
Nested Buddy System: A New Block Address
Allocation Scheme for ISPs and IaaS Providers

Michael B. Crouse, H.T. Kung
John A. Paulson School of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

Email: mcrouse@seas.harvard.edu, kung@harvard.edu

Abstract—We propose a novel block address allocation
method, called the nested buddy system, which can make use
of wasted areas in the classical buddy system due to internal
fragmentation. While achieving high utilization of address space,
our new scheme supports efficient address matching for routers
in packet forwarding and for network middleboxes in packet
filtering. Specifically, the scheme uses just one prefix rule for
each allocated address block in a packet routing/filtering table.
We show by analysis and simulation that the increased address
utilization can lead to significant reduction in the probability
of a denial-of-service under bursty address allocation requests.
In contrast, the classical buddy system requires the aggregation
of many requests over time to smooth out demand, resulting in
service delays undesirable to end users. Our solution is applicable
to ISPs in serving mobile users carrying many network connected
IoT devices and IasS providers in the cloud in serving tenants
with dynamically varying demands for network addresses.

Keywords—Networking, IP allocation, Cloud, ISP, IaaS, IoT

I. INTRODUCTION
We address a fundamental conflict in large-scale resource

allocation, namely, efficient allocation of shared resources
versus ease in managing the allocated resources. Specifically,
we propose a novel block address allocation scheme, the nested
buddy system, which exhibits desirable trade-offs between
these two goals. Compared to previous solutions based on the
standard buddy system, our solution can increase address-space
utilization by more than 50% while requiring only one prefix
rule per allocated address block for routing and firewall table
entries.

We show by analysis and simulation that the increased uti-
lization of address space can lead to a significant reduction in
the possibility of denial-of-service due to depletion of address
resources resulting from bursty demands. We illustrate how our
solution can benefit Internet Service Providers (ISPs) in serv-
ing mobile users carrying many network connected Internet
of Things (IoT) devices and Infrastructure-as-a-Service (IasS)
providers in the cloud for serving tenants with dynamically
varying demands on network addresses.

The contributions of the paper are as follows:
1) The proposed nested buddy system for block address

allocation (Section IV-C).
2) Analysis on the utilization of address space under

the classical buddy system (Section IV-B) and how
nested buddy system can improve upon it.

3) An overlapping allocation scheme which allows use
of only one prefix rule per allocated address block,
and an efficient Ternary Content Addressable Mem-
ory (TCAM) implementation for resolving the allo-

cation ambiguity (Section IV-C2).
4) Validation by numerical simulations and analysis for

arrivals and frees of block address requests with sizes
under various distributions (Sections V,VI and VII).

5) Formulation of address block allocation problems
for achieving high address-space utilization while
minimizing the required number of rules per allocated
block in packet routing and filtering tables for both
ISPs serving mobile users with many IoT devices
(Section VII) and IaaS service providers serving
tenants with dynamic requests of network addresses
(Section VI).

II. RELATED WORK
Providing optimizations for high-speed packet matching

and forwarding consists of many different levels of abstraction.
In order to perform filtering and routing at a line rate of
multiple gigabits per second, optimizations are crucial; a
survey of several approaches can be found here [1], among
them are rule compression, re-ordering and rule-representation
structuring [2], [3], [4]. Others have focused on designing
overlapping and searching schemes for prefix specification
used in hardware accelerators such as TCAMs [5].

The set of optimizations most similar to our work are effi-
cient representations of packet matching rule sets for hardware
implementation. Srinivasan et. al. showed that many network
level packet filters that rely on source and destination addresses
can be easily represented as a set of prefix entries that are an
ideal fit for TCAM implementations [6]. Another optimization
is in the representation of the rules (entries) themselves using
encoding schemes to compress the rules within the limited
budget of a Content Address Memory block [4].

Our work focuses on block allocation schemes, specifically
the buddy system allocation scheme which was described
by Knuth [7]. A survey of allocation schemes as well as
workload simulation specifically for memory systems provides
a complete treatment of different approaches and types of allo-
cators [8]. Our nested structure leverages the basic premise of
the buddy scheme but alters it to suit address block allocations
identifiable by address prefixes for fast packet classification
with TCAM. As far as we know, our propsed nested buddy
system, which can minimize waste in block address allocation
due to fragmentation and the number of required entries for
their representation, is new.

III. MOTIVATING APPLICATION SCENARIOS
We consider major trends associated with the increase of

demand, and exhaustion, of public IPv4 addresses, in regards



to the IoT and IaaS. The increase in number of devices and
their requirement of routable addresses introduces the need for
highly optimized design of the allocation and management of
public addresses in order to increase address space utilization
while minimizing the cost of packet routing and filtering.

A. IaaS Providers in the Cloud
Consider IasS providers which provide tenants’ appli-

cations with external-facing public IP addresses. Given the
scarcity of IPv4 addresses, today’s service providers usually
do not have a single, large contiguous address space [9].
Instead, they use an aggregation of address blocks of various
sizes, accumulated over the entire IPv4 address space [10],
[11]. When a particular address block is exhausted, the service
provider will need to allocate tenants to other blocks, possibly
even from other registration regions which can introduce poor
performance as well as unseen cybersecurity. It is therefore
critical that address allocation schemes have high utilization
to limit the chance of address-space exhaustion.1

Address-space utilization must be balanced with ease of
management of allocated addresses, especially in the number
of required rules for routing and filtering tables in routers
and firewall middleboxes. For high-speed, line-rate packet pro-
cessing, hardware acceleration (e.g., TCAM) is often utilized
which entails expensive circuitry and high power consumption
for which it is crucial to minimize the number of installed
rules. For example, use of just one TCAM entry for each
allocated address block (i.e., one rule per block) is highly
desirable. Use of entries logarithmic to the block size would
be considered as prohibitively expensive [5], [6]. For these
reasons, addresses should be allocated in blocks rather than
individually to allow a single rule to represent a block of
addresses.

Furthermore, for efficient address matching, it is preferable
to route or filter based on address prefixes as in conventional IP
routing. The classical buddy system is a standard block address
allocation scheme that supports prefix matching, however,
it generally incurs substantial waste due to fragmentation,
inducing a degradation in terms of address-space utilization.
The nested buddy system introduced in this paper aims at im-
proving address-space utilization while requiring a minimum
number of prefix rules for router and firewall tables.

B. ISPs for Mobile Users with IoT Devices
A main technology trend in the past several years has

been the increased commercial availability of a wide variety
of wearables, which together with other sensing and control
devices, form the Internet of Things (IoT). We consider a
scenario where a mobile user may carry many such network
connected wearables while moving from location to location.
When a user arrives at a foreign network, the network will
need to provide routing and firewall services for his or her
devices, in the style of mobile IP [12]. For easy management, it
would be desirable to manage the devices associated with each
user as a single address block subject to the same forwarding
and filtering rules associated with the user. Therefore, it is
important to allocate such address blocks efficiently to avoid
an unnecessary denial-of-service due to depletion of available
addresses, especially when users arrive in bursts.

1Note that for IPv6, which has abundant IP addresses, efficient ad-
dress allocation remains critical, for line-rate hardware-assisted packet filter-
ing/matching; see Section III-B.

128

512

1 2 3 4 5 6 7 8

256

512 512 512 512 512 512

128

64

64

256

64

64

128

128

64

64

128

128

128

64

128

128

64

128

128

128

128

128

128

128

128

128

256

Allocated

Internal Fragment

Free

Coalesce Buddy
1024

Fig. 1: Illustration of the classical buddy allocation system
managing a resource of 1024 items. The orange areas within
red allocations represent internal fragmentation. Buddies can
only be recombined with both are free as in Step 5 and 7.

IoT devices will benefit from the emergence of IPv6 which
has a substantial 128-bit address space, where every device
can literally be assigned to a unique address as opposed to
IPv4’s 32-bit addresses. Unfortunately, IPv6 does not mean
that address allocation is no longer a challenge. In fact, in order
to route/filter packets at high speeds via hardware circuits such
as TCAM, we still need to associate a logical group of devices
such as those carried by a mobile user with a prefix address
string of only a relatively small number of bits (e.g., 16 or
24). We can in general only expect gradual improvements in
the implementation cost and energy consumption of hardware
accelerators such as TCAM. These incremental improvements
will likely be overwhelmed by new demands such as those
imposed by IoT devices. We project the problem of efficient
block address allocation addressed in this paper will only gain
importance over coming years.

IV. BLOCK ADDRESS ALLOCATION SCHEMES
To be self contained, this section briefly reviews the basics

of block address allocation schemes. An efficient allocation
scheme must have low management cost while minimizing the
amount of address space waste introduced when serving allo-
cation requests. We adopt the terminology from the memory
management literature for this discussion.

The wasted space introduced by an allocation scheme is
referred to as fragmentation of which there are two types:
internal and external. Internal fragmentation is the result
of over-provisioning when performing an allocation for a
request generally in order to provide easier management of the
allocated block. External fragmentation refers to wasted blocks
resulting from a sequence of allocations and frees yielding
“islands” of small, unallocated blocks, of sizes too small for
use by the application.

In addition, we are concerned with the cost of using
the blocks once they are allocated as in the case of packet
routing and filtering. A well structured, hierarchical allocation
of IP addresses can greatly reduce the number of entries in
the routing/filtering table necessary for specifying the desired
network behavior, e.g., packet routing or filtering. We are



A

C

B

b-1 bits

b-2 bits

b-3 bits

Occupied (A)

Nested Buddy Block 
B (b-2) bits

 Available for 
Allocation

Wasted

b bits

Nested Buddy Block 
C (b-3) bits

 Available for 
Allocation

Fig. 2: Nested buddy system allocation utilizes the unoccupied
portion of a buddy block allocation (block for A) from the
bottom up. Each nested buddy block is the largest power of
two block beginning from the bottom that can be allocated
without overlapping with occupied region in red.

interested in minimizing the the cost in terms of number of
entries necessary for compact representation of each allocation
block. Thus the goal of an allocation scheme is to minimize
the amount of fragmentation of the resource while providing
minimal cost in representing the allocations made.

A. Buddy System Allocation
The address allocation scheme proposed by this paper

builds on top of the classical buddy system. The general buddy
system allocation handles dynamic requests by recursively
dividing the resource until an appropriate size block is reached.
The system was originally specified by Knuth in [7] and a full
treatment of block allocation schemes, including the buddy
system, is found in the literature (e.g., [8], [13]). The buddy
system is particularly relevant to the subject of this paper
because it embeds the basics of prefix-based address schemes
widely used in Internet routing by only allocating address-
prefix identifiable blocks.

The most common form of the buddy system divides the
resource into two equal parts at each recursive step, always
yielding block sizes in powers of two. Each pair of blocks at
a given size are referred to as “buddies”; when both are free,
they are recombined to form a single block of twice the size.
Figure 1 depicts a sequence of requests and frees using the
buddy system. The buddy system’s requirement of allocated
blocks being identifiable by address prefixes results in single
prefix entries per allocation, i.e., each block allocation can be
represented by a single rule or, in TCAM implementations, a
single TCAM entry.

Unfortunately, the cost of allocating blocks residing on
prefix boundaries the potential of over-allocating a block could
waste up to 50% of the addresses. For many application
domains, such as IP address allocation for IaaS providers and
ISPs considered in this paper, this amount of wasted address
space due to internal fragmentation is too costly.

Fragment

b-2 bits
(free) 

b-3 bits 

b-1 bits
(allocated) 

b-2 bits 
(allocated)

b-3 bits
(free) 

b-1 bits
(allocated) 

b-2 bits 
(allocated)

b-3 bits
(allocated) 

b-1 bits
(allocated) 

b-4 bits
(allocated)

b-4 bits
(allocated)

A A1

A2

B B

C

A1

A2

Fragment

1 2 3

C

B

C

Fig. 3: Nested buddy system with two allocations of nested
blocks B and C. At step 3, a fragment remains that is smaller
than the minimum allowed on the nested free list. Red blocks
(A1, B, C) as well as the blue block (A2) require just a single
entry per block to refer to the entire address block.

B. Expected Fragmentation in Buddy System Allocation
The internal fragmentation rate for single allocation block

is defined by

w =
2dlog2(r)e � r

2dlog2(r)e
. (1)

where r is the request size, simply the allocated block size
minus the size of the request, normalized by the size of
allocated block.

Let the range of possible request sizes be [m,n] where
m,n > 0 and X be a random variable representing the
allocation request size. Then Pr(X) is the probability dis-
tribution over the range of allocation requests. The expected
fragmentation rate is:

P
n

r=m

Pr(X = r)(2dlog2(r)e � r)P
n

r=m

Pr(X = r)2dlog2(r)e
. (2)

When using a continuous distribution, such as a Gaussian, the
density which lies outside the range, [m,n], is ignored for
simplicity. We save a complete analysis for the simulation and
empirical results.

C. Nested Buddy System Allocation
To resolve the waste due to internal fragmentation, we in-

troduce the nested buddy system which allocates buddy blocks
within the wasted internal fragments of the buddy system. The
basic concept can be seen in Figure 2 which illustrates the
underlying goal of utilizing the internal fragments created by
buddy system allocations.

To use the unoccupied portion of the block allocated for
A, we will allow a portion of the unused area to be allocated
by future requests. Figure 2 shows the entire buddy block
of size b bits allocated for request A. When allocating from
the unoccupied region, we allocate from the bottom of the
block up so that each nested block allocation is identifiable by
a single prefix address. When A is allocated, the green and
purple blocks, B and C respectively, can be made available
for allocation.



A

1

A

2

1 

b-2 bits
(1 entry)

b-3 bits
(1 entry)

b-1 bits
(1 entry)

Fig. 4: Example of the potential cost of allocating a nested
block for a minimum size, assuming that allocated blocks do
not overlap. Allowing a nested allocation B, in green, to be
arbitrarily small can introduce a high cost in the number of
prefixes for representing A exactly.

Figure 3 illustrates the allocation of nested blocks and
their allocation over a sequence of three requests. If a request
is made which is larger than all available blocks, we split
the request into multiple block allocations, each block is still
identifiable by a single prefix entry.

We study the performance of our nested buddy system
by first assuming that allocated blocks do not overlap. We
then describe an overlapping scheme which can achieve high
address-space utilization while still requiring only one entry
per allocated block.

1) Non-overlapping Scheme: Figure 4 illustrates the worse
case in terms of total entries for allocation of A and B within
the same root block. When A is initially allocated, it only
requires a single entry to represent the whole root block, shown
by the orange block. In step 2, when a request is filled with
the nested block in green it will require the prefix entries for
A to be expanded, shown by the b� 1 orange lines.

Based on the tree representation of Figure 2, we can prove
the following claims. Their proofs are straightforward but we
omit them due to space constraints.

Claim 1 Suppose that allocation blocks cannot overlap. Then
the number of entries in the worst case for allocating A and
B into a root block of size b bits is O(b).

That is, the number of entries required to represent two
blocks within a root block in the worst case is logarithmic
in the size of the block in order to specify A and B without
the prefix entries correspond to overlapping address blocks.
Scaling the number of entries logarithmically with the size of
the block is considered to be prohibitively expensive as noted
in Section I-A.

Let A2 correspond to the part of A’s occupancy that
expands over the b�1 bit boundary which is shown in Figure 3
in blue. Let b

A2 and b
B

be the size in bits for A and B,
respectively. We state the following:

Claim 2 A root block with allocations A and B can each
be represented exactly with at most two entries if (b � 1) �
(b

A2 � b
B

) � 0.

This is simply to state that if A2 and B can each be rep-
resented by a single power of two block without overlapping
then the number of entries is equal to the number of blocks,

A

1

A

2

B1 entry

1 entry 1 entry

Query - qfrag

Query - qA

Query - qB

0 x x x x x x

0 x x x x x x

0 1 1 x x x x

C

0 x x x x x x

0 1 1 x x x x

0 1 0 1 x x x

M0

M0

M1

M0

M1

M2

M0 = 1 ⇒ A 

M0M1’ = 1 ⇒ A 
M1 = 1 ⇒ B 

M0(M1’ + M2’) = 1 ⇒ A 
M1 = 1 ⇒ B 
M2 = 1 ⇒ C 

1 entry

0

32

64

40

48

Fig. 5: Overlapping allocated blocks (e.g., A,B and C) allows
for each allocation block to be representing by a single TCAM
entry, as illustrated by color-coded TCAM entries on the right.
Bit-string inputs and matchline outputs for the three instances
of TCAM shown are denoted by downward and rightward
arrows, respectively. The three possible query regions can be
easily distinguished based on the nature of the overlaps and
implemented efficiently via simple comparison after TCAM
lookup. M 0 means M ’s complement. For example, for a
TCAM lookup, if M1 = M2 = 0 and M0 = 1, then
M0(M 0

1 + M 0
2) = 1, so the looked up entry is considered

to be in A.

two in this case.
2) Overlapping Scheme: In order to provide maximum uti-

lization of the internal fragments, we can relax the assumption
of Claim 2. Rather than increasing the number of TCAM
entries to specify A when allocating the nested block B, we
simply maintain A’s single entry that specifies the entire root
block.

Figure 5 shows how the entries will be configured for each
allocation within the root block. A and B will each have a
single entry but regions covered by these entries overlap. There
are three cases to resolve, as demonstrated by the queries
in purple. If the packet address lies in A, shown as q

A

, it
will match only the corresponding TCAM entry for block A.
If the packet address is in the unoccupied fragment, q

frag

,
then it will match the TCAM entry for A; however, there is
nothing at that specific address so applying the policy is of no
consequence. For the last case, if the packet address is in the
block for B, q

B

, it will match both entries corresponding to
A and B.

We can easily handle the matchline conflict by realizing
any match on M1 must lie within the nested block B. The
same is true of nested block C and so on. The right part
of Figure 5 illustrates the TCAM entries for a buddy block
with increased nested blocks entries added. If matchline M0

is activated, before we can conclude that A was queried we
must be certain that neither B nor C were activated, i.e., both
are not matched. This overlapping entries scheme allows us to
represent every address block with just a single TCAM entry.

V. EMPIRICAL EVALUATION OF ALLOCATION SCHEMES
In the next four sections we will empirically evaluate the

buddy and nested buddy systems using various application
scenarios. In this section, we provide a baseline evaluation
using synthetic workloads generated over a large parameter
space using discrete Gaussian distributions for generating the
allocation request sizes. We also consider the impact on frag-
mentation when requests and frees of blocks are intermixed.

In the next section, we present an IaaS provider scenario



for allocating their public IP address space among their many
tenants and the impact of auto-scaling [11], [10]. Finally, in
Sections VII and VIII, we will present a personal IoT scenario
in which users, along with their connected devices, move
between ISPs.

To evaluate the the buddy and proposed nested buddy
systems for block IP address allocation, we have constructed a
simulator for serving requests and frees for a large IP address
space. The simulator is implemented in Python and runs on an
Intel Core-i7 3.6 GHz processor with 4 hyper-threaded cores
and 16 GB RAM under Ubuntu 14.04 LTS. Each simulation
configuration was run 500 times and results were averaged.
The size of the address space to be allocated is a /14 network
(16K addresses) for all presented results. We have found that
larger address spaces have similar trends but were slower to
evaluate. 2

A. Baseline Evaluation of Allocation Fragmentation
We now present an empirical comparison with the theoret-

ical model described in Section IV-B for the classical buddy
system and the improved performance of our proposed nested
buddy system. We consider a discrete Gaussian distribution
for our baseline analysis with increasing variance. We will set
the mean of the distribution to be 16 for the figures presented
in this section.3 The first set of experiments are performed
without any de-allocations, referred to as freeing, in order to
focus on the fragmentation in a simple case as modeled in
Section IV-B.

Fig. 6: A comparison of fragmentation predicted by our theo-
retical model compared with simulation results for buddy and
nested buddy systems using a discrete Gaussian distributions
for request sizes. Note that for the buddy system, simulation
results match model predictions perfectly.

Figure 6 shows that the buddy system fragmentation pre-
dicted by the theoretical model correctly matches the simula-
tion results under varying Gaussian distributions. The figure
illustrates that the nested buddy system has a large advantage
over the buddy system, in most cases greater than 50%

2We chose 16K addresses for simulation in order to reduce run time without
introducing noise which occurs when the address space is smaller.

3Plots confirming this have been omitted due to space constraints.

improvement in terms of fragmentation. The buddy system
also decays at a slightly faster rate as the variance increases.

B. Analysis with Freeing
Now we consider the impact of mixing of allocation re-

quests and frees on both the buddy and nested buddy systems.
We present empirical results regarding the average number
of allocated blocks per allocation request and the number of
allocation requests fulfilled by both schemes. 4

For a baseline evaluation of the impact on the allocation
performance in regards to freeing previously allocated blocks,
we introduce a Bernoulli distribution for expressing the ratio
of the number of frees to the number of allocation requests.
We refer to this parameter as the “free probability”, where a
10% free probability (corresponding to probability p = .1 for
the Bernoulli distribution) means that one average one free will
be made for every nine allocation requests. This an simplistic
model of the interplay between requests and frees but provides
a simple mechanism to test the breaking points of each system
in regards to fragmentation and number of prefix entries for
each request.

At each iteration of the simulation, a draw is taken from a
Bernoulli distribution with a probability p to determine if an
request or freeing action will occur. If the event is an address
allocation request, the size will be determined according either
to a uniform or discrete Gaussian. If the event is a free, one
of the previously allocated requests is chosen at random to be
freed.

Figure 7a and 7b are simulations using uniform and Gaus-
sian distributions for the size of the allocation requests respec-
tively. As the free probability approaches 50% (or p = .5), with
high probability the allocation systems will never exhaust the
address space. In this case the nested buddy system will behave
similarly to the buddy system.

VI. IP ADDRESS ALLOCATION FOR IAAS PROVIDERS
We now consider the scenario of an IaaS provider with a

set of tenants, or clients, who want to outsource their web
application and database system deployments to the cloud.
Each tenant will request resources in an on-demand fashion
which we will equate with the requests of public IP addresses
from the IaaS provider’s address space. To accommodate
the fluctuations in the size and number of tenants, the IaaS
provider will dynamically allocate blocks based on the tenant
requests.

We will evaluate the allocation schemes described above in
the context of the IaaS provider and tenant model for public IP
address allocation, the cost in terms of expected fragmentation,
the number of rules (entries) per allocation request and the
number of allocations before having to deny service due to
resource depletion.

For generating tenant sizes and requests that more closely
resemble IaaS usage, we assume a tenant’s initial deployment
size can be modeled as a discrete Gaussian distribution.
Generally tenants will determine initial deployment sizes based
on the average application response time and average number
of requests for their application using Little’s Law [14].

To study these assumptions and their corresponding param-
eters, we inspected several large IaaS providers stated quotas

4The number of blocks per request for the buddy system is always one. For
the nested buddy system, a single request can be allocated to multiple blocks,
requiring more than one entry for an allocation request.



(a) Uniform Distribution for Request Sizes

(b) Gaussian Distribution for Request Sizes

Fig. 7: Fragmentation, average number of entries and number of allocation requests by the buddy and nested buddy systems
with increasing free probabilities (0%, 10%, and 30%) under a uniform and discrete Gaussian distributions. The nested buddy
system has a slight increase in fragmentation and number of entries per allocation request but improves significantly over the
buddy system.

and best practice guides for using their platforms. For example,
most IaaS providers have instance limits for new customers,
on the order of 10s of machines each with their own public
IP addresses [15]. There are also statistics from companies
of various sizes regarding the number of instances needed for
peak or average traffic for running their web applications or
services [16], [17]. These vary in size from 40 instances up to
100s of virtual instances to run their services. This gives us
general ranges regarding the initial sizes for several types of
tenants.
A. Auto-scaling Allocation Performance

Most of the IaaS providers have best practice guides for
cloud tenants that want automatic scaling of their resources
based on the demand for their applications [15], [18]. The
general guidelines for auto-scaling involves increasing re-
sources by 50% once a specified utilization metric is met for a
sustained period of time. Resources are reduced by a constant
number when utilization drops back below that threshold.

We construct a simulation where the tenants request initial
blocks and then additional requests based on the auto-scale
guidelines. We utilize a discrete Gaussian distribution for the
initial tenant size (i.e., the size of the tenant’s allocation re-
quest) and use that value as the base for auto-scaling. Figure 8
shows the same evaluation criteria but over the average initial
tenant size configured for the discrete Gaussian distribution. As
the initial size of tenant grows, the nested buddy system lowers
the amount of internal fragmentation while the buddy system
becomes more fragmented. This is due to the buddy system
not being able to handle large and small allocation blocks as
well as the nested buddy system which can fit the small blocks
in the wasted space of the larger, earlier allocation requests.

VII. PERSONAL IOT
One of the major trends in the IoT is a drastic increase in

the number of connected devices such as wearables, sensing
and control devices. We consider an IoT scenario in which
users move between locations carrying many connected de-
vices which require routable IP addresses. When the user
arrives at a location, the local ISP will need to provide routing
and firewall services for all the devices for each user. In order
to limit the number of entries in the routing and filtering
tables, it is beneficial to group the user’s devices into a block
representable with a single prefix entry so that all the devices
in the same block can follow the same rules associated with
the user.

To simulate a mobile IoT scenario for Internet providers
we simulate Poisson arrival of users with a discrete Gaussian
number of devices per user. We also model the number of
users leaving per interval of time with a Poisson distribution.
Specifically, at each time interval, we simulate the number of
arrivals each with a Gaussian distributed number of devices.
The simulator also then generates a number of departures
which results in freeing that number of blocks from the
Internet provider’s allocated blocks. The arrival and departure
distributions are parametrized each with their own �

a

and �
d

,
which we consider the ratio of departure to arrival:

�
r

=
�
d

�
a

. (3)

Figure 9 is the result of �
r

between .2 and .4 in order
to ensure that the ISP’s address block will eventually be
exhausted in order to analyze both allocation systems under a
full load. We selected the departure rate, �

d

, to be 8 and vary



Fig. 8: Empirical results under an IaaS provider scenario with auto-scaling fluctuations using the 50% scaling rate with a discrete
Gaussian distributed initial tenant request size.

Fig. 9: Personal IoT scenario using Poisson arrival and departures for users with increasing number of devices.

the arrival rate, �
a

, between 20 and 40. The trend remains
the same for other arrival and departure rates if the same
ratio range (�

r

= .2 to .4.) is considered. As the number of
devices for each user grows, the buddy system’s fragmentation
increases slightly while the nested buddy system maintains the
same level of fragmentation, similarly to the baseline arrival
model presented in the previous section. The cost comes in
terms of the average number of table entries for each request
but is still relatively low, less than two entries.

Even when the arrival Poisson distribution of users has a
large variance (associated with bursty arrivals), and a more
constant departure distribution (small �), the nested buddy
system has a 50% improvement in wasted addresses and 20%
improvement in number of requests completed before a denial-
of-service.

A. Impact of Increased Tolerance to Bursty Arrivals
We now consider the impact of increased tolerance to

bursty arrivals of requests of the nested buddy system rel-
ative to the traditional buddy system. One methodology for
improving the performance of the buddy system is to limit
the burstiness of allocation requests which can cause it to
exhaust the address space leading to a denial-of-service for
new requests.

In general, to limit the amount of bursts in request arrivals
one can simply buffer the requests together over a longer
interval of time which will smooth out the distribution of
request sizes. Simply increasing the delay between request
and allocation is relatively easy to implement for the service
provider; however, it may place an unacceptable penalty on
the end user as waiting for address allocation prevents Internet
access to their devices. The nested buddy system has increased
tolerance to bursty requests; therefore the increased capability
to handle larger variation in allocation requests, which elim-
inates the need to introduce system delays. That is, we can

afford to provide lower latency for allocation requests while
maintaining a small likelihood of exhausting the address space
due to a large burst in allocation requests.

Fig. 11: Histogram of the number of arrivals during thirty
minute intervals for entire real-world traffic dataset collected
from fifteen wireless APs.

VIII. PERSONAL IOT WITH REAL-WORLD ARRIVALS
Our final evaluation of the buddy and nested buddy alloca-

tion systems is with real arrival data rather than the simplifying
distributions used in the previous two sections. We use a
publicly available collection of wireless APs logs collected
over a six year period [19], [20]. Each log records session



Fig. 10: Empirical results using real arrival data from wireless APs at a college campus with simulated number of devices for
each arrival.

data for each unique user with an arrival and departure time.
From this, we can consider any time window and count the
number of new users that arrive within the interval. Figure 11
is a histogram of the number of arrivals in intervals of thirty
minutes which illustrates that arrivals are, in fact, long tailed.

For the last simulation, we utilize the arrival data from the
wireless AP logs as the input to the simulator for the number
allocation requests. For each arrival, we generate the number
of devices, or the size of the request, using a discrete Gaussian
to be the request size. Figure 10 is the fragmentation, number
of entries per request and number of successful allocations as
the average number of devices per user increases according to
a discrete Gaussian with low variance. The figure illustrates
that under real-world user arrivals with many IoT devices, the
nested buddy system provides an improvement of more than
50% in fragmentation while requiring less than two entries
on average per request. This increase in capacity allows the
allocation system to handle significantly larger bursts of users
with many devices without exhausting the address space.

IX. CONCLUSION
The nested buddy system proposed in this paper mitigates

two costs in block address allocation for network addresses:
(1) low address-space utilization due to fragmentation and (2)
use of multiple TCAM entries in servicing a user allocation
request. Our solution can minimize both costs to be near their
lowest-possible levels. In contrast, previous solutions can only
minimize one of these two costs, not both. Block address
allocation empowered by our solution allows the same policies
to be applied to a group of network addresses.

In particular, we note that our solution has high tolerance
against bursty requests (see, e.g., Figure 9) in avoiding the
depletion of address space. A service provider could therefore
offer the same low-latency service under bursty conditions,
without having to aggregate requests over time in order to
smooth out demand. We have provided analysis and extensive
simulation to validate these results under synthetic request
and free distributions and those modeled in the context of
two example service scenarios: IaaS providers and ISPs for
mobile users. Given the expected very large and highly dy-
namic demands on network addresses in such services in the
future, we project that the proposed nested buddy system will
become increasingly important over the coming years (see, e.g.
discussion in Section III-B related to IPv6).

ACKNOWLEDGMENT
This work is supported in part by gifts from the Intel Cor-

poration and in part by the Naval Supply Systems Command

award under the Naval Postgraduate School Agreements No.
N00244-15-0050 and No. N00244-16-1-0018.

REFERENCES
[1] P. Gupta and N. McKeown, “Algorithms for packet classification,”

Network, iEEE, vol. 15, no. 2, pp. 24–32, 2001.
[2] E. W. Fulp and S. J. Tarsa, “Trie-based policy representations for

network firewalls,” in Computers and Communications, 2005. ISCC
2005. Proceedings. 10th IEEE Symposium on, pp. 434–441, IEEE, 2005.

[3] D. Rovniagin and A. Wool, “The geometric efficient matching algorithm
for firewalls,” in Electrical and Electronics Engineers in Israel, 2004.
Proceedings. 2004 23rd IEEE Convention of, pp. 153–156, IEEE, 2004.

[4] H. Liu, “Efficient mapping of range classifier into ternary-cam,” in
High Performance Interconnects, 2002. Proceedings. 10th Symposium
on, pp. 95–100, IEEE, 2002.

[5] R. Panigrahy and S. Sharma, “Sorting and searching using ternary
cams,” IEEE Micro, no. 1, pp. 44–53, 2003.

[6] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, Fast and
scalable layer four switching, vol. 28. ACM, 1998.

[7] D. E. Knuth, Art of Computer Programming Volume 1: Fundamanetal
Algorithms. Addison-Wesley Publishing Company, 1972.

[8] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic stor-
age allocation: A survey and critical review,” in Memory Management,
pp. 1–116, Springer, 1995.

[9] G. Srinivasan, “Microsoft azure’s use of non-us ipv4 address space
in us regions.” https://azure.microsoft.com/en-us/blog/, 2014. [Online;
accessed 2016-03-31].

[10] “Microsoft azure documentation.” https://azure.microsoft.com/en-
us/documentation/, 2016. [Online; accessed 2016-03-31].

[11] “Aws ip address ranges.” https://ip-ranges.amazonaws.com/ip-
ranges.json, 2016. [Online; accessed 2016-03-31].

[12] C. Perkins, D. Johnson, and J. Arkko, “Mobility support in ipv6,” tech.
rep., 2011.

[13] P. R. Wilson, “Some issues and strategies in heap management and
memory hierarchies,” ACM SIGPLAN Notices, vol. 26, no. 3, pp. 45–
52, 1991.

[14] J. D. Little, “A proof for the queuing formula: L= � w,” Operations
research, vol. 9, no. 3, pp. 383–387, 1961.

[15] “Aws-ec2 documentation.” https://aws.amazon.com/ec2/, 2016. [Online;
accessed 2016-03-31].

[16] “Scaling twitter.” http://www.slideshare.net/Blaine/scaling-twitter,
2007. [Online; accessed 2016-04-01].

[17] “How shopify scales rails.” http://www.slideshare.net/jduff/how-
shopify-scales-rails-20443485, 2013. [Online; accessed 2016-04-01].

[18] “Google cloud platform documentation.”
https://cloud.google.com/docs/, 2016. [Online; access 2016-03-31].

[19] M. Lenczner and A. G. Hoen, “CRAWDAD dataset
ilesansfil/wifidog (v. 2015-11-06).” Downloaded from
http://crawdad.org/ilesansfil/wifidog/20151106, Nov. 2015.

[20] D. Kotz, T. Henderson, I. Abyzov, and J. Yeo, “CRAWDAD
dataset dartmouth/campus (v. 2009-09-09).” Downloaded from
http://crawdad.org/dartmouth/campus/20090909, Sept. 2009.


