
Lambda Means Clustering: Automatic Parameter
Search and Distributed Computing Implementation

Marcus Comiter
Harvard University

marcuscomiter@g.harvard.edu

Miriam Cha
Harvard University

miriamcha@g.harvard.edu

H.T. Kung
Harvard University
kung@harvard.edu

Surat Teerapittayanon
Harvard University

steerapi@seas.harvard.edu

Abstract—Recent advances in clustering have shown that
ensuring a minimum separation between cluster centroids leads to
higher quality clusters compared to those found by methods that
explicitly set the number of clusters to be found, such as k-means.
One such algorithm is DP-means, which sets a distance parameter
λ for the minimum separation. However, without knowing either
the true number of clusters or the underlying true distribution,
setting λ itself can be difficult, and poor choices in setting λ will
negatively impact cluster quality. As a general solution for finding
λ, in this paper we present λ-means, a clustering algorithm
capable of deriving an optimal value for λ automatically. We
contribute both a theoretically-motivated cluster-based version
of λ-means, as well as a faster conflict-based version of λ-means.
We demonstrate that λ-means discovers the true underlying value
of λ asymptotically when run on datasets generated by a Dirichlet
Process, and achieves competitive performance on a real world
test dataset. Further, we demonstrate that when run on both
parallel multicore computers and distributed cluster computers in
the cloud, cluster-based λ-means achieves near perfect speedup,
and while being a more efficient algorithm, conflict-based λ-
means achieves speedups only a factor of two away from the
maximum-possible.

I. INTRODUCTION

Data clustering is a key step in unsupervised learning
tasks. However, many conventional clustering methods, such
as k-means, make the sometimes impractical assumption that
k, the number of clusters present in the data, is known a
priori. A recent algorithm receiving large amounts of attention
from the machine learning community, DP-means [6], forms
clusters of superior quality using a distance parameter λ to
ensure minimum separation between cluster centroids rather
than specifying k in advance, forming a new cluster when a
data point is found to be more than λ distance away from all
existing cluster centroids. Under an assumption that a sequence
of data is drawn from a Dirichlet Process, the authors of [6]
prove that there exists a λ such that when used by DP-means,
the algorithm will discover the ground truth number of clusters
k.

However, without knowing the underlying parameters of
the Dirichlet Process generating the sequence of data, as well
as for data of unknown origin, it is unclear how to find the
appropriate value of λ for use with DP-means. As a solution,
the authors of [6] suggest the use of a farthest-first heuristic.
However, this process requires a user-provided approximation
of k. As we will show in Section IV, incorrectly setting this
approximate k has a marked impact on the resulting value of
λ. In practical situations, setting the approximate k can be very

difficult, potentially leading to a suboptimal choice of λ and,
by extension, suboptimal clustering.

As a solution for finding λ without the need of heuristics
such as the farthest-first heuristic based on a user-provided ap-
proximation of k, we present λ-means, a clustering algorithm
that uses an efficient search procedure to find an appropriate
λ, and then runs the celebrated DP-means algorithm in its
inner-loop.1 λ-means has three novel properties: (1) For data
generated under a Dirichlet Process as in [6], in the asymp-
totic limit, λ-means converges on the λ value used in the
underlying Dirichlet Process; (2) λ-means uses an efficient
search method to quickly find a λ value for use with its inner
DP-means loop; (3) By extending another recent work (OCC
DP-means [10]) for distributed computing with Optimistic
Concurrency Control (OCC), λ-means easily extends to the
distributed framework and can use the number of conflicts
in each epoch as a low-overhead signal to determine and
accelerate λ-means convergence.

We validate λ-means on both synthetic and real world data,
in which the underlying data generation process is unknown.
On these datasets, we empirically demonstrate that λ-means
achieves performance comparable with or exceeding DP-
means without the need to know the approximate k a priori.
Finally, to study the speedup achieved by λ-means in parallel
computing settings, we run it on both multicore computers and
distributed cluster computers in the cloud, in both scenarios
achieving speedups that are either perfect or only a factor of
two away from the maximum possible speedup.

II. RELATED WORK

The problem of clustering N data points has a rich history
and abundant literature. A well known clustering algorithm is
k-means, a partitional method which, given a distance metric
and number of clusters k as parameters, partitions the data
into k clusters. However, in practice, knowing k a priori can
be difficult. To address this problem, a number of methods
for finding k automatically have been proposed. A simple
heuristic for setting k involves comparing some metric, such as
error, against a number of different choices of k, and selecting
the value of k at the “elbow” of the resulting curve. To
formalize this heuristic, Tibshirani et al. [12] propose the “gap
statistic,” which takes the difference of the logarithm of the

1We acknowledge that the clustering performed by λ-means in its inner-
loop is DP-means. However, as we have the additional goal of estimating λ,
we call our method λ-means for clarity.

pooled intra-cluster sum of squares for the data points being
clustered and a reference distribution, and selects the value of k
that maximizes the statistic. Hamerly and Elkan [5] introduce
the G-means algorithm, a variant of k-means that, under a
Gaussian assumption, proposes new clusters and uses the
Andersen-Darling test to check for normality before accepting.

Beyond k-means, there are a number of clustering algo-
rithms that seek to improve cluster quality while avoiding
explicitly setting k. The DBSCAN algorithm [4] sets an ε-
large neighborhood, and clusters points based on a sufficient
number of points being found within the neighborhood. Unlike
k-means, DBSCAN allows for non-spherical clusters such as
long, thin, “snaking” clusters, but has no notions of centroids.
The mean shift clustering algorithm [2] is a hierarchical
agglomerative method that calculates the gradient of a density
estimator in a window around each data point and iteratively
moves the window towards an area of higher density until the
gradient approaches zero. While mean shift clustering does not
require k to be set a priori, its computational cost O(kN2) is
greater than that of k-means, making it an undesirable choice
for large datasets. Building upon mean-shift, [1] proposes the
γ-SUP algorithm, which also updates the location of the data
points themselves at each iteration. Another family is based
on distance metrics measuring the separation among cluster
centroids, such as the previously mentioned DP-means [6].
The authors of [14] use a Bayesian framework to automatically
learn a set of centroids without explicitly setting the number
of clusters. Instead, the data is used to automatically find a set
of centroids such that the data can be well represented as a
linear combination of the centroids, and the resulting number
of centroids used is selected as k.

Regardless of the chosen clustering algorithm, for large
datasets, there is a need for parallel and distributed clustering
algorithms. One such algorithm is MapReduce k-means, which
uses the MapReduce paradigm to parallelize the k-means
algorithm for a preconfigured k [3]. OCC DP-means [10]
uses the principle of Optimistic Concurrency Control [7] in
correcting any non-serializable cluster creation. OCC is a three
phased parallelization scheme that guarantees serializability.
That is, parallel execution of transactions will yield the same
result as some serial execution of the same transactions where
individual transactions have been reordered. However, as is
the case for DP-means, OCC DP-means likewise requires a
preconfigured λ parameter for cluster creation. Our proposed
λ-means algorithm builds upon DP-means and OCC DP-
means, and is a top-down hierarchical method capable of
finding λ automatically.

III. λ-MEANS OVERVIEW

A. The Effect of Decreasing λ

Before introducing the λ-means algorithm, we first de-
scribe the effect of decreasing λ, a main mechanism of the
λ-means algorithm, using the simple example depicted in
Figure 1(a). In this illustrative example, we seek to cluster
the N data points into three clusters (C1, C2A, and C2B) by
forming a new cluster when a data point is found to be more
than λ distance away from all existing cluster centroids. λ
is first initialized to be the maximum distance between data

points, denoted by H . At this value of λ, a single cluster
is formed, as all points are within λ = H distance of the
single centroid. The single cluster persists until λ decreases
below D, the maximum distance between cluster centroids,
at which point the single cluster is broken into two clusters,
C1 and C2. Next, when λ is decreased below d, which is
the minimum distance between cluster centroids, cluster C2 is
split into two clusters (C2A and C2B), inducing a total of three
clusters. If λ is decreased further, these true clusters will begin
to be broken into smaller sub-clusters, continuing until each
point is its own cluster when λ < h, the minimum distance
between data points. This example demonstrates that if λ is
not estimated correctly, clustering quality would suffer, as too
few or too many clusters would be found.

D

d

h

H

C2

C2B
C2A

C1

D, d: maximum and minimum distance between cluster centroids
H, h: maximum and minimum distance between data points
N: total # of data points

(a) Illustration of clusters emerging with a decrease in λ.

λ

clusters identified

H h D d

N

1

Decreasing λ

2

3 Clusters C1, C2A,
C2B revealed

Clusters C1 and C2
revealed

(b) λ-means finds the λ value at the elbow by dynamically
decreasing λ from its initial value H.

Fig. 1: Overview of λ-means

The results of decreasing λ in the previous example are
further illustrated in Figure 1(b), which plots the increasing
number of clusters identified as λ decreases. Notice that
there is an “elbow” in the curve, defined in this paper as
the point at which the rate of increase in the number of
clusters increases markedly for a decrease in λ, following a
similar notion in [12]. This elbow shape corresponds to the
emergence of clusters: as λ decreases from its initial large
value, clusters are added slowly until all true clusters have

been found. Past this point, these true clusters are effectively
being split into meaningless sub-clusters. As the distribution of
points within the clusters are denser than the distribution of the
clusters themselves, at this point a small change in λ causes a
proportionally larger increase in the number of clusters. Where
these two different patterns in the slope of the curve meet
effectively forms the elbow of the curve. As such, because
the elbow represents the point at which the true clusters have
been identified but have not been broken into meaningless sub-
clusters, the λ value at this point should induce the optimal
number of clusters to be found, a notion we validate in an
information-theoretic sense in Section V.

B. The λ-means Algorithm

We now formally introduce the λ-means algorithm. We first
note that an exhaustive linear search for λ at the elbow of the
curve would first require producing the entire curve, as seen in
Figure 1(b), and then locating the elbow. However, λ-means,
presented in Algorithm 1, employs a more efficient search
method. In this section, we first describe the cluster-based
version of λ-means, which uses the cumulative number of clus-
ters formed as a signaling method and allows for theoretical
guarantees, as described in Section III-D. Following this, we
describe the conflict-based version of λ-means, which allows
for faster algorithm execution when data is well separated. We
compare the two methods in Section III-C.2

i) Cluster-based λ-means: In the cluster-based version of
λ-means, the algorithm first generates a portion of the “elbow”
curve efficiently, and then uses the L-method set forth in [11].
We now describe the curve generating and elbow search
process. λ is first initialized to be the largest distance between
any two points in the dataset. The inter-cluster variance (ρ)
of the dataset is estimated from the data points. With this
estimate of ρ, λ is decreased such that roughly an equal
number of clusters are admitted each round. More formally,
under a Gaussian-assumption for the distribution of clusters
and points, we decrease λ by an amount guided by the PDF
of the Gaussian distribution parameterized by the mean of the
distribution from which the clusters are drawn and ρ, such
that the decrease in λ corresponds to an equal amount of
area under the PDF. (Note that for data characterized by a
different distribution, the same method can be used with that
distribution’s PDF). This method has the effect of decreasing λ
rapidly at the beginning (while λ is far away from the elbow)
and progressively more slowly when λ begins to approach the
elbow. This continues until the stopping criterion (described
below) is reached. Such procedure has the effect of generating
the curve as seen in Figure 1(b) incrementally from the right
to the left, which is important from an efficiency standpoint,
as we can identify the elbow without having to generate the
entire curve.

At every round of λ-means, two lines are fit to the partial
curve generated up to that point using a slightly modified
version of the L-method algorithm introduced in [11]. The
algorithm is modified such that we instead use a user-defined

2Note that in Algorithm 1 we purposely do not split cluster-based λ-means
and conflict-based λ-means into two separate algorithms, as the two share a
number of inputs and subroutines.

Algorithm 1: λ-means
Input: data set X = {xi|i = 1, . . . , N}
Input: random partitioning of X into epoch set
{B(t)|t = 1, . . . , T} of equal size, i.e., |B(t)| = N

T
if cluster-based λ-means then

Input: γ area under Normal pdf corresponding to
how many clusters to introduce with each
round of algorithm

Input: τ threshold for change in slope between the
two lines used in L-method

Input: n number of points to use in fitting line
if conflict-based λ-means then

Input: multiplicative decrease factor α and additive
decrease factor β

Input: τ threshold for the number of conflicts c
Input: T epochs and P processors

Output: cluster centroids D and assignments
Z = {zi|i = 1, . . . , N}

λ← the distance of the furthest point from mean(X)
D← {mean(X)}
if cluster-based λ-means then

c← 0

ρ̂←
∑N

i=1
(Xi−X̄)

N−1
b←∞
while m ≤ τ do

λ← λ s.t.
∫ b
λ

Φ(x−µ)
ρ dx = γ

D̂,Z← λAssign(λ,D,X)
D̃,Z, c← λValidate(λ, D̂,Z)
D← D ∪ D̃
D← Update(D,Z,X)
b← λ

if conflict-based λ-means then
// Phase 1 iteration
while c ≤ τ do

D̂,Z← λAssign(λ,D,X)
D̃,Z, c← λValidate(λ, D̂,Z)
D← D ∪ D̃
D← Update(D,Z,X)
// Multiplicative decrease
λ← λ× α

// Phase 2 iteration
while c > τ do

t← a random sample of epoch index set
{1, . . . , T}
D̂,Z← λAssign(λ,D,B(t))
D̃,Z, c̃← λValidate(λ, D̂,Z)
D← D ∪ D̃
c← c̃× T
D← Update(D,Z,X)
// Additive decrease
λ← λ− β

// Termination process
while not converged do

D̂,Z← λAssign(λ,D,X)
D̃, c← λValidate(λ, D̂,Z)
D← D ∪ D̃
D← Update(D,Z,X)

Algorithm 2: λAssign
Input: a threshold λ, a set of cluster centroids D, data

set X
Output: a set of proposed cluster centroids D̂ and

assignments Z
Partition data set X into P sets {X (p)|p = 1, . . . , P}
of equal size where P is the number of processors
D̂← ∅
for p = 1, 2, . . . , P do in parallel

for xi ∈ X (p) do
d∗ ← arg min

d∈D
‖xi − d‖2

// Optimistic transaction
if ‖xi − d∗‖2 ≥ λ then

zi ← xi
D̂← D̂ ∪ xi

else
zi ← d∗

Algorithm 3: λValidate
Input: a threshold λ, a set of proposed cluster

centroids D̂ and assignments Z
Output: a set of cluster centroids D that pass the

validation, updated assignments Z an the
number of conflicts c

c← 0
for xi ∈ D̂ do

d∗ ← arg min
d∈D
‖xi − d‖2

if ‖xi − d∗‖2 < λ then
zi ← d∗ // Rollback
c← c+ 1

else
D← D ∪ xi

Algorithm 4: Update
Input: a set of cluster centroids D, assignments Z and

data set X
Output: a set of updated cluster centroids D
for dj ∈ D do

dj ← mean({xi ∈ X|zi = dj})

n points of the curve in forming each line, which allows for
early termination. We find that for well-behaved situations
(well-separated clusters each with a reasonable number of
points, corresponding to a large ρ

σ value under the formulation
presented in Section V-A), generally n = 10 works well, as
the local “elbow” in the curve identified is in fact the global
“elbow” under this assumption. Once the slope of the two lines
differs by at least threshold τ , the λ value corresponding to
the number of clusters formed at the point of intersection is
chosen as the optimal λ, and the DP-means algorithm is then
run as λ-means’ inner loop for additional rounds with that
value of λ.

ii) Conflict-based λ-means: We now describe the conflict-
based version of λ-means, which uses OCC. Under this

framework, the dataset is divided into one or more epochs,
where each epoch is a random non-overlapping subset of the
input data. As described in [10], for a given iteration, each
epoch is executed sequentially, and at the end of each epoch,
the OCC validation step checks for conflicts, rolling back
when proposed cluster centroids are in conflict with other
centroids (i.e., when new centroids are less than λ distance
away from the other centroids). Specifically, the algorithm uses
the notion of conflicts per epoch, an attribute of the OCC DP-
means framework, as a low-overhead signal for two additional
purposes: (1) determining whether an optimal λ value has been
reached, and (2) controlling λ’s rate of decrease. The use of
conflicts as a signal to control the search of λ is novel and
beyond the original use of conflicts for validation in the OCC
DP-means framework.

More specifically, λ-means decreases λ in a two-phase
process, using the number of conflicts as an indicator for
when to transition between phases, as well as an indicator
of when the optimal λ has been reached, causing the algo-
rithm to enter the termination process. Initially, during Phase
1 (fast multiplicative-decreasing phase), when the number
of conflicts is low, λ is lowered multiplicatively. Once the
number of conflicts begins to rise, indicating true clusters are
being discovered, the algorithm enters Phase 2 (slow additive-
decreasing phase), in which λ is lowered additively. When
there are zero or sufficiently few conflicts detected, indicating
the optimal number of clusters has been found, the algorithm
starts the termination process. We find that in practice a τ
threshold in Algorithm 1 set around κPN , where κ is a
constant (roughly 0.1), works well.

C. Comparing Cluster-based and Conflict-based λ-means

Both cluster-based and conflict-based λ-means seek to
find the correct λ at the “elbow” of the generated curve.
However, the two variants each have their own inherent
strengths and weaknesses. While cluster-based λ-means is
theoretically motivated (see Section III-D), at every iteration,
the algorithm must cluster the data to completion, even though
these intermediate clusters will not be used in the final
clustering, increasing runtime and computation cost. Due to
the use of conflicts as a signaling mechanism, conflict-based
λ-means can immediately stop once a sufficient number of
conflicts occur and proceed to the next round with a smaller λ
value, decreasing runtime. In the last rounds of the algorithm,
which are the most expensive, this early termination can save
significant run time. However, when the data is not well
separated, the conflict-based signaling mechanism may not be
as robust as the cluster-based signaling mechanism. The user
may choose the appropriate variant based on run-time concerns
and characteristics of the data, such as inherent separability
(see Section V-A for a discussion of data separability).

D. Analysis

We prove that the λ found automatically in Algorithm 1
is the same value as λdp, the value used in [6]. In this
formulation, ρ denotes inter-cluster variance and σ denotes
intra-cluster variance. We prove the following:

Theorem 1. Suppose that σ approaches zero with a fixed ρ
for data generated from a Dirichlet Process. Then in the limit,

when λ decreases in Algorithm 1, the ratio between the number
of new clusters when λ < λdp and the number of new clusters
in the case of of λ > λdp becomes greater than 1 + ω for a
fixed positive value of ω.

Proof: Note that when λ decreases past the true under-
lying value λdp, λ-means precipitates a surge of clusters, as
true clusters are being broken up into sub-clusters. We discuss
the behavior of λ-means for all values of λ relative to λdp.
First, consider the case when λ = λ1, where λ1 > λdp. In this
case, the number of new clusters introduced each epoch will
be small relative to the other case, when λ < λdp. The number
of new clusters Cnew1 that will be added is proportional to the
probability shown below:

Cnew1
∝ P (new|dmin > λ1)P (dmin > λ1)

≤ P (new|dmin > λdp)P (dmin > λdp) (1)

where dmin is the minimum distance between two existing
clusters. The inequality for (1) follows from the fact that the
first quantity holds as the inter-cluster variance σ approaches
zero, and the second quantity holds by the assumption that
λ > λdp. Next, we consider the other case, when λ = λ2,
where λ2 < λdp. The number of new clusters Cnew2

that will
be added is proportional to the probability shown below:

Cnew2 ∝ P (new|dmin > λ2)P (dmin > λ2)

≥ (P (new|dmin > λdp) +

P (new|λ2 < dmin < λdp))P (dmin > λ2) (2)

The inequality for (2) follows from the fact that as σ ap-
proaches zero, P (new|λ2 < dmin < λdp) similarly approaches
zero, and P (dmin > λ2) ≥ P (dmin > λdp) by the assumption
that λ < λdp. Therefore, from these two cases, we have the
following inequality:

Cnew2

Cnew1

≥ P (dmin > λ2)

P (dmin > λdp)
. (3)

Since for a fixed positive value of ω

P (dmin > λ2)

P (dmin > λdp)
> 1 + ω, (4)

we have
Cnew2

Cnew1

> 1 + ω (5)

Therefore, we have shown that as λ decreases past λdp,
the ratio between the number of new clusters when λ < λdp

and the number of new clusters in the case of of λ > λdp

becomes greater than 1+ω for a fixed positive value of ω.

IV. COMPARISON WITH DP-MEANS

In this section, we compare our algorithm with the DP-
means algorithm by directly examining the use of the farthest-
first heuristic for finding λ, as suggested by the authors of the
original DP-means paper [6]. We show that λ-means is a more
robust method for finding the true λ. The farthest-first heuristic

requires an approximation k to the true number of clusters.
However, we assert that setting this initial k is challenging,
especially when the user does not know the characteristics
of the data. More importantly, we show that if the initial
approximation to k is wrong, it negatively affects finding the
correct λ. To demonstrate this, we generate a dataset from a
Dirichlet Process and then use the farthest-first heuristic with
a number of different values of k to derive λ. Figure 2 shows
the results of this experiment. As the figure demonstrates, the
derived λ value is quite sensitive to changes in the initial k.
As a result, in order to derive the true λ value, the initial
approximation must be very exact.

0 5 10 15 20 25
k

5

10

15

20

25

30

35

6

True 6

Fig. 2: Derived λ via farthest-
first heuristic using different
approximate k. The dashed
red line denotes the true λ.

5 10 15 20
;/<

0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
M
I

DP-means
6-means

Fig. 3: Comparison of per-
formance of DP-means (blue)
and λ-means (green) for dif-
ferent ratio values ρ

σ

Importantly, this incorrect estimation of λ could potentially
cause the DP-means algorithm to identify an incorrect number
of clusters, negatively impacting the outcome of the clustering
process. As such, the drawbacks of the farthest-first heuristic
are clear: the method is brittle to small changes in the approxi-
mation of k, having a large impact on the derived value of λ as
well as potentially on the resulting cluster quality. In contrast,
λ-means automatically finds the λ value that maximizes AMI
without an initial approximation for k. Therefore, λ-means
achieves its goal of being a more robust alternative method to
the farthest-first heuristic for use with DP-means.

Finally, we also note that as compared to that of DP-
means, the running time of λ-means is directly proportional to
the number of iterations used in its inner-loop. However, this
running time can be decreased with the conflict-based version
of λ-means, as described in Section III-B.

V. EXPERIMENTS

We provide experimental evaluation of λ-means on both
synthetic and real world data using normalized mutual infor-
mation (NMI) [9] and adjusted mutual information (AMI) [13].
While AMI was proposed more recently and is normalized
against chance, NMI is often used in the literature, and
therefore we present results using both metrics.

A. Synthetic Data

We generate synthetic data from a Dirichlet Process as
in [6]. Under this formulation, we control both the inter-cluster
variance ρ and the intra-cluster variance σ. We use the ratio ρ

σ
as a measure of the difficulty of clustering the dataset. When
ρ
σ is large, the clusters are relatively separated and compact,

Fig. 4: The optimal λ found by λ-means during iteration 19.
At this value, the peaks of AMI and NMI are reached and the
correct number of clusters (100) is approximately identified.

TABLE I: Comparison on λ-means and DP-means using
synthetic (Syn.) and MNIST datasets

Dataset
Syn. ρ

σ
= 15 Syn. ρ

σ
= 5 MNIST

Algorithm AMI NMI AMI NMI AMI NMI
λ-means 0.97 0.98 0.77 0.82 0.43 0.53

DP-means 0.87 0.92 0.52 0.78 0.32 0.38

while when ρ
σ is small, the clusters are less separated (e.g.,

larger overlap), making clustering more difficult.

Figure 4 shows AMI and NMI scores using the synthetic
data with a high value of ρ

σ . We note that λ-means is able
to automatically find the λ value that maximizes AMI and
NMI scores; the vertical red dotted line indicates the iteration
(iteration 19) at which the λ-means algorithm terminates.
As shown, the AMI and NMI are both maximized at this
point. Further, both metrics immediately drop in the additional
iterations past termination. (Note that these further iterations
are performed artificially after λ-means terminates for the
purposes of generating the graph and showing that a maxima is
reached.) This therefore demonstrates that the λ value found by
λ-means at the elbow of the curve is optimal by this metric. We
can further judge λ-means by evaluating its ability to identify
the correct number of clusters. The blue curve in Figure 4 plots
the cumulative number of clusters identified at each iteration.
The vertical red dotted line indicates the iteration at which the
λ-means algorithm terminates. We note that at this point, λ-
means approximately recovers the correct number of clusters
(100).

Additionally, we compare the AMI and NMI scores for λ-
means and DP-means in Table I for additional values of ρ

σ .
For DP-means, the λ value is selected with the farthest-first
heuristic with k chosen to be the ground truth, and 5 iterations
to ensure convergence. For a fair comparison, λ-means also
uses 5 iterations in the termination process. We note that for
both ρ

σ = 15 and the more difficult case when ρ
σ = 5, λ-means

outperforms DP-means.

We now discuss the impact of data separability on per-
formance. In Figure 3, we show the performance (in terms

of AMI) of λ-means and DP-means on data generated with
a Dirichlet Process with varying ρ

σ . The λ value for DP-
means is estimated with the farthest-first heuristic, where
the initial approximation for k is chosen using the G-means
algorithm [5]. There are two important conclusions to draw
from this experiment. First, we see that both algorithms
perform better when data is more separable. Second, we find
that to achieve a given AMI value, λ-means can cluster a
“harder” dataset, while DP-means must use an “easier” dataset
(where difficulty is measured in terms of relative values of
ρ
σ). Especially at high levels of AMI, ρ

σ must be increased
relatively more for DP-means than for λ-means as compared
with lower AMI levels.

B. Real World Data

We compare the performance of λ-means and DP-means
on the MNIST dataset [8], a real world dataset that, in contrast
to the synthetic data used in the results presented previously in
Section V-A, does not necessarily follow a Dirichlet Process.
The results are shown in Table I.3 For DP-means, in order
to make the most direct comparison possible, in choosing the
initial k for use with the farthest-first heuristic, we choose the
initial approximation for k based on the number of clusters
found by λ-means. As the results show, λ-means outperforms
DP-means in terms of both AMI and NMI due to its ability to
find an optimal k. Further, note that while we do not directly
compare with other clustering methods here, the DP-means
algorithm (which λ-means outperforms) was shown in [6] to
have comparable or better performance than k-means on a
number of datasets.

VI. SPEEDUP RESULTS

We measure the running time and speedup of both cluster-
based and conflict-based λ-means with OCC on distributed
clusters in the cloud and parallel multicore computers.

For the distributed case, we run both versions of λ-means
on N = 10M points on a distributed cluster in the cloud. We
use Amazon Web Services, and use m3.2xlarge EC2 instances
located within the same geographical region. We run conflict-
based λ-means using 1-, 2-, 4-, 8-, 16-, 32-, and 48-machine
clusters. The wall clock running times are shown in Figure 5a.
We note that we achieve approximately a 26x speedup on a
48-machine cluster, which is only a factor of 2 away from
perfect speedup. We additionally run cluster-based λ-means in
the distributed setting, and find that we achieve near perfect
speedup on up to a 16-machine cluster. However, as discussed
in Section III-C, the wall clock running time of cluster-based
λ-means is greater than that of conflict-based λ-means, taking
8,048 seconds and 5,116 seconds, respectively.

For the multicore case, we run conflict-based λ-means
using 1, 2, 4, and 8 cores on N = 1M points on a 2.6 GHz
Intel Xeon E5-2670 v2 (Ivy Bridge) machine with 8 available
cores and 30 GB of RAM. The wall clock running times are
shown in Figure 5b. Comparing the run time between 1 and 8

3MNIST provides empirical evidence that λ-means works on real world
data. We could test λ-means on other real world datasets, but due to the
space limitations, we focus on the theoretical aspects of the algorithm while
showing just one real world data example in this paper.

0 20 40
Number of Workers

0

2000

4000

6000

8000

10000

12000

Ti
m

e
(s

ec
)

(a) Distributed cluster in the cloud

2 4 6 8
Number of Cores

1000

2000

3000

4000

Ti
m

e
(s

ec
)

(b) Multicore

Fig. 5: Wall clock running times of conflict-based λ-means
under two parallel computing settings.

cores, we achieve a 4x speedup, only a factor of 2 away from
perfect speedup.

VII. CONCLUSION

λ-means is a clustering algorithm with automatic parameter
search as a solution for finding the λ value for use with its
DP-means inner-loop without relying on heuristics such as
farthest-first. In the asymptotic limit, λ-means automatically
converges on the λ value used in the underlying Dirichlet
Process, and performs this search efficiently. We introduce
two variants of the algorithm: cluster-based λ-means, which
provides sound theoretical guarantees, and conflict-based λ-
means, which has a faster running time. We validate λ-
means on both synthetic and real world datasets. Finally, we
demonstrate that λ-means can be adapted for a distributed
system. To study the speedup achieved by λ-means in parallel
computing settings, we run it on both multicore and distributed
settings in the cloud, in both scenarios achieving speedups only
a factor of two away from the maximum possible speedup with
conflict-based λ-means, and nearly maximum speedup with
cluster-based λ-means.

VIII. ACKNOWLEDGEMENTS

This work is supported in part by gifts from the Intel
Corporation and in part by the Naval Supply Systems Com-
mand award under the Naval Postgraduate School Agreements
No. N00244-15-0050 and No. N00244-16-1-0018. Marcus
Comiter is supported by the Smith Family Graduate Science
and Engineering Fellowship.

REFERENCES

[1] T. L. Chen, D. N. Hsieh, H. Hung, I. P. Tu, P. S. Wu, Y. M. Wu,
W. H. Chang, S. Y. Huang, et al. γ-sup: A clustering algorithm for
cryo-electron microscopy images of asymmetric particles. The Annals
of Applied Statistics, 8(1):259–285, 2014.

[2] Y. Cheng. Mean shift, mode seeking, and clustering. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 17(8):790–799, 1995.

[3] C. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun. Map-reduce for machine learning on multicore. Advances
in Neural Information Processing Systems, 19:281, 2007.

[4] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD,
volume 96, pages 226–231, 1996.

[5] G. Hamerly and C. Elkan. Learning the k in k-means. Advances in
Neural Information Processing Systems, 16:281, 2004.

[6] B. Kulis and M. I. Jordan. Revisiting k-means: New algorithms
via bayesian nonparametrics. Proceedings of the 23rd International
Conference on Machine Learning, 2012.

[7] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Transactions on Database Systems, 6(2):213–226, 1981.

[8] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of
handwritten digits, 1998.

[9] C. D. Manning, P. Raghavan, and H. Schutze. Introduction to informa-
tion retrieval. Cambridge university press Cambridge, 2008.

[10] X. Pan, J. E. Gonzalez, S. Jegelka, T. Broderick, and M. I. Jordan.
Optimistic concurrency control for distributed unsupervised learning.
In Advances in Neural Information Processing Systems, 2013.

[11] S. Salvador and P. Chan. Determining the number of clusters/segments
in hierarchical clustering/segmentation algorithms. In Proceedings of
the Sixteenth IEEE International Conference on Tools with Artificial
Intelligence, pages 576–584, 2004.

[12] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of
clusters in a data set via the gap statistic. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 63(2):411–423, 2001.

[13] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures
for clusterings comparison: Variants, properties, normalization and
correction for chance. The Journal of Machine Learning Research,
11:2837–2854, 2010.

[14] M. Zhou, H. Chen, L. Ren, G. Sapiro, L. Carin, and J. W. Paisley.
Non-parametric bayesian dictionary learning for sparse image represen-
tations. In Advances in neural information processing systems, 2009.

	Introduction
	Related Work
	-means Overview
	The Effect of Decreasing
	The -means Algorithm
	Cluster-based -means
	Conflict-based -means

	Comparing Cluster-based and Conflict-based -means
	Analysis

	Comparison with DP-means
	Experiments
	Synthetic Data
	Real World Data

	Speedup Results
	Conclusion
	Acknowledgements
	References

