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Abstract

Unsupervised feature learning methods have proven effective for classification
tasks based on a single modality. We present multimodal sparse coding for learn-
ing feature representations shared across multiple modalities. The shared repre-
sentations are applied to multimedia event detection (MED) and evaluated in com-
parison to unimodal counterparts, as well as other feature learning methods such
as GMM supervectors and sparse RBM. We report the cross-validated classifica-
tion accuracy and mean average precision of the MED system trained on features
learned from our unimodal and multimodal settings for a subset of the TRECVID
MED 2014 dataset.

1 Introduction

Multimedia Event Detection (MED) aims to identify complex activities occurring at a specific place
and time involving various interactions of human actions and objects. MED is considered more
difficult than concept analysis such as action recognition and has received significant attention in
computer vision and machine learning research. In this paper, we propose the use of sparse coding
for multimodal feature learning in the context of MED. Originally proposed to explain neurons
encoding sensory information [8], sparse coding provides an unsupervised method to learn basis
vectors for efficient data representation. More recently, sparse coding has been used to model the
relationship between correlated data sources. By jointly training a dictionary using audio and video
tracks from the same multimedia clip, we can force the two modalities to share a similar sparse
representation whose benefit includes robust detection and cross-modality retrieval.

In the next section, we will describe audio-video feature learning in various unimodal and multi-
modal settings for sparse coding. We then present our experiments with TRECVID MED dataset.
We will discuss the empirical results, compare them to other methods, and conclude.

2 Audio-video Feature Learning

In summary, our approach is to build feature vectors by sparse coding on the low-level audio and
video features. Multiple feature vectors (i.e., sparse codes) are aggregated via max pooling. The
resulting pooled feature vectors can scale to describe the entire multimedia file. We use them to train
an array of classifiers for MED events.

*This work was sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002.
Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.
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Figure 1: Preprocessing audio and video data from multimedia clip

2.1 Low-level feature extraction and preprocessing

We begin by locating the keyframes of a given multimedia clip. We apply a simple two-pass al-
gorithm that computes color histogram difference of any two successive frames and determines a
keyframe candidate based on the threshold calculated on the mean and standard deviation of the
histogram differences. Using 256 bins in the histogram, we examine the number of nonzero bins
(reflecting the degree of color variation) in the keyframe candidates and discard the ones with less
than 26 nonzero bins (≈ 10% of 256). This ensures that our keyframes are not all-black or all-white
blank images.

Around each keyframe, we extract 5-sec audio data and additional 10 uniformly sampled video
frames within the duration as illustrated in Figure 1a. If extracted audio is stereo, we take only the
left channel. The audio waveform is resampled to 22.05 kHz and regularized by the time-frequency
automatic gain control (TF-AGC) to balance the energy in sub-bands. We form audio frames using a
46-msec Hann window with 50% overlap between successive frames for smoothing. For each frame,
we compute 16 the Mel-frequency cepstral coefficients (MFCCs) as the low-level audio feature. In
addition, we append 16 delta cepstral and 16 delta-delta cepstral coefficients, which make our low-
level audio feature vectors 48 dimensional. Finally, we apply PCA whitening before unsupervised
learning. The complete audio preprocessing steps are described in Figure 1b.

For video preprocessing, we take a deep learning approach. We have tried out pretrained
convolutional neural network (CNN) models for the ImageNet Large-scale Visual Recog-
nition Challenge (ILSVRC), namely GoogLeNet imagenet-googlenet-dag [11], the
Oxford Visual Geometry Group (VGG) VD models imagenet-vgg-verydeep-16
and imagenet-vgg-verydeep-19 [10], and a Berkeley Caffe reference model
imagenet-caffe-alex [6]. We have ended up choosing imagenet-vgg-verydeep-19.
As depicted in Figure 1c, we run the CNN feedforward passes with the extracted video frames.
For each video frame, we take 4,096-dimensional hidden activation from fc7, the highest hidden
layer before the final ReLU (i.e., the rectification non-linearity). By PCA whitening, we reduce the
dimensionality to 128.

2.2 High-level feature modeling via sparse coding

We use sparse coding to model high-level features that can train classifiers for event detection.

Unimodal feature learning. A straightforward approach for sparse coding with two heterogeneous
data modalities is to learn a separate dictionary of basis vectors for each modality. Figure 2 depicts
unimodal sparse coding schemes. Recall the preprocessed audio and video input vectors xA and xV.
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Figure 2: Unimodal sparse coding and feature union
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Figure 3: Multimodal sparse coding and feature formation possibilities

Audio-only sparse coding is done by

min
DA,y

(i)
A

nA∑
i=1

‖x(i)
A −DAy

(i)
A ‖

2
2 + λ‖y(i)

A ‖1 (1)

where we feed nA unlabeled audio examples to simultaneously learn the unimodal dictionary DA

and sparse codes y(i)
A under the sparsity regularization parameter λ. (We denote x(i)

A the ith training
example for audio.) Similarly, using nV unlabeled video examples, we learn

min
DV,y

(i)
V

nV∑
i=1

‖x(i)
V −DVy

(i)
V ‖

2
2 + λ‖y(i)

V ‖1. (2)

We can form yA+V = [yA yV]
>, a union of the audio and video feature vectors from unimodal

sparse coding illustrated in Figure 2c.

Multimodal feature learning. The feature union yA+V encapsulates both audio and video sparse
codes. However, the training is done in a parallel, unimodal fashion such that sparse coding dictio-
nary for each modality is learned independently of the other. To remedy the lack of joint learning, we
propose a multimodal sparse coding scheme described in Figure 3a. We use the joint sparse coding
technique used in image super-resolution [13]

min
DAV,y

(i)
AV

n∑
i=1

‖x(i)
AV −DAVy

(i)
AV‖

2
2 + λ′‖y(i)

AV‖1. (3)

Here, we feed the concatenated audio-video input vector x(i)
AV = [ 1√

NA
x
(i)
A

1√
NV

x
(i)
V ]>, where NA

and NV are dimensionalities of xA and xV, respectively. As an interesting property, we can decom-
pose the jointly learned dictionary DAV = [ 1√

NA
DAV−A

1√
NV

DAV−V]
> to perform the following

audio-only and video-only sparse coding

min
DAV−A,y

(i)
AV−A

nA∑
i=1

‖x(i)
AV−A −DAV−Ay

(i)
AV−A‖

2
2 + λ′′‖y(i)

AV−A‖1, (4)

min
DAV−V,y

(i)
AV−V

nV∑
i=1

‖x(i)
AV−V −DAV−Vy

(i)
AV−V‖

2
2 + λ′′‖y(i)

AV−V‖1. (5)
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In principle, joint sparse coding via Eq. (3) combines the objectives of Eqs. (4) and (5), forcing the
sparse codes y(i)

AV−A and y
(i)
AV−V to share the same representation. Note the relationship between the

regularization parameters λ′ = ( 1
NA

+ 1
NV

)λ′′. Ideally, we could have y
(i)
AV = y

(i)
AV−A = y

(i)
AV−V,

although empirical values determined by the three different optimizations differ in reality. Feature
formation possibilities on multimodal sparse coding are explained in Figure 3.

3 Evaluation

3.1 Dataset, task, and experiments

We use the TRECVID MED 2014 dataset [1] to evaluate our schemes. We consider the event de-
tection and retrieval tasks using the 10Ex and 100Ex data scenarios, where 10Ex includes 10 multi-
media examples per event, and 100 examples for 100Ex. There are 20 event classes (E021 to E040)
with event names such as “Bike trick,” “Dog show,” and “Marriage proposal.” For evaluation, we
compute classification accuracy and mean average precision (mAP) metrics according to the NIST
standard on the following experiments:

1. Cross-validation on 10Ex;
2. 10Ex/100Ex (train with 10Ex and test on 100Ex).

We use the number of basis vectors K = 512 same for all dictionaries DA, DV, and DAV. We
aggregate sparse codes around each keyframe of a training example by max pooling to form feature
vectors for classification. We train linear, 1-vs-all SVM classifiers for each event whose hyper-
parameters are determined by 5-fold cross-validation on 10Ex. We use the INRIA SPAMS (SPArse
Modeling Software) [2], VOICEBOX Speech Processing Toolkit [3], MatConvNet [12] to drive the
pretrained deep CNN models, and LIBSVM [5].

3.2 Other feature learning methods for comparison

We consider other unsupervised methods to learn audio-video features for comparison. We evaluate
the performance of Gaussian mixture model (GMM) and restricted Boltzmann machine (RBM) [9]
under similar unimodal and multimodal settings. For GMM, we use the expectation-maximization
(EM) to fit the preprocessed input vectors xA, xV, xAV in 512 mixtures and form GMM supervectors
[4] as feature that contain posterior probabilities with respect to each Gaussian. The max-pooled
GMM supervectors are applied to train linear SVMs. We adopt the shallow bimodal pretraining
model by Ngiam et al. [7] for RBM. Activations from the hidden layer of a size 512 are also max
pooled before SVM. We have applied a target sparsity of 0.1 to both GMM and RBM. For GMM, this
means that a GMM supervector is left with only the highest 10% elements (posterior probabilities)
while the rest being zeroed.

3.3 Results

Table 1 presents the classification accuracy and mAP performance of unimodal and multimodal
sparse coding schemes. For the 10Ex/100Ex experiment, we have used the best parameter setting
from the 10Ex cross-validation to test 100Ex examples. Indicated by the accuracy degradation in
10Ex/100Ex, the results from 5-fold cross-validation on 10Ex are optimistic. This is expected since
hyperparameter optimization via cross-validation includes the test samples, and 10Ex is a substan-
tially smaller dataset.

In general, we observe that the union of audio and video feature vectors perform better than using
only unimodal or cross-modal features. The union of cross-modal features (Figure 3d) results better
performance than joint sparse coding in 3a). We remark that the union of unimodal features has
also led to better performance. The union schemes, however, double feature dimensionality (i.e.,
from 512 to 1,024) since our union operation concatenates the two feature vectors. Joint feature
vector is an economical way of combining both the audio and video features while keeping the same
dimensionality as audio-only or video-only.

In Table 2, we report the mean accuracy and mAP for GMM and RBM under the union and joint
feature learning schemes on the 10Ex/100Ex experiment. Our results show that sparse coding is
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Table 1: Mean accuracy and mAP performance of sparse coding schemes

Unimodal Multimodal
Audio-only Video-only Union Audio Video Joint Union

(Fig. 2a) (Fig. 2b) (Fig. 2c) (Fig. 3b) (Fig. 3c) (Fig. 3a) (Fig. 3d)

Mean accuracy
(cross-val. 10Ex) 69% 86% 89% 75% 87% 90% 91%

mAP
(cross-val. 10Ex) 20.0% 28.1% 34.8% 27.4% 33.1% 35.3% 37.9%

Mean accuracy
(10Ex/100Ex) 56% 64% 71% 58% 67% 71% 74%

mAP
(10Ex/100Ex) 17.3% 28.9% 30.5% 23.6% 28.0% 28.4% 33.2%

Table 2: Mean accuracy and mAP performance for GMM and RBM on 10Ex/100Ex

Feature learning schemes Mean accuracy mAP
Union of unimodal GMM features
(Figure 2c) 66% 23.5%

Multimodal joint GMM feature
(Figure 3a) 68% 25.2%

Union of unimodal RBM features
(Figure 2c) 70% 30.1%

Multimodal joint RBM feature
(Figure 3a) 72% 31.3%

better than GMM by 5–6% in accuracy and 7–8% in mAP. However, we find that the performance
of RBM is on par with sparse coding. This leaves a good next step to explore further with RBM and
develop joint feature learning schemes for it.

4 Conclusion

We have presented multimodal sparse coding for MED. Our approach can build joint sparse feature
vectors learned from different modalities and scale to file-level descriptors suitable for training clas-
sifiers in a MED system. Using the TRECVID MED 2014 dataset, we have empirically validated
our approach and achieved promising performance measured in accuracy and precision metrics rec-
ommended by the NIST standard.

We envision a fuller version of this work that will address the following. First of all, we have tested
a limited set of parameterizations for each model. For example, sparse coding crucially depends on
the number of basis vectors K in a dictionary, input (patch) dimension N , and sparsity parameter
λ. Similarly for GMM and RBM, determining the number of mixtures or hidden units and regular-
ization parameters among other factors would be critical. Our choice has been typical according to
our media processing expertise, but not comprehensive. We plan to report a broader set of results
and analyze model-specific parameter sensitivity along the effect of hyperparameter choices. Our
video feature extraction uses a pretrained CNN model for detecting objects only. We are consider-
ing CNN models for detecting scenes as well. For audio, integrating with contextual detectors such
as speech activity detection (SAD), language or speaker ID, and environmental noise detection are
being discussed.
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