
BranchyNet: Fast Inference via Early Exiting
from Deep Neural Networks

ICPR 2016

Surat Teerapittayanon
Brad McDanel
H. T. Kung

Harvard John A. Paulson School of Engineering and Applied Sciences
1



outline

Motivation and Background
Trend towards deeper networks
Auxiliary network structures (GoogLeNet)

BranchyNet
Architecture
Training
Inference

Experimental Results
Future Work
Conclusion

BranchyNet with 3 exits

2



trend towards deeper networks

Accuracy vs. Depth (ILSVRC workshop - Kaiming He)

3



auxiliary networks

Section of GoogLeNet

GoogLeNet introduces auxiliary
networks

Provide regularization to main
network
Improves accuracy ≈ 1%
Removed after training
Only main network is used during
inference

Can we leverage auxiliary networks to
address inference runtime of deeper
networks?

4



branchynet

Easier input samples require lower
level features for correct classification
Harder input samples require higher
level features
Use early exit branches (auxiliary
networks) to classify easier samples

No computation performed at higher
layers

Requires mechanism for determining
network confidence about a sample to
use exit
Jointly training the main and early exit
branches improves the quality of lower
branches

Allowing more samples to exit at
earlier points BranchyNet (LeNet)

5



branchynet example: easy sample

New sample enters the network

Reaches Exit 1
Determined “confident”
Classifies sample
No additional work performed at
upper layers

6



branchynet example: easy sample

New sample enters the network
Reaches Exit 1

Determined “confident”
Classifies sample
No additional work performed at
upper layers

Confident?

6



branchynet example: easy sample

New sample enters the network
Reaches Exit 1
Determined “confident”

Classifies sample
No additional work performed at
upper layers

Confident?
Yes

6



branchynet example: easy sample

New sample enters the network
Reaches Exit 1
Determined “confident”
Classifies sample
No additional work performed at
upper layers

Confident?
Yes

0

6



branchynet example: hard sample

New sample enters the network

Reaches Exit 1
Determined “not confident”
Continues up the main network (no
re-computation of lower layers)
Must exit (classify sample) as Exit 2 is
final exit point

7



branchynet example: hard sample

New sample enters the network
Reaches Exit 1

Determined “not confident”
Continues up the main network (no
re-computation of lower layers)
Must exit (classify sample) as Exit 2 is
final exit point

Confident?

7



branchynet example: hard sample

New sample enters the network
Reaches Exit 1
Determined “not confident”

Continues up the main network (no
re-computation of lower layers)
Must exit (classify sample) as Exit 2 is
final exit point

Confident?
No

7



branchynet example: hard sample

New sample enters the network
Reaches Exit 1
Determined “not confident”
Continues up the main network (no
re-computation of lower layers)

Must exit (classify sample) as Exit 2 is
final exit point

7



branchynet example: hard sample

New sample enters the network
Reaches Exit 1
Determined “not confident”
Continues up the main network (no
re-computation of lower layers)
Must exit (classify sample) as Exit 2 is
final exit point

7

7



measuring network confidence

Use entropy of softmax output to measure confidence

entropy(y) =
∑
c∈C

yc log yc,

where y is a vector containing computed probabilities for all possible
class labels and C is a set of all possible labels
Choice of entropy versus other measures

Exit 1 Softmax Output

8



branchynet training

Pretrain main network first
Add exit branches and train again
The final loss function is the weighted sum of losses of all exits

Lbranchynet(ŷ, y; θ) =
N∑

n=1
wnL(ŷexitn , y; θ),

where N is the total number of exit points

Early exit weights W1..N−1 = 1
Last exit weight WN = 0.3

9



branchynet inference

1: procedure BranchyNetFastInference(x, T)
2: for n = 1..N do
3: z = fexitn(x)
4: ŷ = softmax(z)
5: e = entropy(ŷ)
6: if e < Tn then
7: return argmax ŷ
8: return argmax ŷ

Figure: BranchyNet Fast Inference Algorithm. x is an input sample, T is a vector
where the n-th entry Tn is the threshold for determining whether to exit a sample
at the n-th exit point, and N is the number of exit points of the network.

10



networks and datasets

Network Architectures
LeNet (on MNIST)
AlexNet (on CIFAR-10)

Branchy-LeNet Branchy-AlexNet
11



results

Points on the curve found by sweeping over values of T
In the case of more than one early exit, we take combinations of Ti values

Accuracy improvement over baseline network (red diamond) due to joint
training
Runtime improvements over baseline network due to classifying the
majority of samples at early exit points (no computation performed for
higher layers)
As T values increase, more samples exit at the higher exit branches

12



future work

Automatically find the threshold values T for each exit branch
Investigate alternative confidence measures other than softmax entropy
(e.g., OpenMax, GANs)
Dynamically adjusting the weight of loss based on individual samples

Easier samples have more weight at lower branches
Harder samples have more weight at higher branches

13



conclusion

Introduce a mechanism to exit a percentage of samples at earlier points
in the network
Jointly training these exit points improves accuracy which allows
additional samples to exit early
Achieve a factor of 2-4x speedup compared to baseline single network
for our test case
BranchyNet implementation written in Chainer and open source:
https://gitlab.com/htkung/branchynet

14

https://gitlab.com/htkung/branchynet


Thanks for your attention!
Comments and Questions?

15



results table

Table: Selected performance results for BranchyNet on the different network
structures. The BrachyNet rows correspond to the knee points (denoted as green
stars in the previous slides).

Network Acc. (ҍ)Time (ms)GainThrshld. T Exit (ҍ)

CPU

LeNet 99.20 3.37 - - -
B-LeNet 99.25 0.62 5.4x 0.025 94.3, 5.63
AlexNet 78.38 9.56 - - -
B-AlexNet79.19 6.32 1.5x 0.0001, 0.0565.6, 25.2, 9.2
LeNet 99.20 1.58 - - -
B-LeNet 99.25 0.34 4.7x 0.025 94.3, 5.63
AlexNet 78.38 3.15 - - -
B-AlexNet79.19 1.30 2.4x 0.0001, 0.0565.6, 25.2, 9.2

GPU

16


