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Motivation 

•  Competing Cognitive Radio Network 
(CCRN) models tactical radio networks 
under competition 

–  Blue Force (friend) vs. Red Force 
(adversary) 

–  Dynamic, open spectrum resource  
for opportunistic data access 

–  Nodes are cognitive radios 
Ø Comm nodes and jammers 

–  Strategic jamming attacks  

This paper is about signal classification at spectrum sensing level  
using semi-supervised machine learning approach 
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Background: Taxonomy of Spectrum Sensing  

•  Non-learning based spectrum sensing 
–  Energy detection 
–  Cyclostationary detection 

•  Learning-based spectrum sensing 
–  Supervised learning (requires labeled examples of all signals you want to classify) 

Ø  Support vector machine (SVM), logistic/softmax regression, neural network 
–  Unsupervised learning (no labeled examples required) 

Ø  Clustering techniques (e.g., K-means, GMM): partition data mixed of unknown identities 
into clusters 

–  Semi-supervised (unsupervised feature learning followed by supervised phase) 
Ø  Sparse coding + SVM (you need some labeled examples) 
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•  Sparse coding is an unsupervised learning method  
–  Transforms raw data into their sparse feature representations given set 

of basis vectors (dictionary) 

 

•  Dictionary learning 
–  Learns basis vectors dk (dictionary atoms) required for sparse coding 

Background: Sparse Coding and Dictionary Learning 
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Technical Approach: Semi-Supervised Learning 
with Sparse Coding 

•  Formulation 1 

 
•  Classification pipeline 

1.  Extract feature vectors via sparse coding: xi ⟶ yi  
2.  Summarize multiple feature vectors via pooling: yi ⟶ z 
3.  Train SVM classifiers that takes pooled sparse-coded input z  

Trained SVM predicts label of unknown input data 
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Technical Approach (cont’d): Modification of 
Sparse Coder with Convolution 

•  Classical inner-product sparse coders are not 
appropriate for our applications resulting in redundant 
dictionary atoms 

–  Received signals are time series with unknown phases 

•  Our enhancement: simple convolution sparse coder 
–  For S-sparse y, take S steps of greedily choosing max 

convolution value and removing its contribution from x for next 
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•  Simulation environment 
–  Used MATLAB communications toolbox to generate modulated RF signals 
–  Used LIBSVM to train SVM classifiers 
–  Used K-SVD algorithm to learn dictionary for sparse coding 

•  Assumptions 
–  There are four signal classes in our experiments 

Ø  Friendly signals: S1 (single-carrier QPSK with rectangular pulse) and S2 
(OFDM with raised cosine pulse) 

Ø Adversary signals: S3 (QPSK with custom pulse) and S4 (OFDM with custom 
pulse) 

•  Scenarios 
–  Case 1 (Blind clustering) – apply K-means clustering on sparse-coded signals 

using four classes of signals   
–  Case 2 (One-class SVM) – train SVM classifiers using only friendly signals 
–  Case 3 (1-vs-all SVM) – train SVM classifiers using mostly friendly signals and 

some adversary signals 

Evaluation 
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•  Confusion matrix is good for 
visualizing multiclass 
classification performance 

•  Confusion matrices for: 
–  Case 1 (Blind clustering) – apply K-

means clustering on sparse-coded 
signals using four classes of signals  

–  Case 2  (One-class SVM) – train SVM 
classifiers using only friendly signals 

–  Case 3  (1-vs-all SVM) – train SVM 
classifiers using mostly friendly 
signals and some adversary signals 

Results: Confusion Matrices 

Darkest box: 0.89 
Lightest box: 0.06  
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•  Recall & false alarm performances for: 
–  Blind clustering – apply K-means clustering on sparse-coded signals 

using four classes of signals   
–  One-class SVM – train SVM classifiers using only friendly signals 
–  1-vs-all SVM – train SVM classifiers using mostly friendly signals and 

some adversary signals 

Scenarios Recall 
20 dB (0 dB)  

False Alarm 
20 dB (0 dB) 

Case 1 (Blind clustering)  0.703 (0.582) 0.246 (0.367) 

Case 2  (One-class SVM)  0.768 (0.634) 0.213 (0.307) 

Case 3  (1-vs-all SVM)  0.878 (0.726) 0.141 (0.262) 

Results: Recall & False Alarm Performance 
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•  Presented semi-supervised framework for RF signal classification 
at spectrum-sensing level based on sparse coding 

–  Proposed sparse coding + SVM requires no prior knowledge about 
signals 

–  Sparse coding dictionary can be pre-generated or learned 

•  Developed simulation to assess performance for: 
–  Blind clustering – apply K-means clustering on sparse-coded signals 

using four classes of signals   
–  One-class SVM – train SVM classifiers using only friendly signals 
–  1-vs-all SVM – train SVM classifiers using mostly friendly signals and 

some adversary signals 

•  Explore more practical applications with cognitive radios 
•  Improve computational complexity 

–  Develop efficient sparse coding and dictionary learning algorithms for 
mobile handsets 

Summary 


