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Abstract—We propose a novel RF signal classification method
based on sparse coding, an unsupervised learning method popu-
lar in computer vision. In particular, we employ a convolutional
sparse coder that can extract high-level features of an unknown
received signal by maximal similarity matching against an
overcomplete dictionary of filter patterns. Such dictionary can
be either generated or learned in an unsupervised fashion from
measured signal examples conveying no ground-truth labels. The
computed sparse code is then applied to train SVM classifiers for
discriminating RF signals. As a result, the proposed approach
can achieve blind signal classification that requires no prior
knowledge (e.g., MCS, pulse shaping) about the signals present in
an arbitrary RF channel. Since modulated RF signals undergo
pulse shaping to aid the matched filter detection, our method
exploits variability in relative similarity against the dictionary
atoms as the key discriminating factor for classification. Our ex-
perimental results indicate that we can blindly separate different
classes of digitally modulated signals with a 0.703 recall and 0.246
false alarm at 20 dB SNR. Provided a small labeled dataset for
supervised classifier training, we could improve the classification
performance to a 0.878 recall and 0.141 false alarm.

I. INTRODUCTION

Cognitive radios have emerged as a new means to share
radio spectrum, the most expensive resource to build a wireless
network. For commercial applications, Dynamic Spectrum Ac-
cess (DSA) [1] presents a compelling opportunity to improve
the utility of radio spectrum resources. Much of contemporary
research has viewed cognitive radios as the secondary user of
a licensed channel and focused on developing the mechanism
to opportunistically access the channel to its maximal spectral
efficiency.

While commercial opportunities are promising, the applica-
bility of cognitive radios for tactical networking seems even
more adequate. The primary advocate for tactical cognitive
radio systems is intelligent decision making that can enhance
resiliency against a hostile, fiercely competing radio environ-
ment. There has been significant amount of previous work
devoted to algorithmic approaches for a cognitive strategy
layer, including game-theoretic frameworks [2]–[5] to sequen-
tial decision making [6]–[8].

These approaches have provided a strong foundation for
cognitive tactical radio systems, yet their performance highly
depends on the lower layer capability such as sensing, de-
tection, and inference of radio signals. In order to operate
the cognitive strategy layer, our claim is that we require
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intelligent sensing mechanisms enabled by learning. In this
paper, we focus on the development of such mechanisms.
Particularly, we use sparse coding [9], a feature learning
technique widely used in machine learning, to perform blind
and semi-supervised signal classification for cognitive radios.

Our methods are new and unconventional to the field of
signal detection and estimation. Our methods can learn over
time after bootstrapping with no prior knowledge about RF
signals of interest and achieve a 72.6% recall for blind signal
classification under a reasonably good SNR. If a labeled
dataset were available for semi-supervised training, our clas-
sifiers would have achieved a 87.8% recall with 14.1% false
alarms, all without any protocol-specific knowledge about
modulation of radio signals.

The rest of the paper is organized as follows. In Section
II, we provide a comprehensive background on sparse coding.
In Section III, we describe a discriminative framework that
employs sparse coding as the primary means to extract features
from raw data in a powerful classification pipeline. Section IV
presents our RF signal classification methods. We propose a
method for blind signal classification before presenting a semi-
supervised approach under the availability of a labeled dataset.
We evaluate the proposed classification methods in Section
V. In Section VI, we discuss related work, and Section VII
concludes the paper.

II. SPARSE CODING BACKGROUND

This section presents a background on sparse coding and
dictionary learning.

A. Sparse Coding

Sparse coding [9] is an unsupervised method to learn a
dictionary of overcomplete basis vectors that can represent
data efficiently. Each basis vector in the dictionary is also
known as an atom. The mathematical objective of sparse
coding is to describe an input vector as a sparse linear
combination of the dictionary atoms.

Fig. 1 explains the sparse coding problem. Given an N -
dimensional input x ∈ RN and dictionary D ∈ RN×K ,
sparse coding seeks for a sparse representation y ∈ RK that
minimizes the loss function

J(x, D) = min
y∈RK

1

2
‖x−Dy‖22 + λψ(y), (1)

where the first term optimizes the reconstructive error, and the
second term is due to regularization to control sparsity of y.
The regularization parameter λ weighs in the sparsity penalty



for the optimization. The sparse code y can be thought as a
high dimensional (feature) representation. Its dimension K is
generally larger than the dimension N of the raw data x.
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Fig. 1. Sparse coding

Sparse coding considers two regularization strategies for
ψ(.). First of all, we can adopt the `0 pseudo-norm, ‖y‖0,
to strictly regulate the total number of nonzero elements in y.
Although the `0 penalty gives a precise control over sparsity
of y, it is known to be NP-hard [10].

The second approach of regularization resorts to convex
relaxation of the first. Instead of the computationally hard `0-
minimization, we can use the `1 penalty term on y instead.
There are numerous ways to solve this `1-regularized opti-
mization problem. In this paper, we consider basis pursuit
[11], which will be explained shortly. The least absolute
shrinkage selection operator (LASSO) [12] or least angle
regression (LARS) [13] are other popular methods. It is a
well-known result that the `1-minimization leads to a sparse
solution exacting its `0 counterpart [14].

1) Orthogonal Matching Pursuit: While exact determina-
tion via the `0-minimization is hard, approximate solutions
for optimizing `0-norm are possible. Especially, fast greedy
algorithms are possible by selecting the dictionary atoms
sequentially from specifically enforcing sparsity requirement
such as S-sparse y:

ŷ = arg min
y
‖x−Dy‖22 s.t. ‖y‖0 ≤ S. (2)

Orthogonal Matching Pursuit (OMP) [15] selects the best
dictionary atom by evaluating the inner product between the
input and a dictionary atom and uses least squares to accurately
settle the coefficients inside y iteratively for each round.

2) Basis Pursuit: The `1-minimization for the sparse cod-
ing problem can be written as

ŷ = arg min
y
‖y‖1 s.t. Dy = x. (3)

One approach for this optimization is linear programming [16].
Eq. (3), however, is not in the standard dual of a linear program

min c>y s.t. Dy = x, y ≥ 0.

Chen, Donoho & Saunders [11] recommend make the follow-
ing translations

y⇔ (u,v), c>⇔ (1>,1>), D ⇔ (D,−D).

Subsequently, solving

minu + v s.t. Du−Dv = x, u,v ≥ 0

gives the `1-minimization solution via linear programming.

B. Dictionary Learning

How can we learn a dictionary for sparse coding? A dictio-
nary is trained by an unsupervised learning algorithm such as
K-means clustering. A classical approach [17] examines the
projected first-order stochastic gradient descent in a sequence
of updates for D

Dt = ΠC

[
Dt−1 −

ρ

t
∇J(xt, Dt−1)

]
, (4)

where ρ is the gradient step, ΠC is the orthogonal projector
on C, and unlabeled training examples {xk}Tk=1.

In principal component analysis (PCA), we learn a complete
set of basis vectors—i.e., a square matrix of eigenvectors.
Dictionary learning for sparse coding aims to learn an over-
complete set of basis vectors such that the column dimension
of D is larger than its row dimension. (Recall D ∈ RN×K ,
so K > N .) The advantage of having an overcomplete bases
is that we can better capture structures and patterns inherent
in the input data more conveniently.

K-SVD [18] is a fast iterative algorithm for PCA-like basis
learning. The inner loop of K-SVD has two phases. First, it
performs batch sparse coding with current dictionary. Using
the notation X = [x1 . . .xT ], the batch sparse coding yield
the corresponding matrix of sparse codes Y = [y1 . . .yT ]
such that X ≈ DY. In the next phase, K-SVD updates
each dictionary atom in D by rank-1 update via singular
value decomposition of residual matrix for the atom. K-SVD
also updates each sparse code in Y accordingly. The K-SVD
optimization is given by

min
D,Y
‖X−DY‖2F s.t. ‖yk‖0 ≤ S ∀k. (5)

Because of the batch sparse coding phase, K-SVD requires
a sparse coder. We can use OMP, `1-minimization via linear
programming or LASSO.

III. DISCRIMINATIVE SPARSE CODING FRAMEWORK

In this section, we present a sparse coding framework for
discriminative machine learning tasks (e.g., classification). We
explain unsupervised feature learning method based on sparse
coding and dictionary training. Given the learned feature
mapping, we describe how we can compute feature vectors
of an input, train classifiers, and predict a class label.

A. Unsupervised Feature Learning via Sparse Coding

Typically, an unsupervised method is used to learn a feature
representation of raw data. Since the feature mapping should
be generally applicable and descriptive of all classes of data,
feature learning takes in randomly mixed, unlabeled training
examples. Sparse coding and dictionary training provide an
unsupervised feature learning algorithm that consists of the
following steps as illustrated in Fig. 2:

1) Form input patches x from measured/received signal
data that are unlabeled of their classes;

2) (Optionally) apply preprocessing such as normalization
and whitening;



3) Learn a feature-mapping via joint sparse coding (com-
pute y) and dictionary (D) training.

In summary, unsupervised feature learning takes the un-
labeled dataset X = [x1 . . .xT ] of random input patches
(each xi with dimension N ), undergoes sparse coding and
dictionary learning, and yield a function fext : RN 7→ RK .
The transformation via fext converts the raw data input x to
sparse code y in the feature space learned by sparse coding
and dictionary training. For classification, we use the sparse
code y as a feature vector whose K elements are features of
the input x according to dictionary D.
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Fig. 2. Unsupervised learning via sparse coding and dictionary training

B. Supervised Classifier Training

A representational feature mapping learned from the unsu-
pervised method plays a crucial role for classification tasks.
Having the feature mapping alone, however, is usually insuf-
ficient to classify data. Classifiers take a feature vector as the
input, and they should be instructed with the ground truth
class (i.e., supervision) about the feature inputted. Therefore,
classifier training is typically done by a supervised method
such as logistic regression [19] and support vector machine
(SVM) [20]. Supervised classifier training is depicted in Fig. 3.
Note the labeled input {xi, li}, where li designates the class
label for an input xi.
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Fig. 3. Supervised classifier training

Under the context of tactical networking scenarios, it may
be too optimistic to assume the availability of labeled dataset
for supervised classifier training. This is because of the null
a priori assumption for an adversarial radio network. Signal
examples of the adversary could be hard to acquire for pre-
analysis before a field operation. However, we can assume a
plenty of signal examples for the friendly network. With only
friendly network signal examples, one can employ one-class
classifier [21] instead.

C. Subsampling Features with Max Pooling

In Fig. 3, feature vectors (i.e., sparse code y) go through
one more processing step known as max pooling before
being inputted to a classifier under training. If all feature
vectors resulted from a stream of input vectors were used

straightforwardly for classification, we could overwhelm the
classifier training. The dimensionality of feature vectors is
highly correlated with the complexity of classifiers. Usually, a
complex classification model leads to classifier overfit, which
is the discrepancy in the classification results between the
training and test datasets. It is therefore customary to reduce
the number of extracted features by subsampling.

Pooling, popular in convolutional neural networks [22],
operates over multiple (sparse) feature representations and
aggregates to a higher level of features in reduced dimension.
Pooling is by no means to discard any useful information.
An important property of the pooled feature representation
is translation invariance. Max pooling [23] takes the max-
imum value for the elements in the same position over a
group of feature vectors. For example, consider max pooling
of L sparse codes {y1,y2, . . . ,yL} that yields the pooled
feature vector z as in Fig. 4. Noting yk = [yk,1 . . . yk,K ]
and z = [z1 . . . zK ], max pooling operation is given by
zj = max(y1,j , y2,j , . . . , yL,j).
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Fig. 4. Max pooling of L sparse codes

IV. RF SIGNAL CLASSIFICATION WITH
CONVOLUTIONAL SPARSE CODER

This section introduces a new method for RF signal clas-
sification based on feature extraction via sparse coding. We
consider two case scenarios. In the first scenario, we con-
sider that there is no labeled dataset for supervised classifier
training. Here, we completely rely on unsupervised learning
by sparse coding and dictionary training. The first scenario
can be considered as blind source separation in the feature
domain. In the second scenario, our approach is based on the
semi-supervised learning framework.

A. Sparse Coding Stage

Sparse coding is a customizable feature extractor. The
learned features represent a high-level structure of the raw
signal examples. The sparse coding setup in Fig. 1 is a
realization based on matching or basis pursuits that empha-
size reconstructive representation with the regularization on
sparsity. For discriminative purposes, an OMP sparse coder
evaluates the membership of a given input x to each dictionary
atom with the inner product. Conceptually, this is equivalent
to the way that K-means clustering evaluates the Euclidean
distance between data and a cluster centroid, or that the
Gaussian mixture model computes the posterior probabilities
given x.



Since our eventual goal is classification, we want to opti-
mally configure the sparse coding framework with the most
suitable metric that examines the correlation of a received
RF measurement to our dictionary atoms. We propose a
convolutional sparse coder that maps an input vector x ∈ CN
(samples of received signal) to the feature y ∈ RK with
respect to the matched filter templates in dictionary D. The
ith element in y is chosen by

yi = max |x ∗ dk| , (6)

where ∗ denotes the convolution operator, and dk the kth
dictionary atom with k ∈ {1, . . . ,K}. We impose a sparse
regularization on y that forces a small number S � N of
nonzero elements.

The underlying principle behind our setup is matched filter-
ing. Mathematically, the nonzero element in the convolutional
sparse code y reflects the maximum correlation between the
input x and the corresponding dictionary atom, which is some
matched filter.

What are the matched filter templates that constitute the
dictionary? Radio protocols employ specific pulse shaping
functions to aid effective detection of known signals for the
receiver. According to detection and estimation theory, an
optimal matched filter design leverages a priori knowledge
about the pulse shaping function to maximize SNR.

B. Signal Classification Stage

Essentially, our approach is a semi-supervised pipeline.
We have performed unsupervised feature learning via sparse
coding and dictionary training. Partly, we generate dictionary
atoms by taking variations of a well-known pulse shape filter
such as rectangular, Gaussian, and raised cosine. The rest of
the dictionary atoms come from training with example signals.
These examples are received from various RF channels used
to transmit modulated wireless signals. We use K-SVD [18],
a generalization of the K-means clustering algorithm, to train
the sparse coding dictionary. We note that this unsupervised
dictionary learning step essentially performs blind (signal)
source separation in the signal’s feature (i.e., sparse code)
domain.

Given the learned dictionary, we train linear 1-vs-all SVM
classifiers. Assuming a multiclass classification problem with
M classes, each SVM is trained to classify signal class j
against class k 6= j ∀j, k = 1, . . . ,M . During the runtime
test, we take sample measurements, perform sparse coding
and subsampling of sparse codes by max pooling, and predict
the signal class label using the pooled sparse code with the
trained SVMs.

V. EVALUATION

In this section, we evaluate our blind and semi-supervised
signal classification methods using MATLAB.

A. Signals and Scenarios

We consider target signals S1 and S2, and non-target signals
S3 and S4, mixed in radio channels of a given bandwidth.

Blind sampling at each channel is triggered by energy detec-
tion above a certain threshold. We sample according to the
channel bandwidth and store the measured signals for further
processing. We assume sufficient amount of received target
signal examples with labels S1 or S2. The exact specification
(e.g., modulation scheme, pulse shaping) about S1 and S2 is
unnecessary. If the exact knowledge about pulse shaping were
given, we would have performed matched filter detection. The
target signals are defined below.
• (S1) Single-carrier: QPSK with rectangular pulse;
• (S2) OFDM: QPSK modulated on-carriers with raised

cosine pulse.
We define the non-target signals S3 and S4 as follows.

Similarly, we have no knowledge about the non-target signals.
Moreover, we do not assume sufficient number of S3 an S4
examples available to us.
• (S3) Single-carrier: QPSK with unknown custom pulse
p(t) = 1

2 [1− cos( 2πt
Ts

)];
• (S4) OFDM: BPSK, QPSK, 16-QAM modulated on-

carriers with p(t).
We consider the following evaluation scenarios.
1) Blind classification with K-means clustering
2) Blind classification with one-class SVM
3) Semi-supervised learning with 1-vs-all SVM

The two blind classification scenarios do not require any
labeled non-target examples. This assumption is reasonable in
tactical networking where friendly entities typically communi-
cate using known waveforms. We note that K-means clustering
is a completely blind scenario requiring no labeled examples
from both target and non-target signals.

B. Experimental Methodology

1) Generation and transmission of signals: To generate
signals, we have first generated random data bit stream bk.
The baseband signals are generated according to the following
digital (I-Q) modulation schemes.
• BPSK: dBPSK(t) =

∑
k bkp(tkTb)

• QPSK: dQPSK(t) =
∑
k b2kp(tkTs) +

∑
k b2k+1p(t −

kTs)
• 16-QAM: dQAM(t) =

∑
k ikp(tkTs) +

∑
k qkp(tkTs)

• OFDM: generated by comm.OFDMModulator method in
MATLAB

For 16-QAM, ik, qk are the in-phase and quadrature ampli-
tudes, taking values ±1, ±3.

As mentioned earlier, we use rectangular, raised cosine,
square-root raised cosine, and custom pulse functions for
baseband pulse shaping of the baseband modulated waveforms.
The final carrier-modulated signal is given by

s(t) = Ac[dI(t) cos(2πfct) + dQ(t) sin(2πfct)],

where fc is the carrier frequency, and Ac the carrier amplitude
gain. The in-phase and quadrature components dI(t), dQ(t)
are generated according to one of the I-Q modulation schemes
above.



We transmit s(t) through the AWGN channel at 20 dB and
0 dB SNR. Hence, the measurement at a receiver constitutes
noisy samples. For each signal class, we generate two datasets
train and eval. We use train for sparse coding and
SVM training, and eval to test classification performances.
There are 1,000 training examples in train, whereas eval
contains 10,000 test examples for each signal class. Thus, we
are evaluating a scenario where the size of training dataset is
substantially smaller than the test set.

2) Data processing and classification pipeline: The data
processing and classification pipeline is depicted in Fig. 5. The
measured signal samples are vectorized in a size N = 64. Note
that an I-Q modulated signal is complex-valued, hence the
received samples are also complex, i.e., x ∈ C64. We can train
the dictionary using the received samples via unsupervised K-
SVD algorithm (without knowing what ground-truth classes
are). We summarize how we partition the sparse coding
dictionary D, which has generated and learned dictionary
atoms.

1) D has K = 256 dictionary atoms (i.e., D ∈ C64×256)
2) Each atom di has matching size N = 64 and is

complex-valued
3) D is divided to 4 regions—first 30 atoms belong to

the family of rectangular pulses, second 30 atoms to
raised cosine family, third 30 atoms to square-root raised
cosine; the last 166 atoms are trained

We use a convolutional sparse coder whose operation is
described by Eq. (6) given a patch x of the received signal
samples. Sparse code has a dimension K and is real-valued,
i.e., y ∈ R256. We use the max pooling factor M = 10. Note
that the pooled feature vector z has the same dimension as y
and is also real.
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Fig. 5. Sparse coding setup with convolution for RF signal classification

In summary, the feature transformation x 7→ y 7→ z takes
place by sparse coding of sequentially-fed raw input patches
followed by max pooling. The pooled feature vector z is used
for classification.

3) SVM classifier training: One-class SVM is trained by
a dataset containing examples from only one signal class.
Fig. 6 explains 1-vs-all SVM training. For target signals,
we can train two linear SVM classifiers using the pooled
feature vectors z. The first SVM classifies the signal class S1
against all others, using labeled datasets {z(j)S1 ,+1}Tj=1 and
{z(j)S2∪S3∪S4,−1}T ′j=1. (Note that T and T ′ are the number of
examples for target and non-target signals, respectively, for the
SVM.) Similarly, the second SVM that classifies S2 against
all others are trained with labeled datasets {z(j)S2 ,+1}Tj=1 and
{z(j)S1∪S3∪S4,−1}T ′j=1.
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Fig. 6. 1-vs-all SVM training for semi-supervised approach

4) Evaluation metric: We compute confusion matrices with
all four signal classes for the three scenarios. We also eval-
uate recall and false alarm rate for the target vs. non-target
classification performance.

C. Results and Discussion

Using K-means, we try to observe separability in the pooled
sparse-coded (z) domain. Setting the number of clusters K =
4 for K-means (not to be confused with the number of atoms
K in dictionary D), we have been able to find reasonably
separable clusters that we seek for. We compute recall and
false alarm based on majority decoding rule for each cluster.
In Fig. 7, we show confusion matrices for the K-means blind
classification under SNR = 0 dB and 20 dB. Similarly, we
present confusion matrices for blind classification with one-
class SVM and the semi-supervised 1-vs-all SVM in Figs. 8
and 9, respectively.

With no labeled examples, sparse-coded feature vectors
seem effective for discriminative clustering as we have been
able to achieve the average recall of 0.703 with 0.246 false
alarm at SNR = 20 dB. Availability of labeled target examples
allows us to train one-class SVM, which improves the average
recall and false alarm to 0.768 and 0.213. If a labeled dataset
for non-target signals were available, our classifiers would
have achieved a 0.878 average recall with 0.141 false alarm, all
without any protocol-specific knowledge about modulation of
radio signals. Table I summarizes the classification accuracy of
our approaches. In any case, all of our classification scenarios
should be viable for cognitive spectrum sensing.
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Fig. 7. Confusion matrices for K-means (darkest box: 0.75, lightest: 0.20)

VI. RELATED WORK

Our signal classification methods are inspired by the way
that sparse representations of raw image, audio, and text data
are used in computer vision and pattern recognition. Wright
et al. [24] have developed a recognition system that can
classify an image of human face using sparse representations
of image segments, which is a similar idea to ours. Pooling
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Fig. 8. Confusion matrices for one-class SVM (darkest box: 0.78, lightest:
0.15)
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Fig. 9. Confusion matrices for 1-vs-all SVM (darkest box: 0.89, lightest:
0.06)

multiple sparse features to make an aggregate representation is
widely studied in computer vision. The original idea of spatial
pooling techniques dates back to Riesenhuber and Poggio [25].
Heisele, Ho, and Poggio [26] explain useful techniques of
applying SVM for multi-class classification such as training
a 1-vs-all classifier in our semi-supervised approach.

VII. CONCLUSION

We have introduced a blind signal classification method
based on sparse coding. Our method is motivated by an active
area of research in sparse representation learning [27]. With
no prior knowledge or assumptions on an unknown received
signal, we take advantage of correlating it to an overcomplete
dictionary of (matched) filter patterns, which can be generated
offline or learned by an unsupervised learning algorithm. This
coding process yields a discriminative feature that captures the
variability of correlations measured by convolving the signal
with respect to each dictionary atom.

For further improvement of our blind classification tasks,
we have regularized the convolved outputs with a sparsity
constraint that keeps only the largest several elements. In a
simulated experiment similar to blind source separation for
modulated RF signals, we have found that our method can
achieve up to a 0.703 recall at 0.246 false alarm rate under a
reasonably good SNR of 20 dB without any protocol-specific
knowledge about simulated radio signals. If a small labeled
dataset were available for supervised training, our classifiers
would have achieved a 0.878 recall with 0.141 false alarm.
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