15],
Nash-Q [16], and Friend-or-foe Q (FFQ) [17] provide viable
options in decision making whether the competition can be
modeled as zero-sum or general-sum games having centralized
or distributed controls. This paper also considers similar
problems in tactical networking such as Wang et al. [18].
They have formulated a stochastic antijamming game played
between the secondary user and a malicious jammer, provided
sound analytical models, and applied unmodified Minimax-
Q learning to solve for the optimal antijamming strategy. Q-
learning approaches for CCRN in general have better conver-
gence properties than the MABs. However, the computational
complexity of Q-learning could be a practical bottleneck.

III. COMPETING COGNITIVE RADIO NETWORK (CCRN)

This section provides a brief background on Competing
Cognitive Radio Network (CCRN). A CCRN features two
types of nodes, communicator (comm) and jammer. Channel
accessing by a comm node is determined by sensing vacant
spectrum blocks. Jamming an opposing comm node similarly
relies on cognition. Spectrum is viewed as being partitioned
in time and frequency. There are N non-overlapping channels
located at the center frequency fi (MHz) with bandwidth
Bi (Hz) ∀i = 1, . . . , N . A transmission (Tx) opportunity is
defined by tuple 〈fi, Bi, t, T 〉 designating a time-frequency
slot at channel i and time t with duration T (msec) as depicted
in Fig. 1.
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Fig. 1. Tx opportunity 〈fi, Bi, t, T 〉 (shaded region) in open spectrum access

1) System: The CCRN system consists of sensing, strategy,
schedule, and Tx/jam components as illustrated in Fig. 2. We
depict two systems Blue Force (BFN) and Red Force (RFN)
networks. Using local and global sensing information, a CCRN
node applies a strategy to compute an action (i.e., Tx, jam, or
do nothing) particular to its channel of interest. The action is
scheduled to fill in an opportunity by the system. Node actions
can be computed in a centralized or distributed manner.

Under the centralized control, CCRN works as follows.
1) Sense channel activities (each node)

Time 
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Tx/Jam 

: BF comm 
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: RF jammer 
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Network 
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Fig. 2. Competing Cognitive Radio Network (CCRN) systems

2) Collect sensing information (controller)
3) Compute node actions (controller)
4) Disseminate node actions (controller)
5) Act on channel (each node)
In the distributed control, CCRN works as follows.
1) Sense channel activities (each node)
2) Exchange sensing information (each node)
3) Compute its own action (each node)
4) Act on channel (each node)
2) Strategy: A CCRN strategy is the set of rules to select

its node actions. A rational strategy coordinates to make no
conflicting channel access among the nodes. We assume that
the nodes exchange control messages. In particular, we follow
the approach by Wang et al. [18] that assigns control and data
channels dynamically. When CCRN finds all of its control
channels blocked (e.g., due to jamming) at time t, the spectrum
access at t+ 1 will be uncoordinated.

3) Reward: A CCRN employs a reward metric to evaluate
its strategy. We measure a reward in bits. When a comm
node makes successful transmission of a packet containing
B bits of data, it receives the reward of B (bits). A successful
transmission is where only one comm node transmits for an
opportunity. If there were two or more, a collision occurs, and
no comm node gets a reward. Jammers receive a reward by
suppressing an opposing comm node’s otherwise successful
transmission. A jammer earns a reward B by jamming the
slot that an opponent comm node transmits B bits. We call
misjamming when a jammer jams its own network’s comm
node (e.g., due to faulty intra-network coordination). Table I
summarizes how channel reward is determined.

IV. MATHEMATICAL FORMULATION

A. Notation

CCRN node actions are represented in a vector. At time t,
the BFN and RFN actions are atB = {atB,comm, atB,jam} and
atR = {atR,comm, atR,jam} for atB ∈ AB and atR ∈ AR, where
AB and AR are BFN and RFN action sets. Each CCRN action
contains both comm and jamming actions. An ith element in
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TABLE I
NODE ACTIONS, OUTCOME AND RESULTING REWARD

BF BF RF RF
comm jammer comm jammer Outcome Reward

Tx ∅ ∅ ∅ BF Tx success RB +=B
∅ Jam Tx ∅ BF jamming RB +=B
Tx Jam ∅ ∅ BF misjamming –
∅ ∅ Tx ∅ RF Tx success RR +=B
Tx ∅ ∅ Jam RF jamming RR +=B
∅ ∅ Tx Jam RF misjamming –
Tx ∅ Tx ∅ Tx collision –

vector atB,comm designates the channel number that the ith
BFN comm node tries to transmit at t. Similarly, a jth element
in atB,jam is the channel that the jth BFN jammer tries to jam
at t. The CCRN outcome is Ω : AB × AR → RN . We map
the outcome to a reward R : Ω → R.

B. CCRN Multi-armed Bandit (MAB) Formulation

Multi-armed bandit (MAB) is best explained with a gambler
facing N slot machines (arms). The gambler wishes to find a
strategy that maximizes Rt =

∑t
j=1 r

j , the cumulative reward
over a finite horizon t. Lai & Robbins [8] introduced the
concept of regret for a strategy σ

Γt = tµ∗ − E
[
Rtσ
]

(1)

where µ∗ is the hypothetical, maximum average reward if
gambler’s action were best possible each round. Under σ,
the actual reward turns out Rtσ . Minimizing Γt is known
mathematically more convenient than maximizing E [Rtσ].

For CCRN, an arm is one of channels in the spectrum.
Comm nodes and jammers are the players that place Tx and
jamming actions to the channels. Since CCRN has multiple
nodes, it is a multi-player MAB [9] problem. The BFN strategy
σtB is a function over time. For centralized, we write

{xjB}
t
j=1, {a

j
B ,Ω

j}t−1
j=1

σtB−→ atB (2)

where xtB is the BFN sensing results at t. For distributed, each
BFN node makes own decision

xtB,i, {x
j
B , a

j
B ,Ω

j}t−1
j=1

σtB,i−→ atB,i (3)

where xtB,i is the sensing information only available to BFN
node i at time t, and σtB,i the BFN node i’s own strategy.

Thompson sampling [5] is known to provide an optimal
performance for stochastic MAB problems. We use Thompson
sampling in a Bayesian setup to formulate our MAB-based
algorithm for CCRN presented in Algorithm 1 [1]. The algo-
rithm performs the posterior update based on the conjugate
prior relationship—i.e., the prior and posterior distributions
are the same family of function given the reward’s likelihood.
Because an optimal strategy should result in the maximum
channel reward, we consider an extreme-valued likelihood for
the CCRN reward. Note that the CCRN reward should be
finite. According to extreme value theory [19], the Weibull
likelihood with inverse gamma prior is the only finite-bound
distribution that leads to the rationale behind Algorithm 1. The

inverse gamma distribution has two hyperparameters a, b > 0.
We draw the scale parameter θ from the inverse gamma prior
p(θ|a, b) = ba−1e−b/θ

Γ(a−1)θa for θ > 0 where a and b are the sample
mean and variance of the reward of a channel, and Γ(.) the
gamma function (not to be confused with the Lai & Robbins’s
regret Γ in Eq. (1)). Then, we sample a Weibull reward using
θ drawn from the prior as the reward estimate for the channel.
The posterior update follows after the actual reward is learned.

Algorithm 1 (CCRN MAB)
Require: ai, bi = 0 ∀i

1: while t < 1 . initialized offline
2: Access each channel until ai, bi 6= 0 ∀i, where ai and bi are

sample reward mean and variance
3: end
4: while t ≥ 1 . online
5: Draw θi ∼ inv-gamma(ai,bi)
6: Estimate r̂i = weibull(θi,βi) ∀i for given 0.5 ≤ βi ≤ 1
7: Access channel i∗ = argmaxi r̂i
8: Observe actual rti∗ to update {Rti∗ , T ti∗}
9: Update ai∗ = ai∗ + T ti∗ , bi∗ = bi∗ +

∑
t(r

t
i∗)

βi∗

10: end

C. CCRN Reinforcement Learning Formulation

The Markov game framework [13] can also be used to com-
pute an optimal CCRN strategy. Tuple 〈S,AB , AR, R, T 〉 de-
scribe the CCRN Markov game between BFN and RFN, where
S is the state set, and AB = {AB,comm, AB,jam}, AR =
{AR,comm, AR,jam} are the action sets. The reward function
R : S ×

∏
A{B,R},{comm,jam} → R maps node actions to

a real-valued reward at a given state. The state transition
T : S ×

∏
A{B,R},{comm,jam} → PD(S) is the probability

distribution over S. A CCRN strategy means the probability
distribution over the action set π : S → PD(A).

We use reinforcement Q-learning [20] to compute an op-
timal strategy π∗ for CCRN. In particular, we employ the
value iteration technique that performs an update Q(s, a) =
R(s, a) + γV (s′) instead of the Bellman equations [21] that
optimize the CCRN Markov game in

Q(s, a) = R(s, a) + γ
∑
s′

p(s′|s, a)V (s′) (4)

V (s) = max
a′

Q(s, a′) (5)

where s′ and a′ are the next state and action. Key advantage
of Q-learning is to avoid explicit evaluation of the transition
probability p(s′|s, a), which is intractable. By linear program-
ming, we can compute optimal π∗ = arg maxπ

∑
aQ(s, a)π

subject to the value maximization. In Algorithm 2, we present
the Minimax-Q learning algorithm for CCRN [2]. We remark
that there are other Q-learning algorithms plausible for CCRN
such as Nash-Q and Friend-or-foe Q.

D. New Formulation under Time-varying Channel Reward

In stochastic setting, the bottomline for learning a strat-
egy is to estimate unknown reward distribution RaB ,aR =
P [r|aB , aR]. Presumably, if we have accurate sensing capabil-
ity, we can learn stable estimate of the distribution over time.
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Algorithm 2 (CCRN Q-learning)
Require: Q(s, aB , aR) = 1, V (s) = 1, π(s, aB) =

1
|A| ∀ state s ∈

S, BF action aB ∈ A, RF action aR ∈ A; learning rate α < 1
with decay λ ≤ 1 (α, λ nonnegative)

1: while t ≥ 1
2: Draw atB ∼ π(st) and execute
3: Observe rtB
4: Estimate atR given observed reward
5: Compute st+1

6: Q(st, atB , a
t
R) = (1−α)Q(st, atB , a

t
R)+α(r

t
B+γV (st+1))

7: linprog: π(st, .) = argmaxπ
∑
aB
π(st, aB)Q(st, aB , aR)

8: Update V (st) = minaR
∑
aB
π(st, aB)Q(st, aB , aR)

9: Update α = λ× α
10: end

The optimal regret bound for stochastic MAB is well-studied
and known as O(log T ).

Auer et al. [22] provides some useful background for
nonstochastic MAB suitable for our new scenario. Their
adversarial assumptions include rewards deliberately altered
by the opponent. This is possible when the BFN faces an
intelligent RFN that has matched cognitive abilities and can
learn as effectively as BFN.

In adversarial bandits, we revise the classical Lai & Rob-
bins regret using some loss function lt(.):

ΥT =

T∑
t=1

lt(atB)− min
at∗B ∈AB

T∑
t=1

lt(at∗B ) (6)

The gain (i.e., with reward) and loss versions of the regret are
symmetric. The intuition behind the loss version is that we
want an adversarial view as if the RF network were choosing
lt(.) in the beginning of t and reveals only the quantity lt(atB)
upon the BF placing its action atB . Note that lt(.) evolves over
time as it is a function of time. In the next section, we use this
revised regret, which has adversarial point of view, to devise
a faster, online learning algorithm.

V. FINDING OPTIMAL ACTIONS WITH ONLINE LEARNING

This section presents a new algorithm to compute the joint
antijamming and jamming actions for CCRN. The new method
is based on gradient descent and requires no offline training.

A. Online Convex Optimization

Imagine that RFN (the adversary) chooses its loss func-
tion lt(.) at time t from a hidden sequence l1, l2, l3, . . .
of convex functions. BFN chooses its action atB also from
some convex set K ⊆ RN for t = 1, . . . , T . For clarity,
let maxatB∈K l

t(atB) ≤ 1. Can the regret in Eq. (6) grow
sublinearly with respect to T ?

For this setup, Flaxman et al. [4] propose a simple gradient
approximation. The gradient can be computed from evaluating
lt(.) at a single random point. Despite such bias, they show
that the resulting gradient estimate is sufficient to achieve a
regret bound of O(T 3/4). The key to their solution is online
convex programming developed by Zinkevich [3].

Online convex programming finds a point in a convex set
F ⊆ RN that minimizes a convex cost function c : F → R.

If the convex set F is known, online convex programming
will result in the cost bound of O(

√
T ) for a total of T

rounds. Algorithm 3 presents GIGA (Generalized Infinitesimal
Gradient Ascent), a template for the online gradient descent.

Algorithm 3 (GIGA)
1: while t ≥ 1
2: play action at ∈ K
3: observe regret lt(at)
4: compute estimate ĝt of loss gradient ∇lt(at)
5: ∆t+1 := at − η ĝt
6: at+1 := arg mina∈K

∥∥a−∆t+1
∥∥

7: end

The approach by Flaxman et al. [4] is essentially a GIGA
with the gradient estimate

ĝt =
N

δ
lt(at + δ u)u (7)

where N denotes dimensionality of the action space (i.e., a ∈
K ⊆ RN ), u a random unit vector, and some small δ > 0.

B. New Algorithm

We propose Algorithm 4 based on online gradient descent
learning. Straightforward adoption of GIGA (Algorithm 3) for
CCRN is problematic for two reasons. First, the loss function
for CCRN is not convex. It is likely a mixture of convex and
concave curves as depicted in Fig. 3. Hence, an unmodified
gradient descent method such as GIGA will result in a vastly
different outcome depending the initial point. For example, if
the initial action were a1, the gradient descent would take it to
l∗1 = lt(a∗1), a local minimum loss close to lt(a1). Note that a∗1
is the corresponding optimal action computed iteratively from
a1 by descending the gradient of loss. If the initial action were
a2, we would achieve l∗2 as illustrated in Fig. 3.

Regret 

a 

l1
* 

lt(at = a1) 

lt(at = a2) 

l2
* 

a1 a1
* a2

* a2
 

Fig. 3. Gradient descent for CCRN is problematic.

Accurate loss function estimation gives another issue to
apply gradient descent in CCRN. We expect to learn the loss
function from sensing results collected from multiple CCRN
nodes. If there are too many channels to learn compared to
the number of CCRN nodes (i.e., N � M ), our learning
suffers severely from partial feedback assuming that the CCRN
sensing capacity as a whole is proportional to the number of
nodes M .

We now explain key principles of Algorithm 4.
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• Initialize to random action. Given no offline training or
prior knowledge, the new algorithm starts at random.

• Estimate loss function from observed regret. The
BFN loss function is a function of RFN node actions,
consisting of multiple convex and concave regions. Given
BFN node actions, the BFN comm and jamming loss
functions are derived from sensing results that estimate
aRC and aRJ , RFN comm and jamming actions:

lBC = ‖aBC‖0 − aBC · ¬(aRC ∨ aRJ)

lBJ = ‖aBJ‖0 − aBJ · (aRC ∨ aRJ)

• Compute gradient. From the BFN action space, the
algorithm searches for a+ and a− that differ from the
current action a by the smallest (e.g., one bit) possible.
The gradient is then computed using the estimated loss
functions lBC and lBJ with a+ and a−.

• Choose new action. The estimated gradient of the loss
function serves the guidance whether or not the current
action has to sustain or change. The loss estimates at a+

and a− are better than that of a, the algorithm chooses the
better of a+ and a−. If a is at one of the undesirable local
minima, the final else clause of Algorithm 4 is executed
to escape the region around a for better.

Algorithm 4 (CCRN online gradient descent learning)
1: choose a1 randomly
2: while t ≥ 1
3: execute at and observe rt

4: compute l̂t(at)
5: if |l∗ − l̂t(at)| < ε
6: at+1 := at

7: continue
8: end
9: at− := at − δ− such that ‖at‖0 =

∥∥at−∥∥0
10: at+ := at + δ+ such that ‖at‖0 =

∥∥at+∥∥0

11: ∇l̂t := min{l̂t(at−), l̂t(at+)}
12: if ∇l̂t < l̂t(at)
13: at+1 := arg minx∈{at−,at+} l̂

t(x)
14: else
15: at+1 := at − w + u
16: end
17: end

VI. EVALUATION

We evaluate the performance of Algorithm 4 along Al-
gorithm 1 (stochastic MAB) and Algorithm 2 (Minimax-Q)
against Algorithm 5 (benchmark) that describes an adversarial
CCRN with random changepoint of strategy.

A. Scenario, Benchmark Algorithm, and Metric

We have implemented a custom MATLAB simulator. We
configure BFN to run either Algorithm 1, 2, or 4 while fixing
RFN with Algorithm 5. The benchmark algorithm randomly
draws RFN node actions and holds for random T time slots.

We compare convergence properties of the new algorithm
against our old CCRN algorithms against RFN’s time-varying
strategy embodied in the benchmark algorithm. We also ex-
amine the reward performance of BFN using average reward
per channel as the evaluation metric

R̄t =
1

M·t

t∑
j=1

N∑
i=1

rji

where rji is the ith channel reward at t = j, and there are M
nodes in the CCRN trying out N channels in the spectrum.
To determine ri, we apply all available sensing results to the
decision matrix of Table I. Using B = 1 (normalized bit
reward) yields the following:
• rti = 1 if only one comm node transmits and no jamming

in channel i at t;
• rti = 1 if a jammer jams the sole opposing comm’s

transmission in channel i at t;
• rti = 0 otherwise.

Algorithm 5 (Random changepoint of strategy)
1: while t ≥ 1
2: draw random a ∈ A
3: choose T randomly
4: for T slots
5: play action a
6: end
7: end

We have simulated a spectrum with N = 10, 20, 30, 40,
and 50 channels. We have also varied the total number of
nodes M from 10 to 50. For M = 10, we have placed J = 2
jammers per each network (hence, the number of comm nodes
C = M−J = 8). We grow 2 jammers per additional 10 nodes.
That is, we set J = 4 for M = 20, J = 6 for M = 30, J = 8
for M = 40, and J = 10 for M = 50. Both comm nodes and
jammers have a transmit probability pTx = 1 for each time
slot. Each simulation runs the total of 5,000 time slots.

B. Discussion of Results

Figure 4 plots the convergence time for each learning
method. Note that the convergence time is the number of
slots required for BFN to establish a steady-state reward. Such
equilibrium is at least maintained until the next changepoint
introduced by RFN that chooses random node actions. The
plot shows convergence times for each BFN strategy resulted
from all possible values of N and M used in the evaluation.
The new algorithm based online learning shows the best
convergence property with drastically flatter curve (i.e., faster
time to steady-state) than the other two algorithms.

In Figure 5, we highlight average cumulative reward for
BFN under N = 40 and M = 20. We observe very similar
steady-state reward performances from the three different
CCRN strategies. This is expected since all three algorithms
are capable of achieving the optimal CCRN reward perfor-
mance. The difference, however, is evident for t ≤ 500 slots.
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Fig. 4. Convergence time comparison

The proposed algorithm is much faster to find optimal BFN
actions under multiple, random changepoints for RFN strategy.
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Fig. 5. Reward performance comparison

VII. CONCLUSION

We have addressed a harder class of problems in deter-
mining optimal media access strategies for Competing Cog-
nitive Radio Network (CCRN). Differentiated from previ-
ous work, we consider nonstochastic, time-varying channel
rewards caused by an intelligent adversary, another CCRN
capable of making sound antijamming and jamming strategies.
To cope with dynamic changepoints induced by the adversary,

we require a new CCRN strategy that has better convergence
properties. We have proposed a fast online learning algorithm
for CCRN. The new algorithm is based on gradient descent, re-
quires estimates from unacted channels, but is computationally
simpler and stateless. According to our empirical benchmark,
the new algorithm can almost instantly find an optimal strategy
that achieves the best steady-state reward. The new algorithm
can be further improved by the use of myopic channel activity
predictors. We plan to improve our work with channel activity
classifiers and predictors built on machine learning.
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