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Tracking reliable pulse waves 
for long term health diagnostics



Classification of Heart Health
Motivation

Classification of heart conditions 
derived from heart rate over time

[1] Peng, Chung-Kang. "Toward a General Principle of Health and Disease." Toward a General Principle of 
Health and Disease. Harvard Medical School, Cambridge. 26 Mar. 2015. Lecture.



Diagnostics based on pulse
Motivation
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based on changes in heart 
rate
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from phase change of PPG 
signals in two locations
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Message

With the recent availability of low-power 
wireless chips, for the first time, we can monitor 
pulse waves over a long period of time for 
applications such as measuring heartrate 
variability. However, we are still limited by the 
power budget available on wearables. In this 
paper, we will show how we can use 
compressive sensing to reduce power 
consumption.
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Power Consumption of Wearables
Problem to Solve

Battery consumption of 
wearables restricts its ability to 
continuously monitor pulse wave0 2 4 6 8 10 12

Garmin Forerunner
Mio Alpha

Mio Link
Apple Watch

Battery life of heartrate watches

Lifetime (hours)
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With new low-power wireless chips like 
BLE and additional power-saving 
compressive sensing techniques of this 
paper, it is now feasible for battery-
powered wearables to monitor pulse 
wave continuously for days or even 
weeks.



Signal 
Acquisition

Overview of 
System

Tracking reliable pulse waves 
for long term health diagnostics
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Video Demo of Pulse Wave 
Reconstruction
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Outline of Presentation

1. Signal Acquisition
– Compressive sensing for pulse waves

2. Wireless Data Transmission
– Forward error correction by interleaving and 

randomization
– Adaptations in response to channel quality

3. Signal Recovery
– Reconstruction of pulse wave through sparse coding
– Noise removal
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Part One: Signal Acquisition

Compressive sensing for pulse waves
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Uniform subsampling to reduce sensor wake-up time
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We use uniform 
subsampling as the 
sensing matrix

Obtain



Finding the sparse representation of x
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Reconstructing the signal from sparse representation
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Experimental Results

With a dictionary trained on pulse waves, uniform subsampling 
performs better than classic compressive sensing methods.

Low construction error and very 
efficient to implement
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Wireless Data Transmission

— Forward error correction by 
interleaving and randomization

— Adaptations in response to channel 
quality
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Naïve transmission scheme

Putting a whole signal segment in one packet is not ideal, because 
there is no way to recover information without resending 

#1 #2 #3 #p
…

#4
Batch of packets

A whole segment of signal is lost

16



Packet interleaving

By interleaving packets, we can recover the information 
of lost packet from neighboring received packets.

#1 #2 #3 #p
…

#4

Batch of packets

1 3 segment 1

Packet 1 Packet 3 Packet n

2 4 65 n

n+1 n+3 2n
…

segment 2

segment 3

segment p
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Problems with burst packet loss

However, consecutive packet loss still results in 
consecutive sample loss in each segment

#1 #2 #3 #p
…

#4

Batch of packets

1 3 segment 1

Packet 1 Packet 3 Packet n

2 4 65 n

n+1 n+3 2n
…

segment 2

segment 3
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Randomizing packet sending order

We can avoid consecutive sample loss by sending 
packets in randomized order

#1 #2 #3 #p
…

#4

Randomized
sending order

#10 #3 #1 #21…#2

1st Pkt
Sent

2nd Pkt
Sent

3rd Pkt
Sent

p-th Pkt
Sent

4th Pkt
Sent

Batch of packets
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Matrix that represents how 
we interleave packets



Reconstruction error with varying packet loss rates

Channel is good,
so we can sample 
at a very low rate.

Channel is bad,
but we get loss tolerance by 
simply increasing sampling rate
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Transmission rate is adaptive to packet loss



Signal Recovery

— Reconstruction of pulse wave 
through sparse coding

— Noise Removal
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Reconstructing the signal
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Cleaning the signal from outliers

There can be outliers caused by 
movements, sensor voltage change, etc.
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Augmenting the dictionary for noise removal

With a little tweak, we can even tolerate 
corrupted measurements
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Reconstruction error at different noise levels

We can deal with corrupted samples 
by increasing sampling rate
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Pulse Diagnostics Readily Available
Implications of Our Results

Long term health monitoring made possible
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Signal 
Acquisition

With new BLE chips, 
continuous health 

monitoring is possible 
for the first time

Lower wakeup 
frequency

Summary
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Conclusion

Due to the recent availability of pulse sensing 
chips, and low-power wireless chips, for the first 
time we can monitor pulse waves over along 
period for applications such as measuring 
heartrate variations. But we have a challenge of 
coping with limited power budget available on 
wearables. We have shown in this paper that we 
can use compressive sensing to reduce power 
consumption.
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Training a dictionary with pulses* 
(remove?)

=
x zD

Dictionary
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Trained on 
earlier samples
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Naïve transmission scheme

Putting a whole signal segment in one packet is not ideal, because 
there is no way to recover information without resending 

#1 #2 #3 #p
…

#4
Batch of packets

A whole segment of signal is lost
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