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Abstract—We introduce competing cognitive resilient1

network (CCRN) of mobile radios challenged to optimize data2

throughput and networking efficiency under dynamic spectrum3

access and adversarial threats (e.g., jamming). Unlike the4

conventional approaches, CCRN features both communicator5

and jamming nodes in a friendly coalition to take joint actions6

against hostile networking entities. In particular, this paper7

showcases hypothetical blue force and red force CCRNs and8

their competition for open spectrum resources. We present state-9

agnostic and stateful solution approaches based on the decision10

theoretic framework. The state-agnostic approach builds on11

multiarmed bandit to develop an optimal strategy that enables12

the exploratory-exploitative actions from sequential sampling13

of channel rewards. The stateful approach makes an explicit14

model of states and actions from an underlying Markov decision15

process and uses multiagent Q-learning to compute optimal16

node actions. We provide a theoretical framework for CCRN17

and propose new algorithms for both approaches. Simulation18

results indicate that the proposed algorithms outperform some19

of the most important algorithms known to date.20

Index Terms—Cognitive radio, strategy, multi-armed ban-21

dit (MAB), reinforcement learning.22

I. INTRODUCTION23

COGNITIVE radios have arisen commercially over the last24

decade, enabling a new means to share radio spectrum.25

Dynamic spectrum access (DSA) [1] is a compelling usage26

scenario for cognitive radio systems. DSA aims to relieve27

shortages of radio spectrum, which is the scarcest—hence, the28

most expensive—resource to build a wireless network. Much29

of contemporary research has considered cognitive radios as30

the secondary user of a licensed spectrum and focused on31

the development of a flexible mechanism to opportunistically32

access the licensed channel to its maximal spectral efficiency.33

We envision the use of cognitive radio technology for tac-34

tical wireless networks operating in an environment where35
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malicious jammers and other adversarial threats exist in addi- 36

tion to scarce spectral resources. The past approaches [2]–[6] 37

have concentrated on a defense mechanism against the 38

adversarial jamming attacks (i.e., antijamming strategy). In 39

contrast, our approach in this paper is to optimize antijamming 40

and jamming actions jointly. 41

This paper introduces Competing Cognitive Resilient 42

Network (CCRN), where a network of communicator (comm) 43

nodes and jammers attempts to dominate the access to an open 44

spectrum competitively against a hostile opponent, which is 45

possibly another cognitive radio network of similar capabil- 46

ities. An antijamming-jamming strategy is a critical require- 47

ment for CCRNs, and we propose two different approaches in 48

computing the optimal CCRN strategy, namely state-agnostic 49

and stateful. 50

The state-agnostic approach is based on Multi-armed 51

Bandit (MAB) problems [7] that address the exploration- 52

exploitation dilemma for allocating resources on sequential 53

reward sampling. Lai et al. [8], for example, discusses the 54

primary-secondary usage framework in the context of MAB 55

for cognitive radios in the DSA paradigm. In our work, 56

however, we have devised a randomized algorithm for the 57

CCRN nodes taking actions (i.e., communicate or jam) on a 58

block of multi-channel spectrum that works statelessly and is 59

guided only by channel reward sampling. The state-agnostic 60

algorithm essentially runs Thompson sampling [9], an old 61

probability matching heuristic, under which we set up the 62

optimal Bayesian conjugate prior from an extreme-valued like- 63

lihood. We will explain the detailed rationale and present 64

its superior performance over some of the most important 65

MAB algorithms applied to CCRNs in later sections of this 66

paper. 67

The stateful approach, on the other hand, is based on game 68

theory [10]. It requires explicit modeling of CCRN states and 69

actions from an underlying Markov Decision Process (MDP). 70

We have formulated the two-network CCRN game and decom- 71

pose it to antijamming and jamming subgames. Unlike the 72

existing game-theoretic framework for cognitive radios, we 73

solve the antijamming and jamming subgames jointly for an 74

optimal strategy, applying multi-agent Q-learning [11]. Given 75

perfect sensing at the lower layer, we will show that Q-learning 76

can result in channel access decisions that converge to the best 77

cumulative average reward in the steady state. 78

We summarize our main contributions: 79

• This paper develops a theoretical framework for cogni- 80

tive radio networks under competition that simultaneously 81

access (communicate) and suppress (jam) for spectral 82

dominance in tactical setting; 83
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• We propose new algorithmic approaches to compute a84

joint antijamming-jamming strategy in-network;85

• We evaluate the empirical performance of the proposed86

algorithms and show that they outperform the key classi-87

cal approaches known to date.88

This paper is an extended version of our two previous pub-89

lications in tactical cognitive radio networks [12], [13]. The90

paper provides complete system and architectural consider-91

ations for an intelligent tactical network. In particular, we92

describe a detailed architecture under which cognitive radio93

nodes collect information by sensing and assess the perfor-94

mance of learning-based algorithms for dyanamic spectrum95

access. Furthermore, we validate the optimality of our algo-96

rithmic approaches and their equivalence to analytical models,97

which are generally known intractable, using probabilistic98

sampling (i.e., by Markov Chaning Monte Carlo method) on99

the derived transition probability functions. This paper also100

presents the complete reward performance results by iterating101

all comm and jamming probabilities of cognitive radio nodes.102

The rest of the paper is organized as follows. In Section II,103

we describe the CCRN system architecture. Section III104

presents our mathematical formulation. Section IV develops105

algorithmic approaches to find an optimal CCRN strategy.106

We describe our adaptation of classical algorithms under the107

state-agnostic and stateful approaches and propose two new108

algorithms. In Section V, we numerically evaluate the perfor-109

mance of the proposed algorithms. Section VI discusses related110

work, and Section VI concludes the paper.111

II. COMPETING COGNITIVE RESILIENT NETWORK112

(CCRN): SYSTEM ARCHITECTURE113

A. Overview114

For clarity of discussion, imagine two networks of cogni-115

tive radios, Blue Force (BF or the ally) and Red Force (RF116

or the enemy). Each network consists of two types of nodes:117

communicator (comm) and jammer. In their field operations,118

the BF and RF networks face each other in a competition to119

achieve higher comm data throughput and suppress the oppo-120

nent’s comm activities by jamming, all trying to dominate an121

open spectrum.122

Accessing channels by a comm node is determined upon123

sensing and cognizance of vacant spectrum blocks. The124

primary-secondary user dichotomy popular in the existing cog-125

nitive radio networking literature is mostly invalid for our pur-126

pose. We use the term Competing Cognitive Resilient Network127

(CCRN) to designate our BF and RF networks instead.128

In tactical ad hoc networks, node geometry in the field can129

be critical for effective antijamming and jamming capabili-130

ties. For simplicity, we assume that the internal layout of the131

nodes for BF or RF networks does not play a significant role.132

However, we use two different network control mechanisms,133

namely centralized and distributed. The centralized control for134

CCRN designates a central entity that collects channel sens-135

ing (performed by each node) and other network information136

to make a coherent, network-wide decision to access or sup-137

press a channel. For each time slot, the centralized control138

chooses one of the channels to broadcast control information.139

Fig. 1. Transmission opportunity 〈 fi, Bi, t, T〉 (shaded region).

The information on control channel selection is transmitted 140

through the previous slot’s control channel. Under the dis- 141

tributed control, each node in a CCRN acts as a decision maker 142

for its own action after exchanging the information with other 143

nodes. Due to staleness of information at each node, however, 144

distributed decision making may result in suboptimal actions 145

for the network as a whole. 146

B. Communications Model 147

Spectrum for open access is partitioned in time and fre- 148

quency. There are N non-overlapping channels located at 149

the center frequency fi (MHz) with bandwidth Bi (Hz) for 150

i = 1, . . . , N. A transmission opportunity is represented by a 151

tuple 〈 fi, Bi, t, T〉, which designates a time-frequency slot at 152

channel i and time t with time duration T (msec) as depicted 153

in Fig. 1. We assume a simple CSMA in which comm nodes 154

first sense before transmitting in a slot of opportunity. 155

In order to coordinate a non-conflicting spectrum access and 156

jamming strategy network-wide, we assume that the nodes 157

(both comm and jammers) exchange necessary information 158

via control messages. We call the channels used to exchange 159

control messages ‘control channels.’ On the contrary, ‘data 160

channels’ are used to transport regular data packets. We follow 161

the DSA approach [2] that control or data channels are dynam- 162

ically allocated. Due to cryptographic randomization, guessing 163

the correct control channel by the enemy network would be a 164

hard problem. However, if the control channel happens to be 165

jammed, say at time t, the spectrum access at time t + 1 will 166

be uncoordinated. For the case of blocked control channels, 167

the CCRN performance will be suboptimal. 168

C. Jamming Model 169

Xu et al. [14] presents a sound taxonomy of RF jam- 170

ming. A constant jammer continuously dissipates power into 171

a selected channel by transmitting arbitrary waveforms. A 172

deceptive jammer can instead send junk bits encapsulated in a 173

legitimate packet to conceal its intent to disrupt comm nodes. 174

A random jammer alternates between jamming and remain- 175

ing quiet for random time intervals. A reactive jammer listens 176

to a channel, stays quiet when the channel is idle, and starts 177

transmitting upon sensing an activity. 178

The key to successful jamming is intelligence and 179

statistical sophistication. We introduce strategic jamming 180

model that extends the statistical jamming described in 181

Pajic and Mangharam [15]. A strategic jammer can learn 182

media access patterns of comm nodes and adapt to antijam- 183

ming schemes in the same way that our comm nodes leverage 184

sensing and cognition. Strategic jammers can remain effective 185

for long without being detected, subsequently causing more 186

damages than the jammers based on existing models. 187
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TABLE I
NODE ACTIONS, OUTCOME AND RESULTING REWARD

D. Reward Model188

We employ a reward metric measured in bits. When a CCRN189

comm node makes successful transmission of a packet con-190

taining B bits of data, it receives the reward of B (bits). The191

definition of a successful transmission follows the notion in192

classical wireless networking that there should be only one193

comm node transmission for the Tx opportunity. If there were194

two or more simultaneous comm transmissions (from either195

the same or different network), a collision occurs, and no196

comm node gets a reward.197

Jammers do not create any reward by themselves. However,198

they receive a reward by suppressing an opposing comm199

node’s otherwise successful transmission. For example, a BF200

jammer earns a reward B by jamming the slot in which a sole201

RF comm node transmits. If there were no jamming, the RF202

comm node would have earned B. Also, a BF jammer can203

jam a BF comm mistakenly (e.g., due to faulty intra-network204

coordination), which we call misjamming.205

Table I summarizes how the outcome and reward at a chan-206

nel are determined given various combinations of the BF and207

RF node actions at a slot of transmission opportunity (‘∅’208

means no action). Note that each CCRN keeps track of its209

reward cumulatively (i.e., RB, RR) over operated time slots.210

For illustrative purposes, we provide example BF and RF211

actions and explain the reward computation for each CCRN.212

Let BF and RF networks each have two comm nodes and two213

jammers. At time t, BF comm node 1 transmits in channel 7,214

and BF comm node 2 in channel 3. BF jammers jam channels215

1 and 5 at t. Similarly, RF has its comm nodes transmitting in216

channels 3 and 5, and its jammers jamming channels 10 and 9.217

Fig. 2 depicts the resulting channel-action bitmap where 1218

indicates transmit or jam and 0 otherwise. BF jammer on chan-219

nel 5 is successful whereas the one on channel 1 is not. There220

is a comm collision between BF and RF in channel 3, but BF221

has a successful comm transmission in channel 7. Thus, BF222

network receives the reward of 2B for one of its comm and223

one of its jamming actions. RF networks has no success in224

comm or jamming at t.225

E. System Model226

We now describe a CCRN system in detail. A CCRN node227

consists of sensing, strategy, schedule, and Tx/jam components228

as illustrated in Fig. 3. Using local and global sensing infor-229

mation, a CCRN node applies a strategy to compute an action230

(i.e., transmit, jam, or do nothing) particular to its channel of231

Fig. 2. Example Blue Force (BF) and Red Force (RF) CCRN node actions
and resulting outcome.

Fig. 3. Overview of Competing Cognitive Resilient Network (CCRN).

interest. The action translates to scheduling a block of trans- 232

mission/jamming opportunities. Node actions can be computed 233

in either centralized or distributed manner. 234

Under the centralized control, CCRN works in the following 235

steps. 236

1) Sense channel activities (each node) 237

2) Collect sensing information (controller) 238

3) Compute node actions (controller) 239

4) Disseminate node actions (controller) 240

5) Act on channel (each node) 241

In the distributed control, CCRN works as follows. 242

1) Sense channel activities (each node) 243

2) Exchange sensing information (each node) 244

3) Compute its own action (each node) 245

4) Act on channel (each node) 246

When acting on a channel, a CCRN node under the dis- 247

tributed control assumes cooperative behavior by considering 248

the holistic goal of maximizing the overall network perfor- 249

mance. When new information is available for a node (e.g., 250

channel sensing, outcome), a CCRN node exchanges the 251

information collaboratively with one another. The distributed 252

CCRN would be a realistic application for Mobile ad hoc 253

network (MANET) where there is little or no fixed infras- 254

tructural support. In the later sections of this paper, we will 255

evaluate CCRN under both centralized and distributed control 256

architectures. 257

III. MATHEMATICAL FORMULATION 258

This section presents mathematical formulation for CCRN. 259

In particular, we develop two compatible, yet different 260
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TABLE II
SUMMARY OF NOTATIONS

frameworks for our BF-RF competition scenario. First, we261

explain a state-agnostic model that operates a CCRN without262

considering any system states. Then, we describe a stateful263

model by explicitly defining CCRN states and discuss plausi-264

ble ways in computing them. Markov Decision Process (MDP)265

underlies the stateful CCRN whereas the state-agnostic coun-266

terpart is solely driven by sequential reward sampling.267

A. Notation and Preliminaries268

Strategy or policy for a CCRN means rules to select its269

node actions. There are C comm nodes and J jammers in270

each CCRN. Let N designate the number of channels in the271

spectrum. We define the BF action set AB such that a BF272

action aB ∈ AB, and similarly for RF, aR ∈ AR. At time273

t, the BF and RF actions are at
B = {at

B,comm, at
B,jam} and274

at
R = {at

R,comm, at
R,jam} containing both comm and jamming275

actions, the size-C vectors at
B,comm, at

R,comm and the size-J276

at
B,jam, at

R,jam. (Note we use a superscripted t for ‘at time t.’)277

An ith element in at
B,comm designates the channel number that278

the ith BF comm node tries to transmit at t. Similarly, a jth279

element in at
B,jam is the channel that the jth BF jammer tries280

to jam at t. The BF and RF node actions result in an outcome281

� : AB × AR −→ R
N . Subsequently, we can map the out-282

come to a reward R : � −→ R given a reward function. In283

Table II, we summarize a list of important notations used in284

this paper.285

B. State-Agnostic CCRN286

The state-agnostic CCRN model is based on multi-armed287

bandit (MAB) originated from Thompson’s medical experi-288

ments [9], although MAB is best explained with a gambler289

facing N slot machines (arms). The gambler’s objective is to290

find a strategy that maximizes Rt = ∑t
j=1 r j for some t, the291

cumulative reward over a finite horizon. Lai and Robbins [7]292

introduced the concept of regret for a strategy σ measuring293

the distance from optimality294

�t = tμ∗ − E

[
Rt

σ

]
(1)295

where μ∗ is the hypothetical, maximum average reward if296

gambler’s action led to the best possible outcome each round297

and achieved the actual reward Rt
σ under σ . It turns out298

that minimizing �t is mathematically more convenient than 299

maximizing the expectation of Rt. 300

An arm corresponds to a channel in the spectrum under 301

competition. Comm nodes and jammers are the players that a 302

CCRN allocates to play (i.e., transmit or jam) the channels. 303

Since the CCRN has multiple nodes, our problem is classified 304

as multi-player MAB [16], which is different from the classic 305

single-player MAB formulated by Lai and Robbins [7]. In 306

addition, we have two system variations depending on whether 307

a centralized or distributed control mechanism is deployed. 308

Lai and Robbins [7] further derived the mathematical 309

qualification for an optimal strategy: 310

lim
t→∞ sup E

[
Tt

i

] ≤ log t

DKL(pi ‖ p∗)
(2) 311

where sup means supremum, Tt
i is the total number for arm 312

i being played, and DKL(· ‖ ·) is the Kullback-Leibler diver- 313

gence [17] measuring the dissimilarity between the probability 314

distributions pi and p∗ for the i-th arm’s reward and the max- 315

imum reward resulted by choosing only the best possible arm 316

each time. Eq. (2) provides the least upper bound for the num- 317

ber of times should an optimal arm—which could be different 318

each time—be played asymptotically. Lai and Robbins also 319

provided an algorithm that satisfies the condition of Eq. (2), 320

which will be discussed in Section IV. 321

The BF strategy σ t
B is a function over time. It takes 322

necessary information such as sensing results and past action- 323

outcome/reward statistics as input and determines the BF node 324

actions. Under the centralized decision making, we express 325

{
x j

B

}t

j=1
,
{

a j
B,� j

}t−1

j=1

σ t
B−→ at

B (3) 326

where xt
B is the BF sensing results at t. 327

Under the distributed decision making, each node in the 328

network computes its own action. For BF node i (whether it 329

is a comm node or jammer), we write 330

xt
B,i,

{
x j

B, a j
B,� j

}t−1

j=1

σ t
B,i−→ at

B,i (4) 331

where xt
B,i is the sensing information only available to BF 332

node i at time t, and σ t
B,i the strategy of BF node i’s own. At 333

time t, BF node i does not yet have all sensing results except 334

its own xt
B,i. For the distributed case, node strategies can differ, 335

and there is no guarantee that conflicting actions of the nodes 336

in the same network such as collision and misjamming are 337

resolved. 338

C. Stateful CCRN 339

The stateful CCRN model uses the tuple 〈S, AB, AR, R, T〉 340

to describe the dynamics of the competition between BF 341

and RF networks. S denotes the state set, and AB = 342

{AB,comm, AB,jam}, AR = {AR,comm, AR,jam} are the action sets 343

for BF and RF networks. The reward function R : S × 344∏
A{B,R},{comm,jam} → R maps CCRN node actions to a 345

reward value at a given state. The state transition T : S × 346∏
A{B,R},{comm,jam} → PD(S) is the probability distribution 347

over S. Under stochastic setup, a strategy π : S → PD(A) 348

is the probability distribution over the action set. 349

We formulate the stateful CCRN with a Markov game [10]. 350
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TABLE III
COLLISION PARAMETERS

TABLE IV
JAMMING PARAMETERS

1) State Representation: Each of N channels in the spec-351

trum under competition is described by a Markov chain. If352

there are L discrete states for a channel, we require to track LN
353

states to describe the CCRN interactions fully. Such tracking,354

however, leads to a computational complexity class in O(LN)355

with respect to channelization N. We instead choose a terser356

state representation s = 〈IC, ID, JC, JD〉 where IC denotes the357

number of control channels collided, ID the number of data358

channels collided, JC the number of control channels jammed,359

and JD the number of data channels jammed.360

Given the current state and the action sets of BF and RF361

nodes, the next state of CCRN is computable. The actions362

of the opponent is inferred from channel measurements and363

sensing. To estimate IC, ID, JC, and JD, we need to observe364

the parameters in Tables III and IV to calculate365

IC =
∑

x∈{B,R,BR}
Ix,C366

ID =
∑

x∈{B,R,BR}
Ix,D367

JC =
∑

x∈{B,R},y∈{B,R,BR}
Jx,y,C368

JD =
∑

x∈{B,R},y∈{B,R,BR}
Jx,y,D.369

2) State Transition Probabilities: In this section, we derive370

the full, analytical formula for the CCRN state transition371

probability distribution that can be used for numerical approx-372

imation.373

a) Counting parameters for state transition: The fol-374

lowing conditional probability distribution determines the375

transition function T:376

p
(

st+1
∣
∣st, at

B, at
R

)
377

= p
(

It+1
C , It+1

D , Jt+1
C , Jt+1

D

∣
∣
∣It

C, It
D, Jt

C, Jt
D, at

B, at
R

)
378

To express It+1
C , It+1

D , Jt+1
C , and Jt+1

D , we need to define the 379

counting parameters related to collision and jamming: 380

• mC1
def= # of collided control channels previously uncol- 381

lided and unjammed; 382

• mC2
def= # of collided control channels previously collided; 383

• mC3
def= # of collided control channels previously jammed; 384

• mD1
def= # of collided data channels previously uncollided 385

and unjammed; 386

• mD2
def= # of collided data channels previously collided; 387

• mD3
def= # of collided data channels previously jammed; 388

• nC1
def= # of jammed control channels previously uncol- 389

lided and unjammed; 390

• nC2
def= # of jammed control channels previously collided; 391

• nC3
def= # of jammed control channels previously jammed; 392

• nD1
def= # of jammed data channels previously uncollided 393

and unjammed; 394

• nD2
def= # of jammed data channels previously collided; 395

• nD3
def= # of jammed data channels previously jammed. 396

Now we can write the number of collided control channels 397

It+1
C = mC1 + mC2 + mC3, the total number of collided data 398

channels It+1
D = mD1 + mD2 + mD3, the jammed control chan- 399

nels Jt+1
C = nC1 + nC2 + nC3, and the jammed data channels 400

Jt+1
D = nD1 + nD2 + nD3. 401

We define the counting parameters that describe how BF 402

and RF networks choose control and data channels at time t: 403

• αt
C1

def= # of control channels chosen from previously 404

uncollided and unjammed channel space; 405

• αt
D1

def= # of data channels chosen from previously 406

uncollided and unjammed channel space; 407

• αt
C2

def= # of control channels chosen from previously 408

collided channel space; 409

• αt
D2

def= # of data channels chosen from previously 410

collided channel space; 411

• αt
C3

def= # of control channels chosen from previously 412

jammed channel space; 413

• αt
D3

def= # of data channels chosen from previously 414

jammed channel space. 415

We define the parameters to describe how BF and RF 416

jamming actions are chosen at t: 417

• αt
I1

def= # of channels chosen from previously uncollided 418

channel space for jamming; 419

• αt
I2

def= # of channels chosen from previously collided 420

channel space for jamming; 421

• αt
J1

def= # of channels chosen from previously unjammed 422

channel space for jamming; 423

• αt
J2

def= # of channels chosen from previously jammed 424

channel space for jamming. 425

We have a constraint αt
C1 + αt

D1 < Nt
1 where Nt

1 = N − 426

(It
C + It

D + Jt
C + Jt

D) gives the total number of uncollided and 427

unjammed channels. We also have αt
C2 + αt

D2 < Nt
2 where 428

Nt
2 = It

C + It
D is the total number of collided channels, and 429

αt
C3 + αt

D3 < Nt
3 where Nt

3 = Jt
C + Jt

D is the total number of 430

jammed channels. 431
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b) Combinatorial analysis: We should consider combi-432

nations of (mC{1,2,3}, mD{1,2,3}) and (nC{1,2,3}, nD{1,2,3}) subject433

to the constraints represented by IC, ID, JC, and JD. Using434

the binomial coefficient
(n

k

) = n!
k!(n−k)! , the probability of mC1435

control and mD1 data channels collided given that BF and RF436

networks choose from previously uncollided and unjammed437

channels is:438

p
(
mC1, mD1|It

C, It
D, Jt

C, Jt
D, at

B, at
R

)
439

=
(
αt

C1
mC1

)(
αt

D1
mD1

)( Nt
1−αt

C1−αt
D1

αt
I1+αt

J1−mC1−mD1

)

( Nt
1

αt
I1+αt

J1

)440

The probability of mC2 control and mD2 data channels col-441

lided given that BF and RF networks choose from previously442

collided channels is:443

p
(
mC2, mD2|It

C, It
D, Jt

C, Jt
D, at

B, at
R

)
444

=
(
αt

C2
mC2

)(
αt

D2
mD2

)( Nt
2−αt

C2−αt
D2

αt
I2−mC2−mD2

)

(Nt
2

αt
I2

)445

The probability of mC3 control and mD3 data channels col-446

lided given that BF and RF networks choose from previously447

jammed channels is:448

p
(
mC3, mD3|It

C, It
D, Jt

C, Jt
D, at

B, at
R

)
449

=
(
αt

C3
mC3

)(
αt

D3
mD3

)( Nt
3−αt

C3−αt
D3

αt
J2−mC3−mD3

)

(Nt
3

αt
J2

)450

The probability of nC1 control and nD1 data channels451

jammed given that BF and RF networks choose from452

previously uncollided and unjammed channels is:453

p
(
nC1, nD1|It

C, It
D, Jt

C, Jt
D, at

B, at
R

)
454

=
(
αt

C1
nC1

)(
αt

D1
nD1

)( Nt
1−αt

C1−αt
D1

αt
I1+αt

J1−nC1−nD1

)

( Nt
1

αt
I1+αt

J1

)455

The probability of nC2 control and nD2 data channels456

jammed given that BF and RF networks choose from457

previously collided channels is:458

p
(
nC2, nD2|It

C, It
D, Jt

C, Jt
D, at

B, at
R

) =
(
αt

C2
nC2

)(
αt

D2
nD2

)(Nt
2−αt

C2−αt
D2

αt
I2−nC2−nD2

)

(Nt
2

αt
I2

)459

The probability of nC3 control and nD3 data channels460

jammed given that BF and RF networks choose from pre-461

viously jammed channels is:462

p
(
nC3, nD3|It

C, It
D, Jt

C, Jt
D, at

B, at
R

) =
(
αt

C3
nC3

)(
αt

D3
nD3

)(Nt
3−αt

C3−αt
D3

αt
J2−nC3−nD3

)

(Nt
3

αt
J2

)463

c) Posterior conditional probabilities: The combinatorial464

analysis leads to the posterior state transition probability dis-465

tribution presented in Eq. (5), as shown at the top of next466

page. To solve for an optimal strategy, we need to evalu-467

ate this posterior distribution. For large networks and rapid468

variation in the system parameters (e.g., changing number469

of channels), this approach imposes high computational cost. 470

We can alternatively sample the distribution, using a sta- 471

tistically rigorous technique such as Markov Chain Monte 472

Carlo (MCMC); however, the MCMC performance relies on 473

the choice of a proposal distribution that must work well for 474

CCRN, which by itself is an active area of research. In the 475

next section, we propose Q-learning [11] based methods that 476

can avoid complex state transition computations by a technique 477

called value iteration [18]. In Section V-B, we will numerically 478

evaluate transition probabilities for the two-CCRN scenario 479

using Eq. (5) and Monte Carlo sampling. 480

D. Optimal Strategies 481

The goal of the state-agnostic CCRN is to minimize the 482

growth of regret with an optimal strategy σ ∗: 483

σ ∗ = arg min
σ

�t = min
σ

⎧
⎨

⎩
E

⎡

⎣
M∑

i=1

t∑

j=1

r j
(i)

⎤

⎦− E

[
Rt

σ

]

⎫
⎬

⎭
(6) 484

where �t represents the CCRN regret at time t, and we use rt
(i) 485

an ordered sequence of the N instantaneous channel rewards 486

at time t such that rt
(1) ≥ rt

(2) ≥ . . . ≥ rt
(N). Knowing that there 487

are M = C + J total number of nodes in the network, sum of 488

the M (< N) highest rewarding channels reflects the optimal 489

allocation of the nodes. We note that one can adopt the concept 490

of discounted reward by expressing E

[
Rt

σ

] = E

∑t
j=0 γ jr j

σ . 491

By adjusting the value of discount ratio γ (0 ≤ γ < 1) over 492

time, one can control the coverage to which a strategy tries to 493

optimize short term versus long term (i.e., exploit or explore) 494

rewards. 495

The goal for the stateful CCRN is stated differently. We 496

wish to find an optimal distribution π∗ over all possible 497

node actions to maximize the expected cumulative sum of 498

discounted rewards: 499

π∗ = arg max
π

E

⎡

⎣
t∑

j=0

γ jR
(

s j, a j
B, a j

R

)
⎤

⎦ (7) 500

where γ again is a reward discount ratio, strategy π decides BF 501

node actions, RF node actions are measurable to determine the 502

state, and the reward can be observed over time. It would be 503

an interesting problem to see whether the stateful optimization 504

of Eq. (7) is compatible to that of state-agnostic in Eq. (6). 505

We will later provide an in-depth, comparative analysis of the 506

two approaches. 507

IV. ALGORITHMIC APPROACHES TO 508

FIND OPTIMAL CCRN STRATEGIES 509

An optimal CCRN strategy yields node actions that maxi- 510

mize networking efficiency measurable in data throughput and 511

jammed enemy communications. This section describes our 512

algorithmic approaches in state-agnostic and stateful settings. 513

We first consider the MAB formulation for its simplicity in 514

computing strategies from only reward observation over time. 515

In this section, we show that constructing a MAB algorithm 516

(Thompson sampling in particular) with an extreme-valued 517

reward likelihood as guide is ideal because the maximum pos- 518

sible reward should consist of only successful transmission and 519
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p
(

It+1
C , It+1

D , Jt+1
C , Jt+1

D |It
C, It

D, Jt
C, Jt

D, at
B, at

R

)

=
∑

It+1
C =mC1+mC2+mC3

It+1
D =mD1+mD2+mD3

Jt+1
C =nC1+nC2+nC3

Jt+1
D =nD1+nD2+nD3

p
(
mC1, mD1|It

C, It
D, Jt

C, Jt
D, at

B, at
R

)× p
(
mC2, mD2|It

C, It
D, Jt

C, Jt
D, at

B, at
R

)

× p
(
mC3, mD3|It

C, It
D, Jt

C, Jt
D, at

B, at
R

)× p
(
nC1, nD1|It

C, It
D, Jt

C, Jt
D, at

B, at
R

)

× p
(
nC2, nD2|It

C, It
D, Jt

C, Jt
D, at

B, at
R

)× p
(
nC3, nD3|It

C, It
D, Jt

C, Jt
D, at

B, at
R

)

=
∑

It+1
C =mC1+mC2+mC3

It+1
D =mD1+mD2+mD3

Jt+1
C =nC1+nC2+nC3

Jt+1
D =nD1+nD2+nD3

(
αt

C1
mC1

)(
αt

D1
mD1

)( Nt
1−αt

C1−αt
D1

αt
I1+αt

J1−mC1−mD1

)

( Nt
1

αt
I1+αt

J1

) ×
(
αt

C2
mC2

)(
αt

D2
mD2

)( Nt
2−αt

C2−αt
D2

αt
I2−mC2−mD2

)

(Nt
2

αt
I2

)

×
(
αt

C3
mC3

)(
αt

D3
mD3

)( Nt
3−αt

C3−αt
D3

αt
J2−mC3−mD3

)

(Nt
3

αt
J2

) ×
(
αt

C1
nC1

)(
αt

D1
nD1

)( Nt
1−αt

C1−αt
D1

αt
I1+αt

J1−nC1−nD1

)

( Nt
1

αt
I1+αt

J1

)

×
(
αt

C2
nC2

)(
αt

D2
nD2

)(Nt
2−αt

C2−αt
D2

αt
I2−nC2−nD2

)

(Nt
2

αt
I2

) ×
(
αt

C3
nC3

)(
αt

D3
nD3

)(Nt
3−αt

C3−αt
D3

αt
J2−nC3−nD3

)

(Nt
3

αt
J2

) (5)

jamming, not a mix of successes and failures. For comparison,520

we present three classical algorithms known for the stochastic521

MAB problem.522

For the stateful counterpart, we apply Q-learning, a523

multi-agent reinforcement learning technique, in the Markov524

game framework. As shown previously, evaluating transition525

functions of a stateful CCRN is non-rivial due to combinatorial526

blowup. Thus, we use a value-iteration technique to evaluate527

the Bellman equations for our stateful algorithms. This section528

presents pseudo-code for all proposed algorithms.529

A. State-Agnostic CCRN530

1) Deterministic Algorithm: Algorithm 1 describes an531

adaptation of Lai and Robbins’s asymptotically optimal532

rules [7] for state-agnostic case. The algorithm keeps track of533

cumulative reward Rt
i = ∑t

j=1 r j
i and total number of accesses534

Tt
i for channel i. It draws two candidate channels cMPE and535

cRR, based on the maximum point estimate (MPE) criterion536

(e.g., channel with highest sample mean) and round robin537

(RR) selection, respectively. The Kullback-Leibler divergence538

between the two distributions serves a test statistic to finalize539

the choice.540

2) Indexing Algorithm: The success of Lai and Robbins541

depends on the accuracy of DKL estimated from empirical sam-542

pling, which is a challenging task of its own. Another class543

of MAB algorithms uses index as a computable substitute544

for DKL. Strictly speaking, indexing algorithm is a subclass545

of deterministic algorithms. Auer et al. [19] formulated an546

indexing scheme called Upper Confidence Bound (UCB).547

In Algorithm 2, we present UCB for state-agnostic CCRN.548

Algorithm 1 (Lai & Robbins for State-Agnostic CCRN)
1: while t < 1 � initialized offline
2: Access each channel at least once
3: Record Rt

i = ∑t
j=1 r j

i and Tt
i for every channel i

4: end
5: while t ≥ 1 � online
6: Compute μi = Rt

i/Tt
i ∀i

7: Find MPE candidate cMPE = i∗ s.t. μi∗ = max μi
8: Find RR candidate cRR = (t mod N) + 1
9: if DKL(pRR ‖ pMPE) > log(t − 1)/Tt

cRR
10: Access cMPE and observe rt

cMPE
11: Update Rt

cMPE
and Tt

cMPE
12: else
13: Access cRR and observe rt

cRR
14: Update Rt

cRR
and Tt

cRR
15: end
16: end

Algorithm 2 (UCB for State-Agnostic CCRN)
1: while t < 1 � initialized offline
2: Same as Algorithm 1
3: end
4: while t ≥ 1 � online
5: Compute point estimate μi = Rt

i/Tt
i ∀i

6: Compute index gi = μi +
√

α log t
Tt

i
∀i

7: Access channel i∗ = arg maxi gi
8: Update Rt

i∗ and Tt
i∗

9: end

Despite its simpler form, UCB results in the margin of error 549

that decays logarithmically in time. 550

3) Randomized Algorithm: Randomization serves an effec- 551

tive means to simultaneously explore and exploit. In partic- 552

ular, we focus on a probability matching heuristic known 553
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Algorithm 3 (Thompson Sampling for State-Agnostic CCRN)
Require: d = {x, a, r} for context x, action a, reward r, estimator

p(θ |d) ∝ p(r|x, a, θ)p(θ) parameterized by θ
1: while t ≥ 1 � online
2: Acquire xt

3: Draw θ t ∼ p(θ)
4: Choose at to access i∗ = arg maxi E[rt

i |xt, θ t]
5: Observe actual rt

6: Update d = d ∪ {xt, at, rt}
7: Update p(θ) = p(θ |d)
8: end

as Thompson sampling [9], originally proposed in 1933 for554

stochastic MAB problems. Thompson sampling selects actions555

according to some optimal probability that is believed to yield556

the maximum reward. The strategy maker based on Thompson557

sampling is required to observe the actual outcome of a558

selected action in order to adjust the belief. For this reason,559

the algorithm is also called posterior sampling.560

Despite its often superior performance over other algo-561

rithms, Thompson sampling lacks a rigorous theoretical562

analysis. The full proof on the convergence properties and563

bounds still remains to be an open problem. Thompson sam-564

pling reemerged in recent machine learning literature such565

as Agrawal and Goyal [20], which provides the most thor-566

ough mathematical treatment available to date. Algorithm 3567

describes Thompson sampling in its naturally Bayesian form.568

We note that running Algorithms 1, 2, and 3 once deter-569

mines an action for one node only. For determining multiple570

node actions, we use the following technique. Select the best571

channel from an algorithm and assign it to a node of interest.572

Remove the selected channel and rerun the algorithm for the573

remaining channels. Select the best channel among the remain-574

ing and assign it to the next node of interest. We repeat the575

process until we allocate all nodes (comm or jammer).576

B. Stateful CCRN577

In the model-based reinforcement learning, an agent explic-578

itly learns the transition probabilities of the underlying Markov579

chain that characterizes the system. The model-free learn-580

ing, on the other hand, needs to evaluate the actual action581

executed at a given state. We choose Q-learning [11], a model-582

free, temporal-difference learning as our baseline method to583

compute an optimal strategy for the stateful case.584

Q-learning evaluates the quality of an action possible at a585

particular state and the value of that state. The quality function586

Q(·) is a function of state s and action a, and of only s for the587

value function V(·). The Bellman equations [21] characterize588

such optimization:589

Q(s, a) = R(s, a) + γ
∑

s′
p
(
s′|s, a

)
V
(
s′) (8)590

V(s) = max
a′ Q

(
s, a′) (9)591

The key strength of Q-learning is the value iteration technique592

that an agent performs an update Q(s, a) = R(s, a) + γ V(s′)593

(note that s′ is the next state transited from s) in place of594

Eq. (8) without explicit knowledge of transition probability595

Algorithm 4 (Q-learning for Stateful CCRN)

Require: Q(s, aB, aR) = 1, V(s) = 1, π(s, aB) = 1
|A| ∀ state s ∈

S , BF action aB ∈ A, RF action aR ∈ A; learning rate α < 1
with decay λ ≤ 1 (α, λ nonnegative)

1: while t ≥ 1
2: Draw at

B ∼ π(st) and execute
3: Observe rt

B
4: Estimate at

R given observed reward
5: Compute st+1

6: Q(st, at
B, at

R) = (1 − α)Q(st, at
B, at

R) + α(rt
B + γ V(st+1))

7: linprog: π(st, .) = arg maxπ
∑

aB
π(st, aB)Q(st, aB, aR)

8: Update V(st) = minaR

∑
aB

π(st, aB)Q(st, aB, aR)
9: Update α = λ × α

10: end

p(s′|s, a), which is often too complex (e.g., Eq. (5)) to compute 596

as discussed in Section III-C. Noting that a strategy π is the 597

probability distribution of a at state s, linear programming can 598

solve for π∗ = arg maxπ

∑
a Q(s, a) π , reflecting the value 599

maximization in Eq. (9). 600

In Algorithm 4, we present a baseline Q-learning algorithm 601

that searches for an optimal strategy of the Blue Force (BF) 602

network. Note that the BF and RF networks are symmetri- 603

cal (e.g., same number of comm nodes and jammers), thus 604

have the same node action space. In Section IV-D, we pro- 605

pose three variations of Q-learning algorithms that improve 606

the performance of Algorithm 4. 607

C. New State-Agnostic Algorithm 608

For the state-agnostic approach, we propose a new MAB 609

algorithm based on extreme value theory [22], conjugate 610

priors, and Thompson sampling. 611

1) Distribution of Maximum Reward Sequence: Let Yt = 612

max{rt
1, . . . , rt

N} where rt
i represents the reward from channel 613

i at t. Since the sequence Y1, Y2, . . . , Yt consists only of the 614

maximum channel reward each time, it must have achieved the 615

distribution p∗ in Eq. (2). Furthermore, the sequence should 616

result in an upper bound of the optimal mean reward μ∗. 617

Therefore, we need a strategy σ to empirically follow the 618

distribution of Yt . But how is it distributed? 619

Fisher and Tippet [23] and Gnedenko [24] proved the exis- 620

tence of limiting distributions for block maxima (or minima) 621

of random variables. Their findings became the foundation of 622

extreme value theory used widely in financial economics. 623

Theorem 1 (Fisher & Tippett, Gnedenko): Let X1, . . . , Xn 624

be a sequence of i.i.d. random variables and Mn = 625

max {X1, . . . , Xn}. If real number pairs (an, bn) exist such that 626

an, bn > 0 and limn→∞ P(Mn−bn
an

≤ x) = F(x), where F(·) is 627

a non-degenerate distribution function, then the limiting dis- 628

tribution F(·) belongs to only Fréchet, Gumbel, or Weibull 629

family of probability distribution functions. 630

Proof: See Fisher and Tippet [23] and Gnedenko [24]. 631

2) Conjugate Priors: In Bayesian inference, the posterior is 632

updated by the observed likelihood given the prior distribution: 633

p(θ |r)
︸ ︷︷ ︸
posterior

∝ p(r|θ)
︸ ︷︷ ︸

likelihood

× p(θ)
︸︷︷︸
prior

634
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TABLE V
BAYESIAN CONJUGACY UNDER EXTREME-VALUED LIKELIHOOD

Algorithm 5 (CCRN State-Agnostic Algorithm)
Require: ai, bi = 0 ∀i

1: while t < 1 � initialized offline
2: Access each channel until ai, bi �= 0 ∀i, where ai and bi are

sample reward mean and variance
3: end
4: while t ≥ 1 � online
5: Draw θi ∼ inv-gamma(ai,bi)
6: Estimate r̂i = weibull(θi,βi) ∀i for given 0.5 ≤ βi ≤ 1
7: Access channel i∗ = arg maxi r̂i
8: Observe actual rt

i∗ to update {Rt
i∗, Tt

i∗}
9: Update ai∗ = ai∗ + Tt

i∗ , bi∗ = bi∗ +∑
t(r

t
i∗)

βi∗
10: end

When the probabilistic model for the likelihood is known, we635

can set the prior and posterior distributions conveniently of the636

same family of functions. This is known as conjugate prior.637

Since the reward distribution under our search is extreme-638

valued, our likelihood choices are left to Fréchet, Gumbel,639

or Weibull distributions. Table V summarizes the conjugate640

priors having an extreme-valued likelihood distribution [25].641

3) The Algorithm: Algorithm 5 proposes a new state-642

agnostic approach. The algorithm performs Thompson sam-643

pling following an extreme-valued likelihood and updates the644

posterior distribution based on its conjugate prior. However,645

we need to decide on which extreme value distribution is646

suitable for CCRN.647

Since both Fréchet and Gumbel distributions model648

unbounded random variables, we adopt a Weibull likelihood649

with the inverse gamma conjugate prior (see Table V), rea-650

soning that the maximum reward value for CCRN should be651

finite. The lack of theoretical analysis on Thompson sampling652

makes it difficult to justify our design choice. In Section V,653

we show an empirical evidence that backs up our choice.654

A Weibull distribution has finite endpoints. Its conjugate655

prior, the inverse gamma distribution, has two hyperparameters656

a, b > 0. Our algorithm draws the scale parameter θ from the657

inverse gamma prior p(θ |a, b) = ba−1e−b/θ

�(a−1)θa for θ > 0 where a658

and b are the sample mean and variance of the reward of a659

channel, and �(·) the gamma function (not to be confused with660

the Lai & Robbins’s regret � in Eq. (1)). The Weibull random661

variable generated by θ drawn from the prior estimates the662

expected reward for the channel. After observing the actual663

reward, the posterior update follows.664

D. New Stateful Algorithm665

Before presenting the new stateful algorithm, we decom-666

pose the CCRN Markov game into two subgames, namely667

Fig. 4. Inter-node relationships in antijamming and jamming subgames.

antijamming and jamming, and examine inter-node relation- 668

ship. Fig. 4 illustrates the decomposition. Each circle repre- 669

sents a unique node type from the Blue Force (BF) and Red 670

Force (RF) networks. For clarity, we explain the relationships 671

in the BF network’s perspective—i.e., the same relationships 672

can be derived for the RF network. 673

Antijamming game is primarily played between a BF comm 674

node and an RF jammer. That is, the key objective of anti- 675

jamming game for BF is to maximize data throughput by 676

avoiding hostile RF jamming. Antijamming game is also 677

played between a BF comm node and an RF comm node since 678

the BF comm throughput is subject to degradation when the 679

both comm nodes collide on the same channel. Fig. 4 also 680

suggests that there are antijamming games among BF comm 681

nodes and between a BF comm node and a BF jammer. When 682

multiple BF comm nodes collide on the same channel, there 683

will be a similar loss of throughput. Moreover, the BF network 684

wastes corresponding comm resources because of the colli- 685

sion, thus it should be avoided. We call misjamming when a 686

BF jammer jams BF’s own comm nodes. Misjamming is dev- 687

astating because it incurs a loss of throughput and wastes both 688

comm and jamming resources of the network. 689

To avoid the collision among the BF nodes and misjamming, 690

we rely on network control to coordinate the node actions. A 691

rational strategy must first check any conflicting node actions 692

within the same network. However, imperfect sensing and 693

signaling can still lead to a collision and misjamming. 694

In jamming game, a BF jammer is trying to jam an RF 695

comm node in order to suppress the RF data throughput. A 696

BF jammer can target a data channel frequently accessed by 697

the RF comm nodes. Alternatively, it can aim for an RF control 698

channel, which would result a small immediate reward but a 699

potentially larger value in the future by blocking subsequent 700

RF data traffic. Additionally, jamming game is played between 701

a BF jammer and an RF jammer, and among multiple BF 702

jammers in order to minimize energy resources. There will be 703

no need for a BF jammer to act on a channel already under 704

jamming by either another BF jammer or an RF jammer. 705

Now we describe three comparable, new algorithms for 706

stateful CCRN using Minimax [26], Nash [27], and Friend- 707

or-foe [28] Q-learning methods. 708

1) Minimax-Q Learning: Minimax-Q assumes a zero-sum 709

game that implies QB(st, at
B, at

R) = −QR(st, at
B, at

R) = 710

Q(st, at
B, at

R). This holds tightly for the jamming subgame 711
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V
(
st) = max

πB1(AB,comm)
min
at

R,jam

max
πB2(AB,jam)

min
at

R,comm

∑

at
B

Q
(
st, at

B, at
R

)
πB
(
at

B

)
(10)

Q
(
st, at

B, at
R

) = r
(
st, at

B, at
R

)+ γ
∑

st+1

T
(

st, at
B, at

R, st+1
)

V
(

st+1
)

= r
(
st, at

B, at
R

)+ γ
∑

st+1

p
(

st+1|st, at
B, at

R

)
V
(

st+1
)

(11)

Q
(
st, at

B, at
R

) = (
1 − αt)Q

(
st, at

B, at
R

)+ αt
[
r
(
st, at

B, at
R

)+ γ V
(

st+1
)]

(12)

Q
(
st, at

B, at
R

) = (
1 − αt)Q

(
st, at

B, at
R

)

+ αt

[

r
(
st, at

B, at
R

)+ γ max
πB1(AB,comm)

min
at

R,jam

max
πB2(AB,jam)

min
at

R,comm

Q
(
st, at

B, at
R

)
πB
(
at

B

)
]

(13)

V
(
st) = max

πB1(AB,comm)
min

π̂R2(AR,jam)
max

πB2(AB,jam)
min

π̂R1(AR,comm)

∑

at
B

Q
(
st, at

B, at
R

)
πB
(
at

B

)
π̂R
(
at

R

)
, (14)

Q
(
st, at

B, at
R

) = (
1 − αt)Q

(
st, at

B, at
R

)

+ αt

[

r
(
st, at

B, at
R

)+ γ max
πB1(AB,comm)

min
π̂R2(AR,jam)

max
πB2(AB,jam)

min
π̂R1(AR,comm)

Q
(
st, at

B, at
R

)
πB
(
at

B

)
π̂R
(
at

R

)
]

(15)

QB
(
st, at

B, at
R

) = (
1 − αt)QB

(
st, at

B, at
R

)

+ αt

[

r
(
st, at

B, at
R

)+ γ max
πB1(AB,comm)

min
π̂R2(AR,jam)

max
πB2(AB,jam)

min
π̂R1(AR,comm)

QB
(
st, at

B, at
R

)
πB
(
at

B

)
π̂R
(
at

R

)
]

(16)

QR
(
st, at

B, at
R

) = (
1 − αt)QR

(
st, at

B, at
R

)

+ αt

[

r
(
st, at

B, at
R

)+ γ max
πB1(AB,comm)

min
π̂R2(AR,jam)

max
πB2(AB,jam)

min
π̂R1(AR,comm)

QR
(
st, at

B, at
R

)
πB
(
at

B

)
π̂R
(
at

R

)
]

(17)

where the jammer’s gain is offset precisely by the opponent712

comm throughput loss. In order to solve antijamming and jam-713

ming subgames jointly, we propose a slight modification to714

the original Minimax-Q algorithm in Littman [26]. First, we715

divide the strategy of BF network πB into its antijamming and716

jamming substrategies, πB1 and πB2. Then, we add an extra717

minimax operator to our value function in Eq. (10), as shown718

at the top of this page. The modified Q-function in Eq. (11),719

as shown at the top of this page, can be computed iteratively,720

using Eqs. (12) and (13), as shown at the top of this page.721

Learning rate α decays over time such that αt+1 = αt · δ722

according to decay factor 0 < δ < 1.723

2) Nash-Q Learning: Nash-Q [27] can solve a general-sum724

game in addition to zero-sum games. This makes an important725

distinction to Minimax-Q although the Nash-Q value function726

for a zero-sum game in Eq. (14), as shown at the top of this727

page, is different from Eq. (10) by only one extra term π̂R(at
R).728

This means that Nash-Q requires to estimate the policy of729

the opponent. BF network needs to learn π̂R1 and π̂R2, the730

antijamming and jamming substrategies of RF network. The731

Q-function for the zero-sum Nash-Q is given by Eq. (15), as732

shown at the top of this page. For a general-sum game, the733

BF agent should compute QB and QR separately at the same734

time while observing its reward and estimating the RF’s by735

Eqs. (16) and (17), as shown at the top of this page. The736

objective of Nash-Q is to find a joint equilibrium under the737

mixed strategies (πB, π̂R).738

3) Friend-or-Foe Q-Learning: Although Nash-Q is applica- 739

ble to both zero-sum and general-sum games, its convergence 740

guarantee is considered too restrictive [28]. Littman [28] 741

instead proposed Friend-or-foe Q-learning (FFQ). FFQ is a 742

computational enhancement and provides better convergence 743

properties by relaxing the restrictive conditions of Nash-Q. 744

For this relaxation, FFQ requires extra information that other 745

agents in the game should be classified friendly or hostile. 746

In FFQ, the BF agent maintains only one Q-function: 747

QB
(
st, at

B, at
R

) = (
1 − αt)QB

(
st, at

B, at
R

)
748

+ αt[r
(
st, at

B, at
R

) + γ�B
]

(18) 749

If the BF agent encounters an agent that is identified as a 750

friend, the Q-function for the BF network is updated by 751

�B = max
at

B,at
R

QB
(
st, at

B, at
R

)
(19) 752

On the other hand, if the BF agent encounters an agent that 753

is identified as a foe, the Q-function is updated under the 754

minimax criterion 755

�B = max
πB(AB)

min
π̂R(AR)

∑

at
B

QB
(
st, at

B, at
R

)
πB
(
at

R

)
. (20) 756

V. SIMULATION RESULTS 757

We evaluate the state-agnostic and stateful approaches 758

against non-cognitive static and random strategies. Then, we 759
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Fig. 5. Illustration of ideal channel access strategy against static RF network
strategy when C = 4 and J = 2 in centralized scenario.

evaluate the case where one of the two CCRNs employs the760

state-agnostic algorithm and stateful algorithm for the other.761

A. Evaluation of State-Agnostic Approach762

1) Scenarios and Metric: We evaluate the centralized763

and distributed control scenarios for BF and RF net-764

works in a custom-built MATLAB simulator. The BF net-765

work runs Algorithms 1 (Lai and Robbins), 2 (UCB), 3766

(Thompson Sampling), and 5 (proposed) described in767

Sections IV-A and IV-C while the RF network is configured768

with static and uniformly random strategies. In static strategy,769

RF nodes initially choose to access some channels and con-770

tinue to access the same channels throughout. Random strategy771

chooses a uniformly random channel for each RF node at each772

time slot.773

Under the centralized scenario, we assume that the central774

decision maker has perfect knowledge (i.e., sensing results775

from all nodes) in the decision making as expressed by Eq. (3).776

Under the distributed scenario, each node in the network777

makes its own decision by using its sensing results only (no778

information sharing) as described by Eq. (4).779

We adopt the average reward per channel as the performance780

evaluation metric for a CCRN:781

R̄t = 1

N·t
t∑

j=1

N∑

i=1

r j
i782

where ri is the ith channel reward, and there are N channels783

in the spectrum. We use the channel reward model described784

by Table I in Section II-D.785

2) Results: The spectrum has N = 10 channels. For each786

CCRN, we vary the number of comm nodes C = 2, 4, 6, 8,787

but fix the number of jammers to J = 2. Comm nodes788

have a transmit probability pTx = 0.5 whereas jammers jam789

with probability 1. We run t = 1, 000 time slots and mea-790

sure steady-state, cumulative average reward per channel for791

comparison.792

To better understand simulated results, we present an illus-793

trative example for an optimal BF strategy against the static794

RF network with C = 4 and J = 2 in Fig. 5. In this example,795

RF comm nodes are fixed at channels 1, 2, 3, 4, and its 2796

jammers at channels 5 and 6, leaving the rest of channels 7,797

8, 9, 10 free of RF actions. Through learning by sensing all798

channels over time, an optimal BF strategy should place its799

two jammers somewhere between channel 1 and 4. Because800

the comm transmit probability at any given slot is 0.5 for801

all RF and BF comm nodes, the maximum average reward802

earned by the BF jammers should be E[RB,jam] ≈ 0.5×2 = 1.803

The BF comm nodes at channels 7, 8, 9, and 10 should earn804

Fig. 6. Average reward performance comparison in centralized scenario for
state-agnostic approaches.

E[RB,comm] ≈ 0.5 × 4 = 2 (because of the comm transmit 805

probability of 0.5, the BF comm reward at each time slot 806

come from two channels on the average). In summary, the total 807

reward for BF network in this example is approximately 3, 808

which is normalized to 3
N = 3

10 = 0.3 (per channel), and 809

similarly for RF network, average total reward is 1
10 = 0.1. 810

Fig. 6 compares the performance of tested algorithms in the 811

centralized scenario. The curves for static and random strate- 812

gies were obtained while they were tested against the proposed 813

algorithm. We can clearly observe performance advantage of 814

our algorithm over Algorithms 1, 2, and 3. The proposed 815

algorithm (i.e., Algorithm 5) can learn static transmission and 816

jamming patterns effectively. Static strategy yields near-zero 817

reward at C = 2. As we have fixed J = 2, static strategy can 818

realize nonzero rewards when C > 2. 819

The results for the static and proposed algorithms at C = 4 820

in Fig. 6 confirm the reward performance of the example 821

illustrated in Fig. 5. The proposed algorithm consistently out- 822

performs the others including the ones adapted from existing 823

MAB solutions. As the number of comm nodes per net- 824

work increases, the state-agnostic CCRN strategies face fewer 825

options in choosing node actions. As a result, we observe 826

that difference in the reward performance of the algorithms 827

becomes smaller. To increase the potential reward, we need to 828

explore more channels in optimizing the strategy. 829

Learning is harder against random strategy because ran- 830

domization gives an effective exploration mechanism. As a 831

result, the reward performance of the algorithms decreases. 832

Random strategy, however, can only explore. The lack of 833

exploitation explains its poorer performance compared to 834

Algorithms 1, 2, 3, and 5. 835

In Fig. 7, we compare the performance in the distributed 836

scenario that lacks explicit intra-network coordination. The 837

reward performance becomes worse for all of the algorithms 838

due to collisions and misjamming. 839

B. Evaluation of Stateful Approach 840

1) Scenarios and Metric: As discussed earlier, there are 841

model-based and model-free stateful approaches. We use the 842

Markov game model derived in Section III-C to numerically 843

simulate the CCRN state transition probabilities. We draw a 844

reduced state diagram in Fig. 8, using only the 10 most prob- 845

able state transitions computed from Eq. (5). Recall that a 846

CCRN state is represented by the tuple 〈IC, ID, JC, JD〉, where 847
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Fig. 7. Average reward performance comparison in distributed scenario for
state-agnostic approaches.

Fig. 8. Top 10 state transitions computed analytically using Eq. (5).

Fig. 9. Top 10 state transitions determined from Monte Carlo simulation
(shaded states different from the analytical result of Fig. 8).

IC is the number of collided control channels, ID the number848

of collided data channels, JC the number of jammed control849

channels, and JD the number of jammed data channels.850

In Fig. 9, we draw a similar state diagram, which is resulted851

from Monte Carlo sampling. We notice some differences852

between the two. First, the state diagram from the analyti-853

cal evaluation is more compact and concentrated as it has two854

fewer states (see the two highlighted states in Fig. 9) and larger855

transition probability values overall. One reason for larger856

probability values in Fig. 8 is that our Monte Carlo simulation857

implements uniform sampling from the action space at each858

visited state, which does not necessarily reflect the behavior859

of a rational strategy maker. Subsequently, the resulting tran-860

sitions are more likely to be distributed with less probability861

measures. As mentioned earlier, we can improve our Monte862

Carlo approach with MCMC. However, the optimal MCMC863

design for stateful CCRN is out of scope of this paper.864

Fig. 10. Average reward performances of Minimax-Q, Nash-Q, and FFQ at
BF network against static strategy at RF network.

For model-free approach, we configure BF network to run 865

strategies based on Q-learning. We apply Minimax-Q and 866

Nash-Q learning algorithms under the centralized network 867

control while we use FFQ for the distributed case. RF net- 868

work (for both model-based and model-free) is configured to 869

run the same static and random strategies that we use to eval- 870

uate the state-agnostic case. Lastly, we use the same metric as 871

the state-agnostic case to evaluate the reward performance of 872

the stateful algorithms. 873

The simulation parameters are as follows. There are N = 10 874

channels in the spectrum. Both BF and RF networks have 875

2 comm nodes and 2 jammers. We set each comm node’s 876

Tx and each jammer’s jamming with probability 1. We sim- 877

ulate each run for 2,000 time slots and observe reward 878

performances. 879

2) Results: We plot the average reward performances for 880

BF network employing Minimax-Q, Nash-Q, and FFQ against 881

RF network’s static strategy over time in Fig. 10. The solid 882

curve shows the result under the model-free approach based 883

on value-iterated (VI) Q-learning. The dashed curve shows the 884

result under the model-based approach using the state transi- 885

tions of Fig. 8 (i.e., numerical evaluation of Eq. (5)). In the 886

steady state, we observe that the reward performances of the 887

two approaches converge. 888

The results for Minimax-Q and Nash-Q, which are obtained 889

under the centralized network control, indicate the optimal per- 890

formance against the static strategy. On the other hand, the 891

FFQ strategy displays suboptimal reward performance due to 892

possible collisions and misjamming in the distributed network 893

control. 894

Fig. 11 presents the average reward performances for BF 895

network employing Minimax-Q, Nash-Q, and FFQ against RF 896

network’s random strategy. The performance of Q-learning 897

algorithms decreases against the random strategy as observed 898

in the state-agnostic case. 899
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Fig. 11. Average reward performances of Minimax-Q, Nash-Q, and FFQ at
BF network against random strategy at RF network.

C. State-Agnostic vs. Stateful Approaches900

We now evaluate the reward performance for a scenario901

when one network employs the state-agnostic strategy and902

the other the stateful. We configure the BF network with903

Minimax-Q and the RF network with Algorithm 5 with sim-904

ulation parameters N = 10, C = 4, and J = 2. We vary905

the comm Tx and jamming probabilities from 0 to 1 for the906

two CCRNs and run under both the centralized and distributed907

network control mechanisms.908

Fig. 12 depicts the reward performances of the two networks909

as a function of comm Tx and jamming probabilities under the910

centralized control. The performances of both networks are911

comparable as the two approaches in the steady-state seem to912

achieve similar learning. In Fig. 13, we show the reward per-913

formances of the two networks under the distributed control.914

Again, the performances are on par because both networks can915

learn about each other’s strategy under the distributed case.916

VI. RELATED WORK917

The state-agnostic approach of this paper is developed under918

the stochastic MAB framework. In 1933, Thompson [9] intro-919

duced a stochastic MAB problem and proposed an optimal920

heuristic known as Thompson sampling, which remains to921

be an effective action selection strategy. Robbins [29] 1952922

presented the first sequential analysis of the single-player923

MAB problem. In Bellman [30] 1954, MAB problems were924

formulated as a class of Markov decision process (MDP).925

Gittins [31] 1979 proved the existence of a Bayes opti-926

mal indexing scheme for MAB problems if they can be927

modeled as a stationary MDP. Lai and Robbins [7] 1985 intro-928

duced the notion of regret, derived its lower bound using the929

Kullback-Leibler divergence, and constructed asymptotically930

optimal allocation rules. Anantharam et al. [16] 1987 extended931

Lai & Robbins for multi-player. Whittle [32] 1988 intro-932

duced PSPACE-hard restless MAB problems and showed that933

Fig. 12. Average reward performances of Minimax-Q (stateful approach)
at BF network against Algorithm 4 (state-agnostic approach) at RF network
under the centralized network control.

Fig. 13. Average reward performances of Minimax-Q (stateful approach)
at BF network against Algorithm 4 (state-agnostic approach) at RF network
under the distributed network control.

suboptimal indexing schemes are possible. Rivest and Yin [33] 934

1994 proposed Z-heuristic that achieved a better empirical 935

performance than Lai and Robbins. Auer et al. [19] 2002 pro- 936

posed Upper Confidence Bound (UCB), an optimistic indexing 937

scheme. 938

The foundation of our stateful approach is reinforcement 939

learning [34], which extends beyond self-confined views of the 940

classical Markov Decision Process in which an agent’s envi- 941

ronment is stationary and contains no other agents. Q-learning 942
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was originally proposed by Watkins and Dayan [11].943

Littman [26] proposed Minimax-Q learning for a zero-sum944

two-player game. Littman and Szepesvári [18] showed that945

Minimax-Q converges to the optimal value suggested by game946

theory. Hu and Wellman [27] described Nash-Q that was dis-947

tinguished from Minimax-Q by solving a general-sum game948

with a Nash equilibrium computation in its learning algorithm.949

Nash-Q has more general applicability, but its assumptions950

on the sufficient conditions for convergence guarantee are951

known to be restrictive. Friend-or-foe Q-learning (FFQ) [28]952

converges precisely to the steady-state value that Nash-Q953

guarantees. The key improvement of FFQ is relaxation of954

the restrictive conditions that Nash-Q has, but FFQ requires955

a priori knowledge on other agents identified as either a956

friend or foe.957

This paper considers some similar problems discussed by958

Wang et al. [2] such as finding a strategy against hostile959

jamming. They formulated a stochastic antijamming game960

played between the secondary user and a malicious jammer,961

provided sound analytical models, and applied unmodified962

Minimax-Q learning to solve for the optimal antijamming963

strategy. Our work is novel and differentiated from existing964

work by the following. We embrace the notion of friendly jam-965

mers and provide an integrated antijamming-jamming strategy966

for cognitive radio networks under competition in a hostile967

environment. We use jamming as a means to cope with crit-968

ical situations assumed in tactical mobile networking. At the969

same time, we try to avoid the hostile jammers that pose a970

serious threat to the network’s comm activities in another opti-971

mization. We promote the notion of strategic jamming enabled972

by reinforcement learning. We modify existing Q-learning973

algorithms to solve for optimal antijamming and jamming974

strategies jointly. Lastly, we remark that this paper unites our975

previous approaches [12], [13] for competing cognitive radio976

networks.977

VII. CONCLUSION978

We have described Competing Cognitive Resilient979

Networks (CCRNs) that operate in a hostile environment to980

maximize data throughput while simultaneously suppressing981

opponent’s comm activities. We have provided two compati-982

ble, yet distinguished approaches for an optimal strategy that983

can coordinate the joint comm and jamming actions for a984

CCRN.985

In our state-agnostic approach, we have adopted the MAB986

framework and extended classical solutions for CCRN. In987

addition, we have proposed a new algorithm that outperforms988

the classical solutions. The new algorithm builds on Thompson989

sampling in its Bayesian form with an enhancement from the990

extreme value theory. Our performance results indicate that991

the proposed state-agnostic algorithm proves to be most effec-992

tive in addressing the exploration-exploitation tradeoff when993

compared to other algorithms.994

For the stateful approach, we have modeled the dynamics995

of CCRNs using the Markov game framework and decom-996

posed it to antijamming and jamming subgames. We have997

derived an analytical expression to evaluate model-based998

reinforcement learning that can solve for an optimal strategy. 999

We also have applied model-free reinforcement learning, 1000

namely Minimax-Q, Nash-Q, Friend-or-foe Q (FFQ) algo- 1001

rithms, to achieve optimal strategies. With Monte Carlo 1002

sampling, we have demonstrated that the model-based and 1003

model-free methods approach to the same steady-state value. 1004

Both state-agnostic and stateful approaches can be applied 1005

to centralized or distributed network control mechanisms. The 1006

numerical results suggest the superior performance achieved 1007

for the case of centralized where CCRN nodes are cooperative 1008

and their actions are coordinated through a single entity. On 1009

the other hand, the performance under the distributed control 1010

mechanism suffers from collisions and misjamming. 1011

Based on the reward performance, both state-agnostic and 1012

stateful approaches are significantly better than rudimen- 1013

tary strategies such as static and random. However, when 1014

competing against each other, the state-agnostic and stateful 1015

approaches achieve the same performance. Our future work 1016

includes various improvements for cognitive learning such 1017

as faster learning, better convergence properties, and lower 1018

computational complexity. 1019
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