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Abstract— Enabled by recent sensing and wireless chips,
small wireless sensors can now be attached to various wearable
devices such as finger rings and wrist bands. In this paper,
we describe a compressive sensing based approach to such
wireless devices that exploits sparsity of signal to reduce
power consumption for both sensing and transmission. Using
subsampling methods, we can lower sensor wake-up frequency
and data transmission rate. We use a trained dictionary to
recover the signal from the subsampled measurements. The
same dictionary can also help recover from possible outliers
in sensor measurements. In addition, to protect against burst
packet loss over wireless channels, we rearrange packets and
randomize their send orders. In order to demonstrate these
concepts, we have built a prototype wearable system and report
performance results from this experimental system.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT),
wireless sensors are becoming more common. They are used
to monitor and control things on our body, in our house,
in the office and in public places like shopping malls. One
restriction imposed on these wireless sensors is power. These
sensing devices need to last a reasonable amount of time to
avoid frequent battery replacements.

In this paper, we propose a compressive sensing based
approach that exploits sparsity of signal to reduce power
consumption during sensing and transmission in applications
such as wireless wearable pulse sensing. We use subsampling
to lower the sensor wake-up frequency and transmission rate
and a dictionary to reconstruct the full signal. As opposed
to traditional compressive sensing using data-oblivious or-
thonormal bases, our approach uses data-driven overcomplete
dictionaries. This allows us to reconstruct signals in high
fidelity and also shun outliers in sensor measurements. The
dictionary based recovery is applicable to a variety of sensing
problems as long as sufficient sensing examples are available
for the dictionary training. In addition, we provide improved
protection against lossy wireless channels by rearranging
packets and randomizing their send orders. We demonstrate
the approach with a prototype wireless pulse sensor.

Our approach is generally applicable to wearable sensor,
where minimizing power consumption is essential. Applica-
tions can benefit from this approach, as long as the target
signal is sparse in some domain spanned by atoms in a
trained dictionary.

This paper is organized as follows. In the next section, we
introduce background and related work. Then, we describe
our proposed approach, followed by experiments. Finally, we
discuss our results and conclude.

II. BACKGROUND AND RELATED WORKS

Traditionally, to reduce data transmission for sensors, the
measurement data is first compressed and then sent. Com-
pressing data with conventional methods is computationally
intensive and can significantly reduce the battery life of
wearable sensors. Recent studies have shown that we can
avoid computationally expensive on-device compression by
using a framework called compressive sensing.

By applying compressive sensing theories, researchers
have shown that random sensing matrices preserve necessary
information for signal recovery if the original signal can
be sparsely representable in some orthogonal basis. In this
case, the sensing matrices can provide low-cost encoding
for compression [1], [2], [3]. In this paper, we extend this
result to easily-implementable uniform subsampling via the
use of learned dictionaries as overcomplete sparsifying bases
in signal recovery.

To obtain a learned dictionary, we use dictionary learning
algorithms such as K-SVD [4] which learns overcomplete
sparsifying bases that can compactly represent the signals.
These compact representations can then be recovered via
sparse coding algorithms such as OMP [5].

For the pulse sensing application of this paper, a tradi-
tional platform derives certain information from the wearable
device, such as heart rate, and only transmits the derived
information, e.g., heart rate, to reduce the transmission power
[6]. In contrast, by applying compressive sensing, dictionary
learning and sparse coding theories, we can reconstruct the
entire pulse wave, containing much more information than
the derived information such as heart rate with a lower or
comparable amount of power. This recovered pulse wave can
in turn be used to derive other interesting information such
as detecting blood pressure (BP) from multiple pulse wave
forms [7] or detecting certain disease from analyzing the
pulse wave form [8], [9].

III. PROPOSED APPROACH

This section lays out our proposed approach. We first
describe the uniform subsampling sensing matrix that will
be applied to sensor values under the compressive sensing
framework. Then, we describe packet interleaving scheme
and packet randomization to provide increased protection
against burst packet loss over wireless channel. Finally, we
describe how to recover the full signal values from our
compressed measurements with a data-driven overcomplete
dictionary.
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Fig. 1: Pulse Sensing Pipeline.

A. Signal Acquisition with Subsampling Using Compressive
Sensing

Compressive sensing theory stipulates that if a signal x is
sparse, that is, x can be approximated by Dz for some z with
‖z‖0 < k where k is a small sparsity constant1 and D is an
orthogonal sparsifying basis matrix, then the signal can be
reconstructed from a compressing projection y = Φx where
Φ is a m×n random projection matrix with m=O(k logn)�
n [2]. We demonstrate that pulse signal is indeed sparse in
Section IV-B.1.

To handle a signal which arrives over time, we break
it into segments of length n and denote them as x(i). For
compressive signal acquisition, we take uniformly spaced
subsampled measurements:

y(i)u = Φux(i) (1)

where Φu consists of m uniformly spaced selected rows
from the identity matrix In. We call Φu the subsampling
matrix. In Section V, we show that with our reconstruction
method based on a learned overcomplete dictionary, the
subsampling rate can be much lower than the Nyquist rate.
This means that we can subsample the signal uniformly with
little reconstruction error, allowing the sensor to wake up less
often and send less data.

B. Packet Interleaving and Transmission Randomization

A conventional way of dealing with packet losses or
corrupted packets is by using re-transmission scheme like
Automatic Repeat Request (ARQ) [10]. However, this can
increase power consumption and transmission delay, espe-
cially over lossy and congested wireless channels.

By exploiting correlation among signal values in a dictio-
nary atom, we can recover lost or corrupted signal values
without re-transmissions as long as enough signal samples
are received to match up the atom.

To make our scheme more tolerant to bursty packet loss,
a loss behavior usually observed over a wireless channel
[11], we propose a sending scheme with sample interleaving
(Fig. 2) and packet send order randomization (Fig. 3).

The sensor collects p subsampled measurements of x(i)

using Eq.(1) to form a p×m matrix Y= [y(1)u ,y(2)u , . . . ,y(m)
u ]T ,

where each row corresponds to a measurement vector y(i)u .
Packets are formed out of columns of Y as shown in Fig. 2.
Then, these packets are sent out in random order to provide
better protection against burst packet losses (Fig. 3). Note
that with this scheme, a single packet loss is equivalent to
losing just one (randomized) measurement within each y(i)u .

1 ‖ · ‖p denotes the `p norm.
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Fig. 2: Packetization of signal by interleaving signal subsam-
ples over time, indexed with consecutive integers.

Thus, this scheme can provide better recovery against burst
packet losses.

Through a lossy wireless channel, the receiver will receive
measurements that passed through the channel y(i)r = Φry

(i)
u ,

where Φr is a channel loss matrix consisting of rows of Im
that correspond to the indices of the received packets. For
example, if the first two packets are received successfully, Φr
will contain the first two rows of Im. Note that when there
is no packet loss, Φr = Im.
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Fig. 3: Distributing burst packet loss over signal samples
in different measurement vectors by sending packets in
randomized order. Lost packets are marked with a red cross.

Under these mechanics, the receiver will receive a com-
pressed signal

y(i) = Φx(i) (2)

where Φ=ΦrΦu with Φu and Φr being the subsampling and
channel loss matrices, respectively, and x(i) is the original
signal segment that we want to recover. With this scheme,
consecutive packets losses in transmission corresponds to
random sample losses which can be recovered with com-
pressive sensing.

C. Dictionary Learning and Signal Reconstruction

In this section, we describe how to recover x(i) from
y(i) using a trained dictionary. We deviate from the stan-
dard compressive sensing setting with orthogonal bases, and
train data-driven overcomplete dictionaries instead. Because
trained dictionaries learn correlation patterns in the data, they
allow for easy and aggressive compression schemes such
as uniform subsampling. We will demonstrate this in the
following experiment.

Dictionary D is trained to express signal samples X =
[x(1),x(2), . . . ,x(t)] with linear combinations of at most k
atoms in D. This D is computed by solving the following
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problem with K-SVD [4]:

D = argmin
D̂
‖X− D̂Z‖2 s.t. ‖z(i)‖0 < k, (3)

for some small sparsity constant k, where Z =
[z(1),z(2), . . . ,z(t)] and t is the number of samples. Note
that since this problem is NP-hard in general, all efficient
algorithms are based on heuristics. However, K-SVD has
been shown to perform well for many problems and tends
to converge faster than methods like MOD [12].

Given a trained dictionary D, upon receiving y(i) in Eq.(2),
we can reconstruct an approximation x̂(i) for x(i) with the
following steps:

ẑ(i) = argmin
z(i)

‖y(i)−ΦDz(i)‖2 s.t. ‖z(i)‖0 < k (4)

x̂(i) = Dẑ(i). (5)

There are many algorithms that can solve the sparse coding
problem in (4), including IHT [13], CoSaMP [14] and
OMP [5]. In this paper, we use OMP unless otherwise
mentioned.

An alternative to solving (4) is to enforce sparseness of
z(i) using `1-norm penalty term:

ẑ(i) = argmin
z(i)

‖y(i)−ΦDz(i)‖2 +λ‖z(i)‖1 (6)

where λ is a spareness penalty parameter. This can be solved
with LARS [15]. The `1 formulation in (6) tends to yield
better results than the `0 formulation in (4), but has a higher
computation cost.

In the next section, we present an extension to this
recovery scheme that deals with corrupted samples.

D. Extension to Handle Corrupted Samples

Sometimes, the sensor may have a few corrupted sensor
readings that result in spike noises (outliers). For example,
such noises can be caused by unintentional movements of
a fingertip pulse sensor. We can handle this problem by
expanding the dictionary to include bases for spike noise.
More specifically, we concatenate D with the identity matrix
Im, where m is the dimension of y(i). The problem in Eq. (4)
now becomes:

z̃(i), g̃(i) = argmin
z(i),g(i)

∥∥∥∥∥y(i)−Φ
[

D Im
][ z(i)

g(i)

]∥∥∥∥∥
2

(7)

s.t. ‖z(i)‖0 < k and ‖g(i)‖0 < e,

where e is the number of corrupted samples,
[

D Im
]

is
the concatenated matrix of D and Im and

[
z(i) g(i)

]T
is

the concatenated matrix of z(i) and g(i). We use the same
constant k that we use to find D from Eq. 3. In this equation,
g(i) is used to identify the outlier values that don’t accurately
represent the signal and isolate them from z(i). After z̃(i) and
g̃(i) are obtained, we discard g̃(i) and use z̃(i) to reconstruct
x̂(i):

x̂(i) = Dz̃(i). (8)

This process separates out the corrupted samples from the
rest of the signal. Fig. 4 depicts the reconstruction process.

= 

Step (1):  
find  using sparse 
coding 

= 

Step (2):  
find   

Fig. 4: Reconstruction with corrupted samples.

IV. EXPERIMENTS AND ANALYSIS

In this section, we evaluate the proposed approach as
described in Section III. First, we describe our experimental
setup. This includes the description of our prototype sensing
hardware and software system and how we collect data to
analyze. Then we analyze our system in terms of 1) signal
sparseness, 2) effects due to different settings in sensing
matrix and compression rate, 3) reconstruction error as a
function of channel loss rates, and 4) tolerance against
outliers or corrupted samples.

A. Setup

We utilize off-the-shelf pulse sensing hardware and soft-
ware components to capture and transmit the pulse wave
signal. We use the LightBlue Bean available at https://
punchthrough.com/bean/ as our hardware platform.
It is a Bluetooth Low Energy Arduino, making it easier
for us to prototype our system. As for the pulse sensor,
we use open pulse sensor hardware available at http:
//pulsesensor.com/.

Our pulse sensor hardware and software system is depicted
in Fig. 5. The pulse sensor hardware is idle most of the time.
The process begins with a smart phone sending commands
to the pulse sensor hardware to collect measurement at
what interval and how long. This allows us to specify the
rate of uniform subsampling as described in Eq. 1. The
sensor then collects the samples, interleaves the data values,
forms multiple packets and sends those packets to the phone
through a lossy wireless channel (as shown in Fig 5). The
phone then reorganizes these packets in order and sends data
to a remote server through HTTP protocol. Finally, the server
reconstructs the full pulse wave signal based on the received
packets. Fig. 6 shows our prototype hardware.

B. Analysis

In this section, we provide analysis on the following
aspects of the system: signal sparseness; effects due to
different settings in the sensing matrix and compression
rate; interplay between subsampling rates and channel loss
conditions; heart rate estimation; and tolerance to corrupted
sensor measurement readings.
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Fig. 5: Pulse sensing system overview. Phone sends a com-
mand to our wireless pulse sensing hardware. The sensor
sends back the interleaved measurement through a lossy
wireless channel. Phone reorganizes the interleaved measure-
ment and uploads that to the server, where reconstruction
occurs.

Fig. 6: Prototype wireless pulse sensing hardware showing
the LightBlue Bean Bluetooth Arduino microcontroller and
the pulse sensor.

1) Sparseness of pulse signal: We compare the recon-
structed signal obtained from our system with the orig-
inal signal obtained directly from the pulse sensor at
60Hz. We split the signal into t segments of 128 samples
x(1),x(2), . . . ,x(t), and use sparse coding to find their sparse
representations z(1),z(2), . . . ,z(t), and compute x̃(i) = Dz(i)
for reconstruction. The dictionary D is learned from data
collected earlier2. We then concatenate the reconstructed
segments x̃(i) to form the reconstruction of the entire signal.
The reconstruction error is measured in the `2-norm.

Fig. 7 shows that the signal can be represented with small
error while the number k of atoms required is small. When
the dictionary D has 50 atoms and k is 15, the error is about
.15. The error drops to about .10 when D has 250 atoms.
These empirical results suggest that the pulse sensing signal

2The data could be collected from the same user to train a user-specific
dictionary. In this paper we use data from multiple users to train a generic
dictionary.

is sparse in the domain spanned by trained dictionary atoms.
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Fig. 7: The signal can be expressed as a linear combination
of a small number k of dictionary atoms. This figure shows
the reconstruction error (in the `2-norm) of recovered 128-
sample signal segments when approximated by such linear
combinations. Using larger size for dictionary D reduces the
reconstruction error.

2) Comparison of sensing matrices: In this section, we
compare uniform subsampling sensing matrix (Φu) with
other sensing matrices: random subsampling sensing matrix
(Φr), random linear combination sensing matrix (ΦRLC) and
a sensing matrix (ΦPCA) computed by performing PCA on
D.

The random linear combination sensing matrix (ΦRLC) has
random entries drawn from a Gaussian distribution and has
been proposed in compressive sensing literature to work with
arbitrary orthogonal sparsifying bases. However, given D of a
large number of rows, the optimal projection onto m vectors
in terms of preserving distances between atoms is the pro-
jection onto the largest m eigenvectors of DDT [16]. We call
this projection ΦPCA. However, using a dense sensing matrix
like ΦPCA requires the sensor to perform linear combinations
of samples. In contrast, the uniform subsampling matrix Φu
as described in Section III-A is much simpler and cheaper
to implement; it does not need any computation beyond a
uniform selection of a subset of samples.

Fig. 8 shows that PCA on D sensing matrix performs best
among these sensing matrices as expected, followed closely
by the uniform subsampling sensing matrix. These empirical
results show that we can use Φu instead of ΦPCA without
losing much reconstruction quality. The reason why there
is only a small performance gap between ΦPCA and Φu is
discussed in Section V. Note that reconstruction with LARS
results in less error, as discussed in Section III-C.

3) Interplay between subsampling rates and channel loss
conditions: To understand the relationship between uniform
subsampling and channel loss, we simulate reconstruction
error under different subsampling and channel loss rates. As
shown in Fig. 9, we can be quite aggressive with subsampling
when channel loss is low. This suggests that our approach
supports an adaptive sensing scheme where the sampling
rate changes according to channel quality. This results from
a nice property of compressive sensing recovery that it
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Fig. 8: Uniform subsampling is inferior to PCA by a small
amount in terms of compression rate. However, uniform
subsampling requires extremely little computation and is thus
selected for our scheme. A dictionary of 50 atoms is used
to generate this figure. Solid lines and dotted lines indicates
reconstruction using OMP and LARS, respectively.

can reconstruct the signal as long as enough packets are
successfully received over the channel. There is no need to
re-transmit any particular lost packet.

4) Heart rate estimation based on recovered pulse signal:
We consider the impact of reconstruction error on applica-
tions such as heart rate estimation. We use a simple local
peak detector [17] to find beats in the signal (see Fig. 10
for an example), based on which we estimate heart rate by
calculating beats per minute (bpm). For the area covered in
blue in Fig. 9 where reconstruction error is less than 0.15, we
can derive heart rate from the reconstructed signal reliably
3.

5) Tolerance against corrupted samples: Here, we eval-
uate our proposed scheme in terms of tolerance against
corrupted samples (outliers). One of such examples based
on real sensor data from our experimental system is shown
in Fig. 10 where a dip is caused by a sudden unintentional
movement of the sensor on a fingertip. The figure shows that
this outlier is smoothed out in the reconstructed signal using
the reconstruction method depicted in Fig 4. As illustrated
in the figure, this means the heart rate can still be accurately
estimated from the recovered signal in spite of the presence
of the corrupted sensor data sample.

We further simulate scenarios with extreme signal corrup-
tion. We create a corrupted signal by randomly modifying a
few of its samples to the highest or lowest observed value.
Fig. 11 shows that our reconstruction can tolerate multiple
corrupted samples without losing much accuracy, even at a
high compression rate, like 0.3.

This protection against corrupted samples exploits the
correlation between local signal values captured in the
trained dictionary atoms to automatically recover one or
more corrupted signal values. The correct signal values
usually have stronger correlation with the values trained
in the dictionary atoms than the corrupted signal values.

3 Less than 1% error in terms of bpm on average.
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Fig. 9: Reconstruction error at different subsampling rates
and channel loss conditions, where colors depict recon-
struction errors of increasing magnitude. The blue region
above the dashed line is of sufficient reconstruction quality
(reconstruction error < 0.15) for heart rate estimation. For a
given channel loss rate, we can increase the subsampling rate
to ensure the reconstruction error is below a target threshold.

seconds

reconstruction coping with 
outlier in sensor data sample

Fig. 10: A segment of pulse sensing signal overlaid with
the reconstructed signal from sparse codes (number of of
dictionary atoms = 250, k = 10). The reconstructed signal is
nearly identical to the original signal. The red circle marks
peaks detected from the reconstructed pulse waveform. Heart
rate can be estimated by counting the number of peaks
over a period of time and converting it to beats per minute
(bpm). The reconstruction has a dip around the 5.8 seconds
mark, which reflects a corrupted sample. Heart rate can
still be estimated with about the same accuracy from this
reconstructed signal.

This allows us to derive the correct sparse codes and use
the codes to reconstruct close approximations to the correct
signal values to replace the corrupted ones.

V. DISCUSSION
In this section, we elaborate on design decisions and

justifications for our proposed approach.

A. Justification for uniform subsampling

We choose uniform subsampling over other sensing ma-
trices for two main reasons:

1) Uniform subsampling requires less computation and
thus makes it easier to implement on wearable sensing
hardware,
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subsampling rate

Fig. 11: Tolerance against corrupted samples. Reconstruction
errors of the pulse wave signals when there are a number of
corrupted samples under various subsampling rates.

2) Uniform subsampling works well with a trained dictio-
nary.

The first point is quite clear. Uniform subsampling only
needs to read certain values once in a while, and thus the
sensor can stay off most of the time.

In regards to the second point, we provide a mathemat-
ical proof in Section V-B below. We argue that uniform
subsampling works well with a trained dictionary because
a subsampled signal and a subsampled dictionary atom lie
in similar low frequency bands. Uniform subsampling of
a signal input removes certain high-frequency components.
Similarly, dictionary atoms are obtained by averaging a
number of signal inputs via clustering algorithms such as K-
means or K-SVD. This averaging operator removes certain
high-frequency components.

By comparing a subsampled signal input with subsampled
dictionary atoms, the input signal has a better chance of
matching with the right atom since they lie in similar fre-
quency bands (low-frequency components). In contrast, other
sensing matrices, such as one which leads to a randomly
subsampled input signal, may have frequency components
that are less useful for differentiating dictionary atoms. This
frequency discrepancy creates noises when comparing the
input signal with dictionary atoms.

Nonetheless, the choices of sensing matrices have to be
decided based on the needs. For example, if we want to
minimize the reconstruction errors and are willing to spend
some power to do the calculation, we may choose PCA as
our sensing matrix based on the result of Fig. 8.

B. Proof for uniform subsampling

We first show that ΦPCAx has approximately the same
sparse code as x. Then, we apply the same argument to the
uniform subsampling sensing matrix.

We note that 1) since dictionary atoms d are derived by av-
eraging, they have essentially no high-frequency components
and 2) input x has essentially no high-frequency components
either, since biological processes that affect the pulse occur at
a comparatively low frequency. Since ΦPCA is derived from
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(b) Φu

Fig. 12: Frequency spectrum of y from two sensing matrices
ΦPCA and Φu. The optimal projection ΦPCA preserves low
frequency components, where inter-atom variations lie; Φu
preserves the same frequency band of interest.

D, it also tends to preserve low-frequency components, as
shown in Fig. 12.

Consider any dictionary atom d. Expressing x−d in terms
of orthonormal frequency basis vectors f1, f2, f3, . . . with
increasing frequencies, we have that

x−d = c1f1 + c2f2 + c3f3 + . . . ,

where coefficients ci ≈ 0 for i > τ for some small τ . In the
rest of the proof we assume τ = 3 to simplify the description.
It is easy to see that the proof works for other values of τ .
Since ΦPCA has essentially no high-frequency components,
say, its top principle components drop ci, for i > 3 also, we
have

ΦPCA(x−d) = c1f1 + c2f2 + c3f3,

and

‖ΦPCA(x−d)‖2 = c2
1 + c2

2 + c2
3.

Now, note that

‖x−d‖2 = c2
1 + c2

2 + c2
3 + . . . ,

and ci ≈ 0 for i > 3. Thus, ‖(x−d)‖2 is approximately equal
to ‖ΦPCA(x−d)‖2 That is, Φ preserves distance. This means
that ΦPCAx has approximately the same sparse code as x,
when the subsampled dictionary ΦPCAD is used.

We now apply the proof to uniform subsampling sensing
matrix. First, we note that the uniform subsampling sensing
matrix Φu can be regarded as a low-pass filter that captures
all relevant information (see Fig. 12)4. When we multiply
Φu to x−d, we have

‖Φu(x−d)‖2 ∼c2
1 + c2

2 + c2
3.

Thus, ‖(x− d)‖2 is approximately equal to ‖Φu(x− d)‖2
That is, Φu approximately preserves distance. This means
that Φux has approximately the same sparse code as x.
This result about uniform subsampling sensing matrix is
somewhat surprising and should be noted. This would allow
us to create a simple and efficient sensing scheme for next-
generation wearable devices.

4This would hold even if x had high-frequency components.
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VI. CONCLUSION

We have proposed a novel approach to sensing and trans-
mitting pulse signals based on compressive sensing, dictio-
nary learning and sparse coding theories. Our method saves
battery power of wearable sensors by lowering sensor wake-
up frequency and reducing measurement data to transmit.

The contribution of this paper is the integration of the fol-
lowing elements for wireless sensors: 1) sub-Nyquist uniform
sampling for signal acquisition, 2) signal reconstruction with
overcomplete dictionaries, 3) interleaving and randomized
transmission to enhance signal reconstruction under packet
loss, and 4) error correction for corrupted samples. Note that
all of these exploits the sparseness of signal, and can be
explained using the same sparse coding framework.

We have demonstrated the feasibility of this proposed
approach by building a working prototype for high-fidelity
pulse signal reconstruction. Future work includes applying
our approach to other sensors such as wireless wearable
blood pressure devices. With the emergence of IoT, there
will be many scenarios where our approach can be applied.
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