
TO APPEAR IN 2016 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING

SPARSE-CODED NET MODEL AND APPLICATIONS†

Youngjune Gwon1, Miriam Cha2, William Campbell1, H. T. Kung2, Cagri Dagli1

1MIT Lincoln Laboratory, 2Harvard University

ABSTRACT

As an unsupervised learning method, sparse coding can dis-
cover high-level representations for an input in a large va-
riety of learning problems. Under semi-supervised settings,
sparse coding is used to extract features for a supervised task
such as classification. While sparse representations learned
from unlabeled data independently of the supervised task per-
form well, we argue that sparse coding should also be built
as a holistic learning unit optimizing on the supervised task
objectives more explicitly. In this paper, we propose sparse-
coded net, a feedforward model that integrates sparse cod-
ing and task-driven output layers, and describe training meth-
ods in detail. After pretraining a sparse-coded net via semi-
supervised learning, we optimize its task specific performance
in a novel backpropagation algorithm that can traverse nonlin-
ear feature pooling operators to update the sparse coding dic-
tionary. We evaluate the sparse-coded net model with multi-
class classification problems in speech, image, and text data.
Our preliminary results immediately confirm a significant im-
provement over semi-supervised learning as well as the supe-
rior classification performance against deep stacked autoen-
coder neural network and GMM-SVM pipelines in small to
medium-scale settings.

1. INTRODUCTION

Originally used to explain neuronal activations [1], sparse
coding emerges as an important method to learn underlying
structures of unknown data. The representational power of
sparse coding has been demonstrated by the excellent perfor-
mance for recognition tasks in various data types. According
to an empirical study by Coates et al. [2], a semi-supervised
approach on sparse representations and a linear classifier
performs on par with or sometimes even superior to more
complex techniques such as RBM and deep neural network
for visual recognition tasks on the CIFAR-10 and NORB
benchmarks.

†This work is sponsored by the Defense Advanced Research Projects
Agency under Air Force Contract FA8721-05-C-0002. Opinions, interpreta-
tions, conclusions, and recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

We have also been able to draw a similar conclusion from
our experiments with sparse coding. Under its popular semi-
supervised setting, sparse coding is used as a feature extrac-
tor for another algorithm and not directly involved in task-
specific finetuning. With these in mind, it is sound to build an
integrated learning unit based on sparse coding that can opti-
mize the task objectives more explicitly. We propose sparse-
coded net, a feedforward model consisting of sparse coding
and task-specific output layers, and describe training meth-
ods. In particular, we discuss a novel backpropagation algo-
rithm that significantly improves the performance of a pre-
trained sparse-coded net via semi-supervised learning.

Similar to deep architectures, sparse-coded net can take in
a large classifiable data unit (e.g., high-resolution image, long
speech sample, text corpus) to produce an efficient but label-
consistent representation for the whole. Our preliminary re-
sults on speech, image, and text datasets indicate that sparse-
coded net substantially improves over semi-supervised learn-
ing in the classification accuracy. We also find that sparse-
coded net is superior or competitive to deep stacked autoen-
coder neural network and GMM-SVM in small to medium-
scale evaluations.

Rest of this paper is organized as follows. In Section 2,
we provide a background on sparse coding. Section 3 de-
scribes a semi-supervised learning framework based on sparse
coding. Section 4 introduces the sparse-coded net model, ex-
plains architectural principles, and discusses training methods
in detail. In Section 5, we present a comparative experimen-
tal evaluation using synthetic speech, CIFAR-10 image, and
Wikipedia text datasets. Section 6 will conclude the paper.

2. SPARSE CODING BACKGROUND

Sparse coding is an unsupervised method to learn an efficient
representation of data using a small number of basis vectors.
Given an example x ∈ RN , sparse coding searches for a rep-
resentation y ∈ RK (i.e., the feature vector for x) while si-
multaneously updating the dictionary D ∈ RN×K of K basis
vectors by

min
D,y
‖x−Dy‖22 + λ‖y‖1 s.t. ‖di‖2 ≤ 1,∀i (1)

where di is ith dictionary atom in D, and λ is a regulariza-
tion parameter that penalizes over the `1-norm, which induces

Encode

SC(x,D)&
Reconstruct

D#y#

x#

y#

ˆ#x#≈&D#y&+&n#

Fig. 1: Sparse coding SC(x,D) encodes input data x as a sparse lin-
ear combination y of basis vectors from a dictionary D through the
`0- or `1-regularized optimizations. The generative path reconstructs
the original data by the matrix-vector multiplication x̂ ≈ Dy.

a sparse solution. WithK > N , sparse coding typically trains
an overcomplete dictionary. This makes the sparse code y
higher in dimension than x, but only a few elements in y are
nonzero.

A more direct way to control sparsity is to regularize on
the `0 pseudo-norm ‖y‖0, describing the number of nonzero
elements in y. However, it is known to be intractable to
compute the sparsest `0 solution in general. The approach in
Eq. (1) is called least absolute shrinkage and selection opera-
tor (LASSO) [3], a convex relaxation of the `0 sparse coding
that induces sparse y’s. We use least angle regression (LARS)
[4] to solve the LASSO problem. We also consider orthogo-
nal matching pursuit (OMP) [5], a greedy-`0 sparse coding
algorithm that computes an at-most S-sparse (S � N) y
extremely fast by

min
D,y
‖x−Dy‖22 s.t. ‖y‖0 ≤ S, ‖di‖2 ≤ 1,∀i. (2)

Fig. 1 summarizes the data encoding and reconstructive as-
pects of sparse coding.

3. SEMI-SUPERVISED LEARNING WITH
SPARSE CODING

Semi-supervised learning [6] is a popular data-driven frame-
work that combines the feature learning and task-specific
optimization. It comprises both unsupervised and supervised
stages. At the first stage, an unsupervised learning algorithm
is applied to learn a representational mapping from unla-
beled training examples. Using the learned mapping, we can
compute the feature representation of raw examples. During
the second stage, supervised training with a labeled dataset
follows to optimize task-specific objectives.

In a discriminative machine learning problem such as
classification, a small number of labeled data becomes a
serious issue for classifier overfit although there will be
sufficiently many unlabeled examples. Presumably, semi-
supervised learning addresses the issue by introducing con-
straints on the classification model with unlabeled data. The
model will be trained to discriminate different classes of data
in terms of the presence and magnitude of specific features
computable via the learned mapping.

Preprocessing
(optional)

Raw data
(unlabeled)

Sparse coding
& dictionary

learning
D

(learned dictionary)

Preprocessing
(optional)

Raw data
(labeled)

Sparse coding
with D

Feature
aggregation

Classifier/
regression

Unsupervised stage

Supervised stage

Fig. 2: Semi-supervised classification pipeline with sparse coding.

Given classification or regression of some target values
being our primary task for text and multimedia applications,
we describe a semi-supervised pipeline based on sparse cod-
ing in Fig. 2. Assuming m classes of data (e.g., spoken lan-
guages in speech, image objects, text categories), we denote
class labelsL ∈ {1, . . . ,m}. Ideally, an unbiased mix of unla-
beled examples Du = {x(1),x(2), . . . } with each x(k) ∈ RN

from all classes will train a dictionary D ∈ RN×K . A learned
D provides universal sparse modeling of the data regardless
of class. Given an unknown input x, sparse coding computes
the representation y using D

x ≈ y1d1 + y2d2 + · · ·+ yKdK ,

where only several features yj are nonzero. Optionally, raw
data input can be preprocessed by normalization and whiten-
ing before sparse coding for better result.

Supervised training requires a labeled dataset such as
{(x(1), l(1)), (x(2), l(2)), . . . }. Here, an example x(j) is asso-
ciated with its class label l(j) ∈ L. For many applications in
text and multimedia, a classifiable data unit can be too large
for both unsupervised and supervised algorithms. For exam-
ple, an entire image file is a classifiable unit, and if the image
is too large, it should be broken down to smaller patches.
Similarly, speech utterances and audio-video clips having a
long duration are also cut into patches.

A labeled dataset Dl = {(X(1), l(1)), (X(2), l(2)), . . . }
has the jth example X(j) = [x(j,1),x(j,2), . . . ,x(j,Mj)] con-
sisting of Mj patches with a label l(j). We use notation x(j,k)

for the kth patch from X(j). Since each patch is an input to
sparse coding, there will be too many sparse codes for a large
classifiable unit. While patching makes sparse coding (and
other learning algorithms) to learn useful features, we must
reduce the number of feature values to prevent a classifier
overfit possible during the supervised training. We consider
a nonlinear technique called “pooling” popularized in com-
puter vision. In particular, average and max pooling methods
described below can be used.

1. Average: f({y(1), . . . ,y(M)}) = 1
M

∑M
j=1 |y(j)|

2. Max: f({y(1), . . . ,y(M)})
= max∀i({|y(1)i |, . . . , |y

(M)
i |})

In Algorithm 1, we summarize our semi-supervised learn-
ing approach with sparse coding.

Algorithm 1 Semi-supervised learning via sparse coding

1: input: unlabeled data patchesDu = {x(k)}nu
k=1, labeled dataset

Dl = {(X(j) = [x(j,k)]
Mj

k=1, l
(j))}nl

j=1

2: output: trained classifier C or regression R
3: (optional) preprocess Du and Dl by normalization and whiten-

ing
4: while unsupervised stage
5: do sparse coding on Du and learn dictionary D
6: end
7: while supervised stage
8: do sparse coding on Dl using D: x(j,k) −→ y(j,k)

9: form feature vector for each X(j) via pooling:
{y(j,k)}Mj

k=1 −→ z(j)

10: train supervised task C or R using {(z(j), l(j))}nl
j=1

11: end

4. SPARSE-CODED NET

The semi-supervised framework for sparse coding is a power-
ful model for classification and regression with various types
of data. In fact, it has been known that the features formed on
sparse codes followed by a linear classifier performs as well
as (or even better than) a complex nonlinear classifier on care-
fully handcrafted features. However, we argue that we can still
improve Algorithm 1. Our approach for such improvement is
to build a tightly integrated network of sparse coding, pooling
nonlinearity, and a supervised task for joint optimization. In
this section, we introduce sparse-coded net model.

4.1. Architectural overview

In a supervised task, we are ultimately interested in correctly
predicted class labels or regressed values. Recall that sparse
coding models input data by fitting the quadratic loss function
in Eqs. (1) and (2). This reconstructive objective is essential
to generative data modeling, but it is not necessarily optimal
for the classification setting where sparse coding is used as
a higher-level feature extractor. Under the semi-supervised
framework, the sparse coding dictionary is only learned dur-
ing the unsupervised stage and never adjusted to optimize the
supervised task. This gives us a motivation to build a holistic
learning unit based on sparse coding that can be trained first
in the semi-supervised manner and fine-tuned by backpropa-
gating the classification errors to adjust the dictionary.

Sparse-coded net (SCN) is a feedforward network built
on sparse coding. Fig. 3 describes an architectural overview
of SCN. At the input layer of SCN, we apply the entire M
patches from a classifiable data unit X = [x(1), . . . ,x(M)]
(e.g., X is a large image file, speech sample, text document, or
video clip). Each x(k) is sparse coded to y(k), and the pooled
sparse code z is applied to the softmax output layer for multi-
class classification. We note that the SCN output layer is left
as a configurable choice for application needs. While softmax
regression is our default choice, other possibilities include lin-

ear regression, logistic regression, SVM, and perceptron.

4.2. Pretraining

Hinton et al. [7] suggested initialize a neural network by pre-
training its hidden layers with an unsupervised method. For
SCN, such pretraining can be fulfilled by semi-supervised
learning. We use Algorithm 1 to pretrain an SCN. As a config-
urable template, we have purposefully left out specifics of the
supervised task in Algorithm 1. Here, we explain supervised
training of the softmax output layer for multi-class classifi-
cation, which takes place after sparse coding and dictionary
learning.

Softmax regression generalizes logistic regression for bi-
nary classification to an m-class classification problem. We
use the matrix W = [w1, . . . ,wm] to denote the complete
softmax model parameters for all m classes (i.e., wc is for
class c = 1, . . . ,m). Softmax regression essentially estimates
the likelihood of a given example X for being class c

p(l = c|X) = hwc(z) =
ew
>
c z∑

c′ e
w>

c′z
,

where l is the class label, and z the pooled sparse code for X
computed on the SCN feedforward path (see Fig. 3). Similar
to logistic regression, softmax is based on log-linear model. It
uses linear regression w>c z to calculate class-specific scores
and maps to a probability space by normalizing the exponen-
tiated scores. Class label prediction can be done in a soft de-
cision by thresholding, which allows multiple predicted la-
bels for a test example. For hard decision, we predict the label
l̂ = argmaxl p(l = c|X) ∀c.

To train W, we minimize the average cross-entropy loss
function on the log-likelihood using the labeled dataset Dl

J(W) = − 1

nl

m∑
c=1

nl∑
j=1

1{l(j) = c} log ew
>
c z(j)∑m

c′=1 e
w>

c′z
(j)
, (3)

where 1{.} is an indicator function. Although there is no
known closed-form solution for the minimum J(W), we can
use an iterative optimization algorithm such as gradient de-
scent. Taking derivatives with respect to wc yields the gradi-
ent

∇wcJ(W) =
1

nl

nl∑
j=1

z(j)
[
hwc(z

(j))− 1{l(j) = c}
]
.

Finally, we use the gradient descent update rule for each c =
1, . . . ,m with a learning rate α

wc := wc − α∇wc
J(W) (4)

Sparse
coding D

x(1)

Sparse
coding

x(2)

Sparse
coding

x(3)

Sparse
coding

x(M)

. . .

Pooling
(nonlinear rectification)

Softmax

y(1)
y(2) y(3) y(M)

z

p(l | z)

Fig. 3: Sparse-coded net modeling for a supervised task. The input
layer of sparse-coded net takes in all patches x(1), . . . ,x(M) from
an example X. A classifiable data unit X can be the entire image,
audio-video clip, and text document.

4.3. Optimization

By now, we have initialized the SCN with a softmax output
layer for multi-class classification. While the pretrained SCN
is already a good working pipeline—i.e., its performance
should be equivalent to that of the semi-supervised classifica-
tion pipeline, we can further improve the performance. The
biggest drawback for the pretrained SCN is that the classifi-
cation error is never reflected to sparse coding. In fact, sparse
coding and dictionary learning are done independently of the
supervised training, which learns only the model parameters
of the output layer. Therefore, if we can backpropagate the
errors incurred at the output layer to the sparse coding layer
and use them to update the dictionary D, the SCN will be
able to produce more label-consistent sparse representations
for the output layer.

Unfortunately, the SCN backpropagation is not trivial.
First of all, we cannot use backpropagation algorithms for
neural networks due to obvious architectural differences.
Also, the classification errors have to traverse the pooling
layer that obscures flow of the error gradients with nonlinear
rectification of multiple sparse codes into one feature vector.
Let us examine the complete feedforward path of SCN:

{x(j,k)}Mj

k=1
D−→ {y(j,k)}Mj

k=1

pool−→ z(j)
softmax−→ l̂(j).

We rewrite the SCN softmax output loss as a function of z

J(z) =
1

2

wwl̂ − lww2
=

1

2

wwhwc
(z(j))− 1{l(j) = c}

ww2
, (5)

where l̂ and l are the predicted and ground-truth labels, re-
spectively. We evaluate J(z) from examples z(j), using the
fact that hwc

(z(j)) should be 1 ideally if the ground-truth la-
bel for z(j) is c, otherwise 0.

The objective for the SCN backpropagation is pass down
the classification errors to adjust z, traverse pooling layer,
then adjust D. To adjust z, we hold the trained softmax pa-
rameters W and estimate the optimal z∗ that minimizes J(z).

...

Corrected values at z* are
put back to original locations
at corresponding y(k)’s

z*

Putback yields corrected
sparse codes y*’s

y*(1) y*(2) y*(3) y*(M)

Fig. 4: Putback corrects sparse codes y(k)’s from z∗

To do so, we perform the following gradient descent learning
for each element z(j)i of the vector z(j) with a learning rate β

z
(j)
i := z

(j)
i − β

∂J(z)

∂zi
. (6)

The gradients are partial derivatives with respect to zi

∂J(z)

∂zi
=
[
hwc

(z(j))− 1{l(j) = c}
] ∂hwc(z)

∂zi

=
[
hwc

(z(j))− 1{l(j) = c}
]
wi,c.

The value wi,c is the ith row and cth column element of the
softmax parameter matrix W. This update rule is intuitive be-
cause it adjust the elements of z according to their weighted
error contribution [hwc(z)− 1{l(j) = c}]wi,c.

Next, we correct the unpooled original y(j,k)’s using the
adjusted z∗(j)’s. For max pooling, we introduce a procedure
called putback illustrated in Fig. 4. For putback, we need to
keep the original sparse codes y(j,k) and the location of the
maximum nonzero values that have resulted unadjusted z(j).
Each adjusted element in z∗(j) is put back to the correspond-
ing location at the original sparse codes. For average pooling,
we adjust all ith elements of y(j,k)’s by the average difference
from z

∗(j)
i

y
(j,k)
i := y

(j,k)
i + [z

∗(j)
i − 1

Mj

M∑
j=1

y
(j,k)
i]. (7)

We denote y∗(j,k) the error-adjusted sparse codes by put-
back or Eq. (7). Using y∗(j,k), we can now update the sparse
coding dictionary D. (Note that it does not make sense to ad-
just given data input x(j,k).) We describe three methods: 1)
gradient descent; 2) rank-1 update; and 3) block-coordinate
descent.

For gradient descent, we define the loss function with re-
spect to D

J(D) =
1

2

wwDy∗(j,k) − x(j,k)
ww2

2
. (8)

To update each basis vector di in D, we take the partial
derivative with respect to di

∂J(D)

∂di
= (Dy∗(j,k) − x(j,k)) y

∗(j,k)
i ,

which leads to the gradient descent update rule with a learning
rate γ

di := di − γ(Dy∗(j,k) − x(j,k)) y
∗(j,k)
i . (9)

Rank-1 update first computes the residual matrix Ei =
[X(j)]nl

j=1 −
∑

j 6=i di · rowi([Y
∗(j)]nl

j=1) with respect to each
di. Here, all examples from Dl are concatenated to form the
data matrix [X(j)]nl

j=1, and [Y∗(j)]nl
j=1 are the correspond-

ing error-adjusted sparse code matrix. The operator rowi(H)
means the ith row vector of the matrix input H. By taking the
singular value decomposition Ei = U∆V>, rank-1 update
replaces the new di with the first column of U. This method
is used in the inner-loop of the K-SVD dictionary learning
algorithm [8].

Block-coordinate descent uses an update rule based on the
following optimization

D := argmin
D′

1

2
Tr(D′>D′A)− Tr(D′>B). (10)

This method is fast and efficient for online use [9]. The
two auxiliary matrices A and B are initialized to zeros.
Then, we update A := A + y∗(j,k)y∗(j,k)> and B :=
B + x(j,k)y∗(j,k)> as we run more examples. We can run all
examples in Dl or a selected subset for the block-coordinate
descent updates.

Using the adjusted dictionary D∗, we rerun the feedfor-
ward paths for all examples from Dl except the softmax re-
gression

{x(j,k)}Mj

k=1
D∗−→ {y†(j,k)}Mj

k=1

pool−→ z†(j).

Using the newly computed pooled feature vectors z†(j)’s, we
retrain the softmax output layer. This completes a single iter-
ation for the SCN backpropagation. Ideally, we run multiple
iterations until convergence. Algorithm 2 presents the SCN
backpropagation.

5. EXPERIMENTAL EVALUATION

In this section, we apply the sparse-coded net model for multi-
class classification tasks over synthetic speech, CIFAR-10 im-
age, and Wikipedia text datasets. For a metric, we average the
softmax classification accuracy for each class c

accuracy =
1

m

m∑
c=1

tpc + tnc
total # of examples in c

.

Algorithm 2 SCN backpropagation

1: input: Dl = {(X(j) = [x(j,k)]
Mj

k=1, l
(j))}nl

j=1

2: output: fine-tuned classifier C or regression R
3: require: pretrain SCN by Algorithm 1
4: repeat
5: adjust pooled feature vectors z(j) via Eq. (6)
6: adjust sparse codes y(j,k) via putback or Eq. (7)
7: adjust sparse coding dictionary D via Eq. (9)

or rank-1 updates or via Eq. (10)
8: do sparse coding with adjusted dictionary D∗

9: do pooling over recomputed sparse codes y†(j,k)

10: retrain softmax layer with new feature vectors z†(j)

11: until convergence

Table 1: Speaker recognition performance on synthetic corpus.

Method Accuracy
Semi-supervised via sparse coding (LARS) 37.9%
Semi-supervised via sparse coding (OMP) 32.2%
GMM-SVM 30.5%
SAE NN (4 layers) 44.8%
Sparse-coded net (LARS) 51.3%
Sparse-coded net (OMP) 46.3%

In reporting the sparse-coded net performance, we take the
best result from the three update methods during the back-
propagation. We also report the accuracy of semi-supervised
learning with sparse coding, as well as Gaussian mixture
model with support vector machine (GMM-SVM) and deep
stacked autoencoder (SAE) neural networks [10] for com-
parison. We consider both forms of sparse coding, the `1-
regularized LARS [4] and greedy-`0 OMP [5]. Throughout
our experiments, we use a sparsity parameter λ = 0.15 for
LARS and a sparsity bound S = 0.2 × dim(x). Our im-
plementation is done in MATLAB, using the INRIA SPAMS
(SPArse Modeling Software) [11] for LARS and the Technion
toolbox [12] for OMP. We use LIBSVM [13] for GMM-SVM.

5.1. Synthetic speech corpus

We use a synthetic speech corpus generated by the MSR Iden-
tity Toolbox for speaker recognition research [14]. The syn-
thetic corpus is designed for a small-scale speaker recognition
evaluation (SRE) that consists of 100 speakers. Each speaker
has 50 utterances. All speech utterances are 1,000 frames long
with a 10-msec frame duration. The tested methods take in
32-dimensional MFCC features per frame. We preprocess the
MFCC features using PCA-whitening without dimensional-
ity reduction. Table 1 reports the speaker recognition perfor-
mance on the synthetic speech corpus. The accuracy improve-
ments (about 14%) by sparse-coded net models on LARS and
OMP are highlighted.

Table 2: Image classification performance on CIFAR-10.

Method Accuracy
Semi-supervised via sparse coding (LARS) 80.1%
Semi-supervised via sparse coding (OMP) 76.8%
GMM-SVM 74.6%
SAE NN (4 layers) 78.9%
Sparse-coded net (LARS) 83.1%
Sparse-coded net (OMP) 79.6%

Table 3: Text classification performance on Wikipedia dataset.

Method Accuracy
Semi-supervised via sparse coding (LARS) 69.4%
Semi-supervised via sparse coding (OMP) 61.1%
SAE NN (4 layers) 67.1%
Sparse-coded net (LARS) 70.2%
Sparse-coded net (OMP) 62.1%

5.2. CIFAR-10

CIFAR-10 [15] is a dataset of 60,000 32x32 color images be-
longing to 10 classes such as airplane, automobile, cat, and
dog. As a preliminary evaluation, we prepare 2 subsets for
training and test by uniform sampling. The train dataset has
2,000 images while the test dataset has 4,000 images. For each
image, we draw densely overlapping patches using a receptive
field with width w = 6 pixels and stride s = 2 (i.e., result-
ing patches have a dimension N = 3 × 6 × 6 = 108). We
preprocess the patches by ZCA-whitening before sparse cod-
ing. Table 2 presents the image classification performance on
CIFAR-10. Again, we observe consistent accuracy improve-
ments by the sparse-coded net models on LARS and OMP.

5.3. Wikipedia

The Wikipedia dataset consists of 2,866 documents. Each
document has a variable number of paragraphs in English
about a subject from one of the 10 categorical classes: art,
biology, geography, history, literature, media, music, royalty,
sport, and warfare. To focus on the text classification per-
formance, we ignore all images in the dataset. Each text is
represented by a histogram of the 10-topic latent Dirichlet
allocation (LDA) model [16]. We apply these LDA features
as input for sparse coding. Table 3 presents the text clas-
sification performance on the Wikipedia dataset. The SCN
joint optimization of sparse coding, pooling, and classifier
improves the categorical text classification performance by
semi-supervised learning for both LARS and OMP.

6. CONCLUSION

Good feature learning performance of sparse coding has en-
abled high-performance classification pipelines for text and

multimedia data. In this paper, we have presented Sparse-
coded Net model that enhances semi-supervised learning
with sparse coding. Our key idea is to tightly integrate sparse
coding and dictionary learning with a supervised task at the
output layer such as softmax regression. After pretraining a
sparse-coded net via semi-supervised learning, we can opti-
mize its task-specific objectives with a novel backpropagation
algorithm that can effectively traverse nonlinear feature pool-
ing to further update the dictionary trained only by unlabeled
examples. We have tested sparse-coded nets for multi-class
classification problems in speech, image, and text data. Our
preliminary evaluation confirms the superior classification ac-
curacy of sparse-coded net in small to medium-sized settings.
In the future work, we will cover the SCN backpropagation
hyperparameter optimization more comprehensively using
broader datasets for sound, video, and wireless signals.

7. REFERENCES

[1] B. Olshausen and D. Field, “Sparse Coding with an Overcomplete Ba-
sis Set: A Strategy Employed by V1?,” Vision research, vol. 37, no. 23,
pp. 3311–3325, 1997.

[2] A. Coates, A. Ng, and H. Lee, “An Analysis of Single-layer Networks
in Unsupervised Feature Learning,” in AISTATS, 2011.

[3] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,”
Journal of Royal Statistical Society, vol. 58, pp. 267–288, 1994.

[4] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least Angle Re-
gression,” Annals of Statistics, vol. 32, pp. 407–499, 2004.

[5] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal Matching Pur-
suit: Recursive Function Approximation with Applications to Wavelet
Decomposition,” in Asilomar Conference on Signals, Systems and
Computers, 1993.

[6] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learning,
The MIT Press, 2010.

[7] G. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algorithm for
Deep Belief Nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[8] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Algorithm
for Designing Overcomplete Dictionaries for Sparse Representation,”
IEEE Trans. on Sig. Proc., vol. 54, no. 11, 2006.

[9] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online Dictionary Learn-
ing for Sparse Coding,” in ICML, 2009.

[10] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol,
“Stacked Denoising Autoencoders: Learning Useful Representations in
a Deep Network with a Local Denoising Criterion,” Journal of Machine
Learning Research, vol. 11, pp. 3371–3408, 2010.

[11] INRIA, “Sparse modeling software,” http://spams-devel.
gforge.inria.fr/.

[12] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient Implementation
of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit,”
Tech. Rep., 2008.

[13] C. Chang and C. Lin, “LIBSVM: Library for Support Vector Ma-
chines,” ACM Trans. on Intelligent Systems and Technology, 2011.

[14] S. Sadjadi, M. Slaney, and L. Heck, “MSR Identity Toolbox: A MAT-
LAB Toolbox for Speaker-Recognition Research,” Speech and Lan-
guage Processing Technical Committee Newsletter, November 2013.

[15] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Im-
ages,” Tech. Rep., University of Toronto, 2009.

[16] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet allocation,” in JMLR,
2003.

http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/

	 Introduction
	 Sparse Coding Background
	 Semi-supervised Learning withSparse Coding
	 Sparse-coded Net
	 Architectural overview
	 Pretraining
	 Optimization

	 Experimental Evaluation
	 Synthetic speech corpus
	 CIFAR-10
	 Wikipedia

	 Conclusion
	 References

