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Abstract

Spoken language recognition requires a series of signal process-
ing steps and learning algorithms to model distinguishing char-
acteristics of different languages. In this paper, we present a
sparse discriminative feature learning framework for language
recognition. We use sparse coding, an unsupervised method,
to compute efficient representations for spectral features from
a speech utterance while learning basis vectors for language
models. Differentiated from existing approaches in sparse rep-
resentation classification, we introduce a maximum a posteriori
(MAP) adaptation scheme based on online learning that further
optimizes the discriminative quality of sparse-coded speech fea-
tures. We empirically validate the effectiveness of our approach
using the NIST LRE 2015 dataset.

Index Terms: speech recognition, sparse coding

1. Introduction

Originally used to explain neuronal activations [1], sparse cod-
ing emerges as an effective means to discover underlying
structures of unknown data. High-level feature representations
learned from sparse coding occasionally have resulted the best
performance for discriminative tasks in computer vision. Yet,
sparse coding of speech features—or audio signals in general—
has not been explored to its full potential. In this paper, we in-
vestigate a discriminative learning framework based on sparse
coding for language recognition.

Language recognition refers to a systematic process of
identifying the spoken language in a speech utterance. Over
the years, Gaussian mixture models (GMMs) [2] and support
vector machine (SVM) [3] have been crucial to build a high-
performance language identification (LID) system. More re-
cently, the idea of total variability space or i-vector [4] has been
studied for LID. Motivated by joint factor analysis (JFA) for
speaker verification [5], i-vector approaches are known to pro-
duce state-of-the-art results in language recognition. A conven-
tional GMM-based language model uses the shifted delta cep-
stra (SDC) feature computed from a linear expansion of consec-
utive MFCC blocks. A more contemporary approach for acous-
tic feature extraction is to train a deep neural network (DNN)
for bottleneck feature (BNF) [6, 7, 8, 9]. Currently, the best LID
systems are built on i-vector modeling of the DNN BNFs.

Sparse coding has been previously applied to speaker and
language identification [10, 11, 12]. Despite much interest from
the machine learning community, there is surprisingly little
work in sparse coding for speech. A sparse coding-based classi-
fication pipeline can take a simple classifier such as linear SVM
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trained on the sparse feature vectors. However, it is known to
perform on par with (or better than) more complex nonlinear
schemes (e.g., deep neural networks, kernel SVM) [13]. One
possible explanation is that sparse coding can achieve a near-
optimal approximation of much complicated nonlinear relation-
ship through local and piecewise linear functions.

We structure the rest of this paper as follows. In Section 2,
we present a background on sparse coding. Section 3 describes
our sparse coding-based approaches for language recognition.
In particular, we propose adaptive sparse coding (ASC), an
enhancement to the semi-supervised classification pipeline on
vanilla sparse coding, and discuss an online method for per-
utterance dictionary adaptation. As a result, we can significantly
improve the discriminative quality of sparse-coded speech fea-
tures. In Section 4, we evaluate the proposed approaches against
i-vector based benchmark pipelines developed by Lincoln Lab-
oratory and MIT on a subset of the NIST LRE 2015 comprising
the Arabic and Chinese clusters. Section 5 concludes the paper.

2. Sparse Coding Background

Sparse coding is an unsupervised method to learn an efficient
representation of data using a small number of basis vectors. It
has been used to discover higher-level features present in data
from unlabeled examples. Given an example x € R, sparse
coding searches for a representation y € R¥ (i.e., the feature
vector for x) while simultaneously updating the dictionary D €
RN *K of K basis vectors by

min [x = Dyl3 + Ayl st fldifl2 <1,vi ()

where d; is ith dictionary atom in D, and A is a regulariza-
tion parameter that penalizes over the ¢1-norm, which induces a
sparse solution. With K > N, sparse coding typically trains an
overcomplete dictionary. This makes the sparse code y higher in
dimension than x, but only S < NN elements in y are nonzero.

A more direct way to control sparsity is to regularize on the
Lo pseudo-norm ||y||o, describing the number of nonzero ele-
ments in y. However, it is known to be intractable to compute
the sparsest £y solution in general. The approach in Eq. (1) is
called least absolute shrinkage and selection operator (LASSO)
[14], a convex relaxation of the ¢y sparse coding that induces
sparse y’s. We use least angle regression (LARS) [15] to solve
the LASSO problem. We also consider orthogonal matching
pursuit (OMP) [16], a greedy-{o sparse coding algorithm that
computes an at-most S-sparse y extremely fast by

min ||x — Dy||5 st |lyllo < S. 2)
D,y



3. Our Approach
3.1. Shifted delta cepstral feature extraction

We use a spectral-based technique by Torres et al. [17, 18] to
process speech waveforms. Speech is analyzed with a Ham-
ming window of 20-msec duration at a 10-msec frame rate.
The windowed speech waveforms pass through a mel-scale fil-
terbank and RASTA filtering with per-utterance normalization
to zero mean and unit variance. Using the 7-1-3-7 scheme, we
calculate the shifted delta cepstral (SDC) coefficients. Concate-
nating with static cepstra, the spectral features extracted from
speech form a 56-dimensional vector. Lastly, we run energy-
based speech activity detection to remove undesirable back-
ground noise.

3.2. Vanilla sparse coding

The key reasoning for sparse coding is to learn useful repre-
sentations by decomposing spectro-temporal features of speech
into a sparse linear combination of basis vectors in a dictionary
(also learned). Nonzeros in the computed sparse code quantity
the presence of specific basis vectors. By exploiting variation of
the nonzero locations and magnitude, we can build a discrimi-
native pipeline for language recognition.

Figure 1 describes a baseline sparse coding approach for
LID, which we call “vanilla sparse coding (VSC).” VSC is a
semi-supervised approach. Assuming L languages of interest
L € {li,...,lr}, we perform sparse coding with an unbiased
mix of unlabeled speech examples from all languages to train
a dictionary D € R™*® during the unsupervised phase. The
trained dictionary represents universal sparse modeling of the
L languages. That is, given an unknown speech input x € R,
we can compute its sparse representation y € R¥ using D. By
sparse modeling assumption, y has only several nonzero ele-
ments

x ~ y1di + y2d2 + - - - + yxdrk,

where y; is jth element in y, d; the jth basis vector in D. We
use the notation X = [x(*) ... x(™] for a batch of n unlabeled
training examples, where x(¥' € R¥ is the ith example in the
batch. Optionally, X can be normalized and whitened before
sparse coding for better result.

The supervised phase uses a labeled dataset. Consider m
labeled training examples in X; = [x* ... x(™)]. Now, each
example x®) = {x® 1"} includes a language label ) € £
for x*). Recall each x contains the spectral feature for a single
frame (i.e., 10 msec). Since a speech utterance is much longer
(up to minutes), sparse coding will result in too many feature
vectors per utterance. Before the supervised training of classi-
fiers, we perform pooling, a technique popularized in computer
vision, across all sparse codes from the same utterance. The pur-
pose of pooling is two-fold: 1) aggregation of feature vectors
and 2) statistical robustness.

3.3. Enhancement: adaptive sparse coding

We propose an enhancement of VSC as illustrated in Figure 2.
We name the approach “adaptive sparse coding (ASC).” The
unsupervised phase of ASC is identical to VSC, and the dictio-
nary D for universal sparse modeling of all languages is first
learned. The basic idea of ASC is to adapt D to the utterance-
dependent dictionary D, during the supervised phase. With
both D and D,, we can compute two sparse codes y and
ya for each input vector x from the same utterance such that

Unsupervised phase

SDC feature Normalization, Sparse coding &
vectors ~—* Z/PCA-whitening —>| dictionary — D

(unlabeled) (optional) learning (trained dictionary)

Supervised phase

SDC feature Normalization, 5 " Li
o parse coding . inear
vectors ~—* Z/PCA-whitening —>| with D > Pooling > gum

(labeled) (optional)

Figure 1: Vanilla sparse coding pipeline
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Figure 2: During the supervised phase of adaptive sparse cod-
ing pipeline, per-utterance dictionary adaptation is performed.
Pooled difference vector between adapted and universal sparse
models is used to train classifiers.

x = Dy and x = D,Yya, respectively. ASC takes in the differ-
ence A = y, —Y to train classifiers (compared to y for VSC as
in Figure 1). Note that A vectors from the same utterance are
also pooled before applied to classifiers.

Our idea of adapted sparse coding dictionaries and form-
ing discriminative A is analogous to adapted GMM-UBM and
supervectors [2, 19]. Consider a probabilistic model for sparse
coding under a Gaussian noise

K
p(xD,y) ~ N(O_ysd;, 0°T) 3)
j=1

where the Gaussian noise has a zero-mean and covariance o1
A sparse prior p(y) o [, e~ Mvil regularizes the activations
on sparse code y. Note that the hyperparameter ) is same as the
regularization parameter of Equation (1). We can formulate the
maximum a posteriori (MAP) estimation problem to solve for
{ya, Da} jointly

arg max p(y'|x,D’) = arg max p(xID,y)p(y'). @

Since p(x|D’,y’) is a multivariate Gaussian density function,
we can derive an analytical solution for Equation (4). For this
paper, however, we focus on efficient estimation of the adapted
dictionary and sparse code by following an online method by
Mairal et al. [20].

In Algorithm 1, we present a fast online algorithm for dic-
tionary adaptation. This algorithm is guaranteed to converge
and computes a good estimate of D, from D given an arbi-
trary amount of utterance input. In particular, block-coordinate
descent in the inner-loop sequentially updates each basis vector
(column) in the dictionary. Since the y vectors are sparse, the
coefficients of the matrix A are concentrated on the diagonal,
making the search for optimal D, very efficient. For the sparse
coding step in the inner-loop, we can use either LARS or OMP.



Algorithm 1 Online dictionary adaptation

1: require: universal sparse modeling dictionary D from un-
supervised phase
: initialize: DO := D, A’ :=0,B°:=0
: for ¢ :=1 to T (inner-loop)
draw x uniformly random from X
compute sparse code y for x using D41
update A := A* ! 4 yyT and Bt := B*"! 4 xy '
update by block-coordinate descent
D}, := arg minp/ 1[5 Tr(D'TD’A’) — Tr(D'"B"))
end
9: return: D,

A o
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Figure 3: Training 1-vs-all SVM for each language

3.4. SVM classification

We consider support vector machines (SVMs) for both VSC
and ASC pipelines. The kernel trick for SVM has been studied
widely to cope with cases where the input vectors for SVM are
not linearly separable. For our case, sparse coding and pooling
together give reasonably sufficient nonlinear transformation for
the SDC coefficients. Hence, we use off-the-shelf linear SVMs
only.

A well-accepted strategy for a LID system is to train /-vs-
all classifiers as explained in Figure 3. To train the model for
language I; € L, we input the pooled sparse codes for all la-
beled examples from /; as class 0. For utterances from all other
languages I; € Ly;,, we use class 1.

4. Experiments
4.1. Task, dataset, and evaluation metrics

To evaluate the performance of sparse coding pipelines for LID,
we consider the NIST Language Recognition Evaluation (LRE)
2015 [21]. The task is to determine the average performance of
a LID system that can classify each language as a target within
six predefined language clusters. The language clusters are Ara-
bic, Chinese, English, French, Slavic, and Iberian with 20 dif-
ferent languages in total. For the time being, we present a partial
evaluation focusing only on the Arabic and Chinese clusters. As
summarized in Table 1, there are 5 languages from Arabic and
4 languages from Chinese in NIST LRE 2015.

The NIST dataset comes in training and evaluation subsets.
We cut the training subset into t rain and dev. Using train,
we do sparse coding and dictionary learning. SVM supervised
training for each language is also done with t rain. The size of
dev is approximately i of train, and we reserve dev for cal-
ibration and fusion at the backend, which will be discussed in

Table 1: Arabic and Chinese language clusters from NIST LRE
2015
[ Cluster |

Arabic Egyptian, Iraqi, Levantine, Maghrebi, Modern Standard
Chinese Cantonese, Mandarin, Min, Wu

Target languages |

§4.3. The amount of training examples for each language is un-
even. It ranges from 2.6 (zho-yue) to 97.5 hours (ara-arz)
in speech duration.

The eval subset serves as held-out test data to evaluate
the language recognition performance (i.e., classification cost).
Following the 2015 evaluation plan [22], we adopt the NIST
average cost performance as our evaluation metric

1

Cavg = NiL{ [Cmiss * Ptarget ° meiss(lT)}
lr
1
+ N, —1 [CFA - (1 — prarget) - ZZPFA(ZT, lN)} }

I In

4.2. Methods and training

For comparative performance evaluation, we have trained two
benchmark pipelines on an i-vector framework [4], IVEC-SDC
and IVEC-BNF. For years, i-vector based systems have been
able to produce the top results in numerous speaker and lan-
guage recognition challenges. IVEC-SDC takes in the same 7-
1-3-7 SDC feature vectors used for our VSC and ASC pipelines.
IVEC-BNF, however, uses a 64-dimensional bottleneck feature
(BNF) obtained by training a deep neural network (DNN). The
DNN has 7 hidden layers, all of which have 1,024 neurons ex-
cept the sixth layer that has 64 neurons with a linear activation
function firing the BNFs. We remark that both our benchmark
pipelines IVEC-SDC and IVEC-BNF are the part of MIT Lin-
coln Laboratory’s NIST LRE 2015 submission [23].

Before sparse coding, we normalize each input vector by
removing its mean and dividing by the standard deviation. The
normalized input vectors are then ZCA-whitened [24] without a
dimensionality reduction. Our choice of using ZCA-whitening
over PCA-whitening has been determined empirically.

We have tested multiple configurations of VSC and ASC by
varying the choice of sparse coding algorithm, ¢;-regularized
LARS or greedy-{o OMP, and the number of basis vectors in
a dictionary K = 512,1024. Since we have applied only the
SDC features to sparse coding, we add a “-SDC” prefix to
name our methods. For example, ASC-LARS-1024-SDC de-
notes adaptive sparse coding with LARS and a 1,024-basis vec-
tor dictionary on the SDC features. Throughout our experiments
with LARS, we use a sparsity penalty A = 0.15. For OMP, we
use a sparsity bound S = 0.1 x 56 ~ 6. Our implementation
is done in MATLAB, using the INRIA SPAMS (SPArse Model-
ing Software) [25] for LARS and the Technion toolbox [26] for
OMP. We use LIBSVM [27].

During the unsupervised phase, we learn D for univer-
sal sparse modeling of all 9 languages. During the supervised
phase, we perform a five-fold cross-validation on t rain to de-
termine hyperparameters of the SVMs. For ASC, we also adapt
D to utterance-specific dictionaries using the train subset
during the supervised phase. We have decided to go with av-
erage pooling after trying out both average and max pooling
methods described below.

1. Average: f({y™®,...,y®™}) = = Z;Vil ly@|



2. Max: f({y(l)v B ’y<M)}) 1 M
= maxvr ({|y"],..., [y}

4.3. Fusion

The historical NIST LREs have found that running multiple
pipelines concurrently can be beneficial. Thus, we consider
post-processing at the backend that consists of per-pipeline cal-
ibration and fusion using the dev subset. We perform a simple
linear fusion with one of the sparse coding pipelines and IVEC-
SDC
lp lp lp lr
U, = p- T (1= ) S
1 05"

(&)

Here, we use a mixing ratio p to combine the scores (i.e., log-
likelihood ratios llry and llro with respect to a target language
1) from the two pipelines. More sophisticated fusion schemes
such as logistic regression and neural networks can also be used.

4.4. Results and discussion

Table 2 presents the performance comparison on the average
cost metric Cayvg for the i-vector benchmarks, as well as the
proposed VSC and ASC pipelines. These results are obtained
by running the eval subset, which includes 34,530 utterances
for Arabic and 44,596 utterances for Chinese. The bold-faced
numbers represent the best result from each IVEC, VSC, ASC
group.

Using the exact same SDC features, our best sparse cod-
ing pipeline ASC-LARS-1024-SDC significantly outperforms
the IVEC-SDC approach for both language clusters. This result
shows that our proposed sparse-modeling approach has signif-
icant potential. With different features, the IVEC-BNE, is able
to outperform our proposed method. Our method still remains
competitive on the Arabic cluster with a Cyyg of 0.1874 on the
Arabic cluster compared to 0.1811 for IVEC-BNF. This result
points to future work where we apply the sparse technique to
BN features.

We find that ASC makes a significant improvement over
VSC. If the choice of sparse coding algorithm and the num-
ber of basis vectors in a dictionary K were the same, ASC re-
sults in consistently better cost performance. Overcompleteness
of sparse coding dictionary is an important hyperparameter for
both VSC and ASC. Increasing K from 512 to 1,024 has always
improved the cost performance. Also for both pipelines, LARS
results in a better performance. However, the average computa-
tion time for LARS is found an order of magnitude higher than
OMP.

In Table 3, we report improved cost performance by the lin-
ear fusion of our VSC and ASC pipelines with IVEC-SDC. For
calibration, we have varied the fusion hyperparameter p from
0.1 to 0.9 and chosen the value that results the best cost perfor-
mance on the dev dataset. We have found 0.5 for VSC-LARS-
1024-SDC and 0.6 for ASC-LARS-1024-SDC. Fusion enables
us to achieve the new best Cl, for both Arabic and Chinese. In
particular, Clyg of 0.1652 for Arabic is better than IVEC-BNFE.

5. Conclusion and Future Work

Sparse coding has achieved great performances for discrimina-
tive tasks in computer vision and object recognition. Despite its
growing interest, sparse coding has relatively little work known
in speech. In this paper, we have described semi-supervised ap-
proaches for sparse coding on the task of language recognition.

Table 2: Comparison of average cost performance (Cavg) on
Arabic and Chinese language clusters

Pipeline Arabic  Chinese
IVEC-SDC 0.2566  0.2054
IVEC-BNF 0.1811  0.1160

VSC-LARS-512-SDC 0.2615  0.2556
VSC-OMP-512-SDC 0.2823  0.2699
VSC-LARS-1024-SDC  0.2393  0.2043
VSC-OMP-1024-SDC 0.2486  0.2120
ASC-LARS-512-SDC 0.2187  0.1909
ASC-OMP-512-SDC 02342 0.2036
ASC-LARS-1024-SDC  0.1874  0.1634
ASC-OMP-1024-SDC 0.2015  0.1983

Table 3: Cost performance improvement by linear fusion

[ Fusion scheme [ Arabic | Chinese |

VSC-LARS-1024-SDC + IVEC-SDC | 0.1988 | 0.1857
ASC-LARS-1024-SDC + IVEC-SDC | 0.1652 | 0.1226

Differentiated from existing approaches in sparse representation
classification, we propose the MAP adaptation on the dictionary
for sparse modeling of each language to improve the discrimi-
native quality of sparse-coded speech features. Using the NIST
LRE 2015 dataset, we experimentally validate the effectiveness
of our approaches. Also, empirical results in the backend fusion
indicate that sparse coding, ASC in particular, can be a viable
component for a top LID system.

Our immediate future work includes the full evaluation of
the NIST LRE dataset. We plan to explore the ASC hyperpa-
rameter space in a more elaborated manner. As an initial ap-
proach, we have opted to focus on the SDC feature input only.
Although a direct comparison to the IVEC-BNF benchmark
may not be too meaningful at the moment, the superior perfor-
mance by VSC and ASC over IVEC-SDC leads us to the next
logical step in trying out the DNN bottleneck features.
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