
PNNU: Parallel Nearest-Neighbor Units
for Learned Dictionaries

H.T. Kung, Bradley McDanel and Surat Teerapittayanon

Harvard University, Cambridge, MA 02138, USA
kung@harvard.edu, mcdanel@fas.harvard.edu, steerapi@seas.harvard.edu

Abstract. We present a novel parallel approach, parallel nearest neigh-
bor unit (PNNU), for finding the nearest member in a learned dictionary
of high-dimensional features. This is a computation fundamental to ma-
chine learning and data analytics algorithms such as sparse coding for
feature extraction. PNNU achieves high performance by using three tech-
niques: (1) PNNU employs a novel fast table look up scheme to identify
a small number of atoms as candidates from which the nearest neighbor
of a query data vector can be found; (2) PNNU reduces computation
cost by working with candidate atoms of reduced dimensionality; and
(3) PNNU performs computations in parallel over multiple cores with
low inter-core communication overheads. Based on efficient computa-
tion via techniques (1) and (2), technique (3) attains further speed up
via parallel processing. We have implemented PNNU on multi-core ma-
chines. We demonstrate its superior performance on three application
tasks in signal processing and computer vision. For an action recogni-
tion task, PNNU achieves 41x overall performance gains on a 16-core
compute server against a conventional serial implementation of nearest
neighbor computation. Our PNNU software is available online as open
source.

Keywords: Nearest neighbor, NNU, PNNU, data analytics, sparse cod-
ing, learned dictionary, parallel processing, multi-core programming, speedup,
matching pursuit, signal processing, computer vision, KTH, CIFAR

1 Introduction

In the era of big data, the need for high-performance solutions to support data-
driven modeling and prediction has never been greater. In this paper, we consider
parallel solutions to the nearest neighbor (NN) problem: given a set of data points
and a query point in a high-dimensional vector space, find the data point that is
nearest to the query point. NN is used in many data applications. For example,
NN (or its extension of finding k nearest neighbors, kNN) is used to identify
best-matched patterns in a set of templates [13]. NN also serves as an inner loop
in popular feature-extraction algorithms such as matching pursuit (MP) [11] and
orthogonal matching pursuit (OMP) [19].

A key operation in NN is the vector dot-product computation which com-
putes the “closeness” of two vectors under cosine similarity. Exhaustive search

2

of data points to find the largest dot-product value with the query point can
quickly become prohibitively expensive as data size and dimensionality increase.

Developing efficient NN solutions for general data sets is known to be a
challenging task. There is a vast amount of literature on this topic, including
k-d trees [21], locality sensitive hashing [3], and nearest-neighbor methods in
machine learning and computer vision [18]. For high-dimensional data, most
methods in the literature usually do not outperform exhaustive NN search [6].
This is due to the fact that, in practical applications, the high-dimensional data
space is commonly only sparsely populated. In our experiments, we find that
this observation often holds for even a moderate dimensionality, such as 30.

In this paper, we consider parallel computing approaches to NN for applica-
tions in machine learning and data analytics. Particularly, we consider the prob-
lem of finding the nearest neighbor in a dictionary of atoms (features) learned
from training data. We present a novel parallel scheme, parallel nearest neigh-
bor unit (PNNU), offering a high-performance NN solution to this problem. By
exploiting data characteristics associated with a learned dictionary, such as the
dominance of a small number of principal components, PNNU realizes its high
performance with three techniques:

T1. reducing the number of required dot-product computations,

T2. reducing the dimensionality in each dot-product computation, and

T3. parallel processing with low inter-core communication overheads.

For T1, we use a fast table look up scheme to identify a small subset of
dictionary atoms as candidates. By carrying out dot-product computations only
with these candidates, the query vector can quickly find its nearest neighbor or a
close approximation. Our look-up tables are based on principal component anal-
ysis (PCA). For accurate candidates identification, we apply PCA to dictionary
atoms rather than the original data set from which the dictionary is learned. The
construction and usage of this fast table look up scheme is novel. For T2, we
apply the same PCA technique to reduce dimensionality of the candidate atoms
to lower the cost of computing their dot-products with the query vector. Finally,
for T3, we show that multiple cores can each work on scalar projections of dic-
tionary atoms on their respective dimensions independently without inter-core
communication until the very end of the PNNU computation. At the very end, a
simple and inexpensive reduction operation among multiple cores is carried out.
The parallel processing enabled by T3 results in substantial speed-up gains on
the already efficient computation brought by T1 and T2. Thus, PNNU does not
suffer from a common drawback in parallel processing that good speedups are
obtained only on more parallelizable but less efficient computations. We have
implemented PNNU with these techniques in software for multicore computers,
and our code is available as open source for public research use [10]. PNNU is
written in C++ and contains language bindings and examples for Python and
MATLAB making it simple to integrate into existing codebases.

3

2 Background: Learned Dictionaries and Spare Coding

A data-driven modeling and prediction task, such as those considered in this
paper, generally involves two phases. The first phase is feature extraction, where
we use clustering methods such as K-means and K-SVD [1] to learn a dictionary
where atoms (features) are cluster centroids. These atoms are the most occurring,
representative features of the data. The second phase is classification/regression,
where we compute a sparse representation, via sparse coding, of an input data
vector in the learned dictionary, and then based on the sparse representation
perform classification/regression.

Mathematically, sparse coding is an optimization problem expressed as

ŷ = arg min
y
‖x−Dy‖22 + λ · ψ(y), (1)

where x is an input data vector, D is a learned dictionary, ŷ is an sparse repre-
sentation of x, λ is certain constant and ψ(y) is a sparsity constraint function.
The choices of ψ(y) are usually either the L0-norm ‖y‖0 or the L1-norm ‖y‖1.

Algorithms for sparse coding include those such as MP and OMP which
greedily perform minimization under a L0-norm constraint, and those such as
Basis Pursuit [2] and LARS [4] which perform minimization under a L1-norm
constraint.

The inner loop in these algorithms is the NN problem for a learned dictio-
nary: for a given input vector x ∈ Rm, find its nearest feature (atom) dj in a
m × n dictionary D =

[
d1 d2 . . . dn

]
. In machine learning and data analytics

applications, D is generally overcomplete with m � n, and that m and n can
be large, e. g., m = 100 and n = 4000. In these cases, sparse coding is computa-
tionally demanding. The PNNU approach of this paper aims at alleviating this
computational problem.

Convolutional neural networks (CNN) and convolutional sparse coding (CSC)
have become popular due to their success in many machine learning tasks [12,
9]. Interestingly, PNNU can help accelerate CSC. Convolution in CNN with Fast
Fourier Transform has a complexity of O(nm log(m)) as compared to O(nm2)
for CSC. With PNNU, CSC’s complexity cost is reduced to O(αβm2) with a
penalty to accuracy, for small α and β, which is discussed in detail in Sec. 5.

3 Parallel Nearest Neighbor Unit (PNNU)

In this section, we describe parallel nearest neighbor unit (PNNU) for a learned
dictionary D. The three subsections describe three techniques that make up the
PNNU algorithm. The first technique T1 uses the Nearest Neighbor Unit (NNU)
to reduce the number of dot-product computations. The second technique T2
reduces the cost of each dot-product computation via dimensionality reduction.
The third technique T3 parallelizes NNU. These three techniques work in con-
junction for high-performance nearest neighbor computation. That is, the first
two techniques improves computation efficiency by reducing total cost of dot-
product computations while the last technique further reduces the processing
time via parallel processing.

4

3.1 Technique T1 (NNU): Identification of Candidates for Reducing
Dot-product Computations

Technique T1 concerns a novel table look-up method for identifying a small
number of candidate atoms in D from which the nearest neighbor of a query
data vector or a close approximation can be found. We call this the nearest
neighbor unit or NNU. As Fig. 1 depicts, the naive exhaustive search involves
O(n) dot-product computations while NNU’s candidate approach reduces this
number to O(m). This saving is significant for overcomplete dictionaries with
m� n. As described below, the technique is divided into two steps: offline table
preparation and online candidates identification.

Fig. 1. A contrast between the naive ex-
haustive search and the NNU’s candi-
dates approach in the number of dot-
product computations. The k candi-
dates are a subset of D which are se-
lected by NNU. Increasing the α and β
parameters in NNU increases k, where
k ≤ α · β.

Fig. 2. Offline table preparation of con-
tent for TABLE-i associated with the
top principal component vi of D for
i = 1, 2, . . . , α. For each possible w-bit
value W for vTi x the dictionary posi-
tions of the β atoms for which their
scalar projections on vi are nearest to
W are stored at table location W .

NNULookup Table Preparation We first compute principal components V
for D by performing PCA [7] on D, that is, DDT = VΣVT for a diagonal Σ.
We then form a sub-matrix Vα of V by including the top α principal components
for some α = O(m), which together explain the majority of data variations in

D, that is, VT
α =

[
vT1 ,v

T
2 , . . . ,v

T
m

]T
.

Based on D and Vα, we prepare content for α tables using VT
αD. As depicted

in Fig. 2, for TABLE-i corresponding to vi, i = 1, . . . , α, we map each possible
w-bit value of vTi x to the dictionary positions of the β atoms dj , for which vTi dj
are nearest to the vTi x value.

To contain the table size, we aim for a small bit width w in representing
vTi x. Specifically, we use the 16-bit IEEE 754 half-precision floating-point data
type for all of our experimental results. Empirically, we have found that for many
practical applications such as object classification for tens or hundreds of classes,
w = 16 is sufficient. In this case, the tables can be easily fit in the main memory
or even the L3 cache (4-8 MB) of today’s laptops. However, this is no inherent

5

restriction on the data type stored in the table and w can be increased when
higher precision is required.

Fig. 3. Cumulative variance explained by
PCA applied to the learned dictionary and
raw input data for the action recognition
task described in Sec. 5.1. The eigenvalues
are sorted by magnitude and cumulatively
summed to show total explained variance.

Table 1. Accuracy results of
PNNU(α,β), for different α and
β configurations, for the ac-
tion recognition task described
in Sec. 5.1 when applying PCA
on a learned dictionary (PCA-
D) versus applying PCA on the
raw data (PCA-X).

PCA-X PCA-D

PNNU(1,1) 64.20% 82.70%

PNNU(1,5) 79.20% 87.30%

PNNU(1,10) 80.30% 89.60%

PNNU(5,1) 78.60% 87.90%

PNNU(5,5) 83.20% 92.50%

PNNU(5,10) 86.70% 90.80%

PNNU(10,1) 79.80% 86.70%

PNNU(10,5) 87.30% 90.20%

PNNU(10,10) 89.00% 90.80%

Note that our use of PCA here departs from the conventional application of
PCA where principal components are computed from the raw data set, rather
than the dictionary learned from this data set. Since dictionary atoms are cluster
centroids learned by clustering methods such as K-means, they are denoised
representation of the data. As a result, when PCA is applied to dictionary atoms,
a smaller percentage of principal components can capture most of variations in
the data, as compared to PCA applied to the raw data directly. This is illustrated
by Fig. 3. The top 10 eigenvalues of the learned dictionary explain over 80.7% of
the variance, compared to 49.3% for the raw data. Moreover, as shown in Table 1,
NNU with applying PCA on a learned dictionary rather than the raw data gives
results of substantially higher accuracy for an action recognition task. The use
of PCA in this way, using the projection between Vα and an input vector x to
build a fast look up table, is novel and one of the largest contributions of this
paper. (We note a similar use of PCA in [5] for a different purpose of preserving
pairwise dot products of sparse code under dimensionality reduction.)

NNULookup Algorithm Given an input vector x we are interested in
finding its nearest atom in D. We first prepare search keys for x, that is,

VT
αx =

[
vT1 x,vT2 x, . . .vTmx

]T
. Next, for i = 1, 2, . . . , α, we use a w-bit rep-

resentation of vTi x as a key into TABLE-i, as depicted in Fig. 4. Note that these
α table look ups can be done independently in parallel, enabling straightfor-
ward parallelization (see Sec. 3.3). Finally, we identify candidates for the nearest
neighbor of x by taking the union of the results from all α tables as illustrated in
Fig. 5 for α = 3. Note that taking a union with the “OR” operator is amenable
to efficient hardware and software implementations.

6

For a given α and β, our table-lookup method will yield at most αβ can-
didates. Increasing α and β will raise the probability that identified candidate
atoms will include the nearest neighbor. In Sec. 4 we show that this probabil-
ity approaches 1 as α and β increase. Since tables can be accessed in parallel
(see Sec. 3.3 for PNNU), increasing α does not incur additional look up time
beyond the final low-cost reduction step. Additionally, since each look up pro-
duces β neighbors at the same time from each table, increasing β does not incur
additional look up time beyond the cost of outputting β values for the union
operation of Fig. 5.

Fig. 4. Online retrieval of content
from tables.

Fig. 5. The union operation: pooling re-
sults from 3 tables with the “OR” operator.

3.2 Technique T2: Dimension Reduction for Minimizing the Cost of
Each Dot-product Computation

By technique T1, we can identify a set of candidate atoms that have a high
likelihood of containing the nearest neighbor of an input vector x. Among these
candidate atoms, we will find the closest one to x. The straightforward approach
is to compute the dot product between x and each candidate atom. In this
subsection, we describe technique T2 based on dimension reduction using the
same PCA on D as in technique T1, now for the purpose of lowering the cost
of each dot-product computation. For example, suppose that the original atoms
are of dimensionality 500, and after PCA we keep only their scalar projections
onto the top 10 principal components. Then a dot-product computation would
now incur only 10 multiplications and 9 additions, rather than the original 500
multiplications and 499 additions. Note that it is also possible to apply PCA
on raw data X, but applying PCA on D is more natural to our approach, and
produces superior results on application accuracy as we demonstrate in Sec. 5.

Since PCA dimensionality reduction is a lossy operation, it is inevitable that
dot-products over reduced-dimension vectors will lower the accuracy of the ap-
plication result. In practice, we keep the top principal components whose eigen-
values can contribute to over 80% of the total for all eigenvalues. In this case,
as results in Sec. 5 demonstrate, the impact on accuracy loss is expected to be
acceptable for typical applications we are interested in.

Note that in the preceding subsection, we use PCA to identify candidates. In
this subsection, we use the same PCA to reduce dimensionality. These are two

7

different usages of PCA. The former usage is novel in its role of supporting fast
table look up for NNU, while the latter usage is conventional.

3.3 Technique T3: Parallel Processing with Low Inter-core
Communication Overheads

This subsection describes the third technique making up PNNU. The NNU al-
gorithm of technique T1 leads naturally to parallel processing. We can perform
table-lookup operations for α dimensions in parallel on a multi-core machine.
That is, for i = 1, 2, . . . , α, core i performs the following operations for an in-
put data vector x: (1) compute vTi x, (2) look up β values from table i based
on vTi x, (3) compute β dot-product computations or reduced-dimension dot-
product computations between the candidate dictionary atoms and x, and (4)
output the candidate atom which yields the maximum dot-product value on the
ith dimension.

The final reduction step is performed across all cores (dimensions) to find
the dictionary atom which yields the maximum dot-product value. We note
that the table look-ups from multiple tables are carried out in parallel, so are
the corresponding dot-product computations or reduced-dimension dot-product
computations. We also note that this parallel scheme incurs little to no inter-core
communication overhead, except at the final reduction step where α candidate
atoms are reduced to a single atom that has the maximum dot-product value
with x. In Sec. 5, experiments show that this low communication overhead leads
to large parallel speedups.

4 Probabilistic Analysis of PNNU

In this section, we analyze the probability P that for a given query vector
x, the PNNU algorithm finds the nearest neighbor d in a dictionary D. Let
v1,v2, . . . ,vα be the α top principal components of D. We show that the prob-
ability P approaches 1 as α and β increase, satisfying a certain condition.

For a given ε ∈ (0, 1), let βi be the least number of the nearest neighbors of
vTi x such that the probability that vTi d is not any of the βi nearest neighbors
of vTi x is less than or equal to ε. Given an α, for i = 1, . . . , α, let Yi be an event
that vTi d is not any of the β nearest neighbors of vTi x, where β = max1≤i≤α βi.
Therefore, Pr(Yi) ≤ ε. Assume that Yi are mutually independent. Then, we have

P = 1 − Pr
(⋂α

i=1 Yi

)
= 1 −

∏α
i=1 Pr(Yi) ≥ 1 − εα. Thus, as α increases, and

also β increases accordingly, εα decreases toward 0 and P approaches 1.

Consider using the parallel processing T3 technique of PNNU. Since we have
low inter-core communication overheads, increasing α (the number of cores)
does not impact the processing time significantly. Therefore, for a particular
application, we can pick an ε and keep increasing α, and also β accordingly,
until the probability Pr(A) is high enough.

8

To simplify the analysis, we have assumed that Yi are mutually independent.
Experimentally, we have found that this assumption holds well. For all exper-

iments reported in this paper, Pr
(⋂α

i=1 Yi

)
and

∏α
i=1 Pr(Yi) are reasonably

close empirically. For example, in one experiment, these two numbers are 0.72
and 0.71 and in another experiment, they are 0.47 and 0.45.

5 Experimental Results of PNNU on Three Applications

In this section, we provide empirical performance results for PNNU on three
applications: action recognition, object classification and image denoising. All
three applications require the nearest neighbor computation. We replace the
nearest neighbor computation with PNNU(α,β), where α, β denote different
parameter configurations of PNNU. All experiments are run on a compute server
using two Intel Xeon E5-2680 CPUs, with a total of 16 physical cores.

Algorithms to Compare. We consider both PNNU and PNNU without tech-
nique T2 (PNNU-no-T2). The latter involves more dot-product computations,
but yields better application accuracy. We compare PNNU and PNNU-no-T2
(both serial and parallel implementations) with three other algorithms:

1. Straightforward method (S). This is the straightforward exhaustive search
algorithm to find the nearest neighbor in terms of the cosine distance. If
the input data vector is x and candidate atoms are the columns of D, we
compute DTx. We call its serial implementation S. This method is the only
algorithm in the comparison that is guaranteed to find the nearest neighbor
of x in D.

2. PCA-dimensional-reduction-on-dictionary (PCAonD(α)). For dimensional-
ity reduction, we first perform PCA on D to get its top α principal compo-
nents VT

D, that is, DDT = VDΣVD
T for some diagonal Σ. Then dur-

ing computation, instead of computing DTx, we compute dot products
(VT

DD)T (VT
Dx) of reduced dimensionality. Note the parameter α specifies

dimensionality of dot-product computations after PCA dimension reduction.
In these experiments, we use α = 10.

3. PCA-dimensional-reduction-on-data (PCAonX(α)). This is the same as the
previous algorithm, but instead we compute PCA on the input data X. Let
VT
X contain the top α principal components. We compute (VT

XD)T (VT
Xx).

Note the parameter α specifies the dimensionality of dot-product computa-
tions after PCA dimension reduction. We use α = 10.

Performance Measures. We compare algorithms in terms of the following per-
formance related measures, where an algorithm Y can be S, PCAonD, PCAonX,
PNNU or PNNU-no-T2:

N: The number of arithmetic operations per query vector. This is the number
of addition and multiplication operations each algorithm performs for a single

9

query vector. For S, a dot-product between a query vector x ∈ Rm and
a dictionary D ∈ Rm×n incurs n(2m − 1) arithmetic operations (nm for
the multiplication and n(m − 1) for the addition). For PCAonD(α) and
PCAonX(α), it is n(2α−1). For PNNU(α,β), it is bounded above by αβ(2α−
1). For PNNU-no-T2(α,β), it is bounded above by αβ(2m− 1).
G: Efficiency gain. For an algorithm Y, its efficiency gain is the number of
arithmetic operations of the straightforward method (NS) over that of the
algorithm Y (NY): NS/NY.
Ts: Serial processing wall clock time in seconds. This is the time it takes for
the serial implementation of the algorithm to run.
Us: Serial speedup of an algorithm Y over the serial straightforward method.
It is the wall clock serial execution time of the straightforward method over
that of algorithm Y: TsS/TsY

. This is a run-time realization of the theoretical
efficiency gain G.
Tp: Parallel processing wall clock time in seconds. This is the time it takes
for the parallel implementation of the algorithm to run.
Up: Parallel-over-serial speedup. This is the parallel scaling performance of
the algorithm. It is Ts/Tp.
Ut: Total performance gain of an algorithm Y over the serial implementation
of the straightforward method: TsS/TpY

= Us × Up.
Q: Quality metric which is defined per application. For action recognition
and object classification, we report the recognition/classification accuracy on
the test set, i.e., the percentage of times the algorithm predicts the correct
class labels. For image denoising, we report the peak signal-to-noise ratio
(PSNR).

Performance Highlights. For each application, we will highlight the following
points in our performance analysis:

1. A comparison of how PNNU performs compared to the simple PCA methods
(PCAonX and PCAonD).

2. The algorithm and setting with the best quality metric (Q) compared to the
straightforward method.

3. The algorithm and setting with the best total performance gain (Ut).

In the following we will explicitly mention these highlighted points for each
application, and mark them with bold faces in the tables which report experiment
results.

5.1 Application A1: Action Recognition

For the action recognition task we use a standard benchmark dataset, the KTH
dataset [17], which is a video dataset consisting of 25 subjects where in each
video a single subject is performing one of six actions (walking, jogging, running,
boxing, hand waving and hand clapping). The dataset is split on subjects into
a training and testing set. Features are extracted from each video using the

10

same method as described in [20]. Features from each video consist of a variable
number of columns, where each column is a 150-long feature vector. K-means is
then performed on the training set to learn a dictionary of size 1000. Finally, each
column from every video is then encoded with the learned dictionary using either
conventional dot product or our PNNU approach. Each column is given a single
atom assignment, and for a given video these column assignments are aggregated
using a bag-of-words model. An SVM classifier with chi-squared kernel is then
trained on the bag-of-words representation in order to obtain prediction results.

Table 2. The experiment results for the KTH dataset.
Algorithm N G Ts Us Tp Up Ut Q

S 299,000 1 692.89 1.00 108.48 6.39 6.39 94.20%

PCAonX(10) 19,000 16 129.25 5.36 13.15 9.83 52.69 77.50%

PCAonD(10) 19,000 16 128.40 5.40 13.24 9.70 52.34 77.50%

PNNU-no-T2(1,1) 299 1,000 7.39 93.75 9.80 0.75 70.71 82.70%

PNNU-no-T2(1,10) 2,990 100 28.80 24.06 20.41 1.41 33.94 89.60%

PNNU-no-T2(5,1) 1,495 200 22.91 30.24 12.44 1.84 55.71 87.90%

PNNU-no-T2(5,5) 7,475 40 75.30 9.20 16.73 4.50 41.41 92.50%

PNNU-no-T2(5,10) 14,950 20 140.23 4.94 22.90 6.12 30.26 90.80%

PNNU-no-T2(10,1) 2,990 100 19.24 36.01 10.44 1.84 66.35 86.70%

PNNU-no-T2(10,10) 29,900 10 260.30 2.66 24.99 10.42 27.73 90.80%

PNNU(1,1) 1 299,000 6.36 108.96 5.73 1.11 120.95 82.70%

PNNU(1,10) 10 29,900 15.75 43.99 6.91 2.28 100.29 78.00%

PNNU(5,1) 45 6,644 15.56 44.54 8.05 1.93 86.08 85.50%

PNNU(5,5) 225 1,329 44.64 15.52 8.16 5.47 84.95 83.80%

PNNU(5,10) 450 664 80.87 8.57 8.98 9.01 77.16 84.40%

PNNU(10,1) 190 1,574 27.33 25.35 9.53 2.87 72.69 83.80%

PNNU(10,10) 1,900 157 162.95 4.25 10.69 15.24 64.79 87.30%

Table 2 shows the experiment results for the KTH dataset. The straight-
forward method, denoted as S, achieves the highest accuracy (Q) of 94.20%.
PCAonX(10) and PCAonD(10) both achieve accuracy (Q) of 77.50%, which is
in general substantially lower than PNNU configurations. Additionally, many
PNNU configurations are strictly better in terms of both quality (Q) and total
performance gain (Ut).

PNNU-no-T2(5,5) has an accuracy of 92.50%, the closest to that of S, with
an efficiency gain (G) of 40. This translates into a serial speedup (Us) of 9.20x
(the difference between G and Us is due to both run-time overhead and G only
counting arithmetic operations). The parallel speedup (Up) is 4.50x, for a total
performance gain (Ut) of 41.41x over the serial implementation of S.

Notably, PNNU(1,1) achieves the highest total performance gain (Ut) of
120.95x with accuracy (Q) of 82.70%. This trade-off is good for applications
that can accept a small reduction in quality in order to significantly reduce run-
ning time. As expected, PNNU-no-T2 achieves higher accuracy than PNNU at

11

the expense of increased running time. We note this trend in other applications
as well.

Though in general increasing α and β improves Q, it is not always the case.
For instance, we observe a drop of 1.7% in Q when going from PNNU-no-T2(5,5)
to PNNU-no-T2(5,10). The reason for this is explained in the following example.
Suppose given an input sample x, the nearest atom to x is d∗. Increasing β from
5 to 10 leads to finding the candidate atom dβ=10 that is nearer to x than the
candidate atom dβ=5. Nonetheless, there is a chance that dβ=10 is further away
from d∗ than dβ=5. This results in the drop in Q. In general, when x is already
close to d∗, this phenomenon is unlikely to happen.

5.2 Matching Pursuit Algorithm with PNNU

The object classification and image denoising tasks rely on computing sparse
codes. Before going into those applications, we introduce MP (Algorithm 1), the
sparse coding algorithm that we use to compute sparse representations for these
tasks. We modify the nearest neighbor computation section of MP to use PNNU
and obtain MP-PNNU (Algorithm 2). For comparison with other algorithms, we
just replace PNNU routine with other algorithms’ routines of finding the nearest
neighbor.

Algorithm 1. MP

1: Input: data vector x, dictionary
D = [di, . . . ,dn], and the number
of iterations L

2: Output: sparse code y
3: r← x
4: for t = 1 to L do
5: i← arg max |DT r|
6: yi ← dT

i r
7: r← r− yidi

8: end for

Algorithm 2. MP-PNNU

1: Input: data vector x, dictionary
D = [di, . . . ,dn], orthonormal ba-
sis V, the number of iterations L,
and PNNU

2: Output: sparse code y
3: r← x
4: for t = 1 to L do
5: v← VT r
6: C← PNNU(v)
7: j ← arg max |CT r|
8: i← i s.t. di = cj
9: yi ← dT

i r
10: r← r− yidi

11: end for

The MP algorithm finds the column dj in the dictionary D which is best
aligned with data vector x. Then, the scalar projection yj along this dj direction
is removed from x and the residual r = x − yjdj is obtained. The algorithm
proceeds in each iteration by choosing the next column dj that is best matched
with the residual r until the desired number of iterations is performed. We note
that for each iteration, line 5 is the most costly nearest neighbor step. As we
noted previously, for a m × n dictionary D, exhaustive search will incur a cost
of O(mn) and thus can become prohibitively expensive when m and n are large.
The MP-PNNU algorithm can mitigate this problem. MP-PNNU has the same

12

overall structure as MP, except that in finding the best matched column dj , it
uses the PNNU approach as described in Sec. 3.

5.3 Application A2: Object Classification

For the image object classification task we use the CIFAR-10 image dataset [8],
an image dataset of 10 object classes. We randomly select 4,000 images from the
training set and evaluate on 1,000 images from the test set (we ensure that the
same number of samples are selected from each class). For each image, all 6 by
6 3-color-channel (RGB) patches are extracted sliding by one pixel, and there-
fore, each vector is 108 dimension long. We learn a 3,000-atom dictionary using
K-SVD [1], a generalization of K-means, on the training patches. For encoding,
we compare the classic MP (Algorithm 1) with MP-PNNU (Algorithm 2), set-
ting k = 5 (number of coefficients) for both algorithms. Finally, we perform a
maximum pooling operation over each image to obtain a feature vector. A linear
SVM classifier is trained on the obtained training set feature vectors and testing
set accuracy results are reported.

Table 3. The experiment results for the CIFAR-10 dataset.
Algorithm N G Ts Us Tp Up Ut Q

S 645,000 1 3,815.89 1.00 890.37 4.29 4.29 51.90%

PCAonX(10) 57,000 11 1,492.36 2.56 187.27 7.97 20.38 30.40%

PCAonD(10) 57,000 11 1,600.88 2.38 185.38 8.64 20.58 33.10%

PNNU-no-T2(1,1) 215 3,000 38.2375 99.79 76.1259 0.50 50.13 33.90%

PNNU-no-T2(1,10) 2,150 300 69.9699 54.54 86.6791 0.81 44.02 41.70%

PNNU-no-T2(5,1) 1,075 600 65.3232 58.42 80.3086 0.81 47.52 40.20%

PNNU-no-T2(5,5) 5,375 120 143.894 26.52 93.466 1.54 40.83 42.30%

PNNU-no-T2(5,10) 10,750 60 241.786 15.78 113.46 2.13 33.63 45.10%

PNNU-no-T2(10,1) 2,150 300 199.547 19.12 153.835 1.30 24.81 39.40%

PNNU-no-T2(10,10) 21,500 30 971.899 3.93 115.558 8.41 33.02 46.60%

PNNU(1,1) 1 645,000 76.8262 49.67 68.934 1.11 55.36 33.10%

PNNU(1,10) 10 64,500 113.847 33.52 72.8819 1.56 52.36 34.10%

PNNU(5,1) 45 14,333 114.627 33.29 65.21 1.76 58.52 37.30%

PNNU(5,5) 225 2,867 227.224 16.79 85.5631 2.66 44.60 37.30%

PNNU(5,10) 450 1,433 367.583 10.38 95.8492 3.84 39.81 36.30%

PNNU(10,1) 190 3,395 165.41 23.07 121.995 1.36 31.28 35.80%

PNNU(10,10) 1,900 5 724.173 5.27 108.528 6.67 35.16 39.10%

Table 3 shows the experiment results for the CIFAR-10 dataset. The straight-
forward method S achieves the highest accuracy (Q) of 51.90%. (This multi-class
classification task is known to be difficult, so the relatively low 51.90% achieved
accuracy is expected for a simple algorithm like this [14].) PCAonX(10) and
PCAonD(10) achieve accuracy of 30.40% and 33.10%, respectively. Once again,

13

we see that many PNNU configurations are strictly better in terms of both qual-
ity (Q) and total performance gain (Ut). PNNU-no-T2(10,10) has an accuracy of
46.60%, the closest to that of S, with an efficiency gain (G) of 30. This translates
into a serial speedup (Us) of 3.93x, a parallel speedup (Up) of 8.41x, for a total
performance gain (Ut) of 33.02x over the serial implementation of S. PNNU(5,1)
achieves the highest total performance gain (Ut) of 58.52x with accuracy (Q) of
37.30%.

5.4 Application A3: Image Denoising

In the previous subsections, we have shown that PNNU works well for classifica-
tion problems. In this subsection, we showcase its performance at reconstruction,
specifically, removing noise from an image of Lena [15]. First, a noisy version of
the Lena image is generated by adding Gaussian noise with zero mean and stan-
dard deviation 0.1. This noisy image is then patched in the same manner as
described in the previous subsection, using 8 by 8 grayscale patches, creating
64-dimensional vectors. These patches (roughly 250,000) are then used to learn
a dictionary of 3,000 atoms using K-SVD with the number of sparse coefficients
set to 5. The denoising process consists of encoding each patch with either MP
or MP-PNNU. After encoding, each patch is represented as a sparse feature vec-
tor (sparse representation). To recover a denoised version of the input signal,
the dot-product between the sparse vectors and learned dictionary is computed.
Finally, the recovered patches are each averaged over a local area to form the
denoised image. For our quality measure (Q), we report the peak signal-to-noise
ratio (PSNR). A PSNR for a 8-bit per pixel image that is acceptable to human
perception ranges between 20dB and 40dB [16].

Table 4 shows the experiment results for denoising the Lena image. From the
table, we see that S achieves the highest PSNR (Q) of 32.34. PCAonX(10) and
PCAonD(10) achieve similar PSNR of 31.18 and 31.20 respectively. In contrast
with the other two applications, both algorithms perform reasonably well for
this application. PNNU-no-T2(10,10) has PNSR (Q) of 32.19, the closest to
that of S, with a G of 30, translating into a 12.49x speedup (Us). Its parallel
implementation (Up) adds another 4.18x speedup, for a total performance gain
(Ut) of 52.16x. Notably, PNNU(1,1) achieves the highest total performance gain
(Ut) of 80.34x with PSNR (Q) of 25.71. This is good for scenarios where a
rougher denoising result is acceptable for a significant gain in performance.

6 Conclusion

In this paper, we have described how nearest-neighbor (NN) is a key function for
data analytics computations such as sparse coding. To enhance the performance
of the NN computation, we have taken three orthogonal techniques: (T1) re-
duce the number of required dot-product operations; (T2) lower the cost of each
dot-product computation by reducing dimensionality; and (T3) perform parallel
computations over multiple cores. Noting that the gains from (T1), (T2) and

14

Table 4. The experiment results for denoising the Lena image.
Algorithm N G Ts Us Tp Up Ut Q

S 381,000 1 392.92 1.00 39.24 10.01 10.01 32.34

PCAonX(10) 57,000 7 48.27 8.14 13.59 3.55 28.90 31.18

PCAonD(10) 57,000 7 59.23 6.63 16.78 3.53 23.42 31.20

PNNU-no-T2(1,1) 127 3,000 5.98 65.68 5.42 1.10 72.51 25.88

PNNU-no-T2(1,10) 1,270 300 6.79 57.89 8.29 0.82 47.40 27.36

PNNU-no-T2(5,1) 635 600 11.25 34.91 8.66 1.30 45.35 29.05

PNNU-no-T2(5,5) 3,175 120 22.95 17.12 8.06 2.85 48.74 30.95

PNNU-no-T2(5,10) 6,350 60 35.85 10.96 10.47 3.42 37.53 31.58

PNNU-no-T2(10,1) 1,270 300 8.22 47.82 7.55 1.09 52.03 29.84

PNNU-no-T2(10,10) 12,700 30 31.46 12.49 7.53 4.18 52.16 32.19

PNNU(1,1) 1 381,000 4.55 86.33 4.89 0.93 80.34 25.71

PNNU(1,10) 10 38,100 5.64 69.61 5.28 1.07 74.41 25.80

PNNU(5,1) 45 8,467 6.77 58.07 5.42 1.25 72.45 28.71

PNNU(5,5) 225 1,693 11.14 35.28 5.49 2.03 71.60 29.87

PNNU(5,10) 450 847 14.88 26.41 5.68 2.62 69.23 30.17

PNNU(10,1) 190 2,005 6.76 58.11 5.26 1.29 74.75 29.67

PNNU(10,10) 1,900 201 25.96 15.13 5.96 4.36 65.95 31.64

(T3) complement each other, we have proposed a parallel nearest neighbor unit
(PNNU) algorithm which uses a novel fast table look up, parallelized over mul-
tiple dimensions, to identify a relatively small number of dictionary atoms as
candidates. Only these candidates are used to perform reduced-dimension dot
products. PNNU allows the dot-product computations for these candidates to
be carried out in parallel. As noted in Sec. 3.1, a key to the success of the PNNU
approach is our application of PCA to dictionary atoms, rather than raw data
vectors as in conventional PCA applications. This use of PCA to build a table
lookup for the purpose of identifying the nearest candidate atom is novel.

We have validated the PNNU approach on multi-core computers with several
application tasks including action recognition, image classification and image de-
noising. Substantial total performance gains (e.g., 41x) are achieved by software
implementations of PNNU without compromising the accuracy required by the
applications.

Other potential applications for PNNU are abundant. For example, large-
scale data-driven deep learning can benefit from reduced dot product require-
ments in its computation. Mobile computing can benefit from speed and en-
ergy efficient implementation of sparse coding resulting from PNNU to allow
sophisticated learning on client devices. In the future, we expect to implement
PNNU as a hardware accelerator which can further speed up NN computations.
In addition, we will explore integrated use of PNNU in conjunction with GPU
accelerators.

Acknowledgments: This work is supported in part by gifts from the Intel Cor-
poration and in part by the Naval Postgraduate School Agreement No. N00244-
15-0050 awarded by the Naval Supply Systems Command.

15

References

1. Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on Signal Process-
ing 54(11), 4311–4322 (2006).

2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM journal on scientific computing 20(1), 33–61 (1998).

3. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the twentieth annual
symposium on Computational geometry, pp. 253–262 (2004).

4. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. The
Annals of statistics 32(2), 407–499 (2004).

5. Gkioulekas, I.A., Zickler, T.: Dimensionality reduction using the sparse linear
model. In: Advances in Neural Information Processing Systems, pp. 271–279 (2011).

6. Indyk, P.: Nearest neighbors in high-dimensional spaces. (2004).
7. Jolliffe, I.: Principal component analysis. Wiley Online Library (2002).
8. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.

Computer Science Department, University of Toronto, Tech. Rep (2009).
9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-

volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012).

10. Kung, H., McDanel, B., Teerapittayanon, S. NNU Source Repository. Available at
https://gitlab.com/steerapi/nnu.

11. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing 41(12), 3397–3415 (1993).

12. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks through
ffts. arXiv preprint arXiv:1312.5851 (2013).

13. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009).
14. Rifai, S., Muller, X., Glorot, X., Mesnil, G., Bengio, Y., Vincent, P.: Learning

invariant features through local space contraction. arXiv preprint arXiv:1104.4153
(2011).

15. Roberts, L.: Picture coding using pseudo-random noise. Information Theory, IRE
Transactions on 8(2), 145–154 (1962).

16. Saha, S.: Image compression-from DCT to wavelets: a review. Crossroads 6(3),
12–21 (2000).

17. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM ap-
proach. In: Proceedings of the 17th International Conference on Pattern Recogni-
tion, pp. 32–36 (2004).

18. Shakhnarovich, G., Indyk, P., Darrell, T.: Nearest-neighbor methods in learning
and vision: theory and practice. (2006).

19. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthog-
onal matching pursuit. IEEE Transactions on Information Theory 53(12), 4655–
4666 (2007).

20. Wang, H., Klaser, A., Schmid, C., Liu, C.-L.: Action recognition by dense trajecto-
ries. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3169–
3176 (2011).

21. Wess, S., Althoff, K.-D., Derwand, G.: Using kd trees to improve the retrieval step
in case-based reasoning. Springer (1994).

https://gitlab.com/steerapi/nnu

	PNNU: Parallel Nearest-Neighbor Units for Learned Dictionaries

