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Abstract—Compressive sensing, which enables signal recovery
from fewer samples than traditional sampling theory dictates,
assumes that the sampling process is linear. However, this
linearity assumption may not hold in the analog domain with-
out significant trade-offs, such as power amplifiers sacrificing
substantial power efficiency in exchange for producing linear
outputs. Since compressive sensing is most impactful when
implemented in the analog domain, it is of interest to integrate
the nonlinearity in compressive measurements into the signal
recovery process such that nonlinear effects can be mitigated. As
such, in this paper, we describe a nonlinear compressive sensing
formulation and associated signal recovery algorithms, providing
both compression and improved efficiency of a power amplifier
simultaneously with one procedure. We present evaluations of the
proposed framework using both measurements from real power
amplifiers and simulations.

Index Terms—Compressive sensing, sparse coding, efficiency of
power amplifier, nonlinear measurements, sparse signal recovery

I. INTRODUCTION

Compressive sensing (CS) enables signal recovery from
fewer samples than traditional sampling theory dictates. By
introducing a sparsity constraint during signal recovery, a
sparse signal can be recovered from just a relatively few
measurements [1], [2]. The recovery process involves solving
a mathematical optimization problem.

Under a scenario in which the sensing device is relatively
constrained in power, compressive sensing can be useful in
reducing both the sensing and compression cost. For example,
consider the scenario shown in Figure 1, in which one wants
to sense signal using a mobile device and then send it to the
cloud. Alleviating the burden of signal sensing with linear
compressive sampling from the relatively resource-constrained
mobile device at the cost of additional computation effort
at the resource-rich cloud, which is equipped to handle a
computationally more expensive decoding process, would be
a desired tradeoff in this case.

While compressive sensing assumes that the sampling pro-
cess is linear, this is often difficult to achieve in the analog
domain without significant trade-offs. For example, a power
amplifier (PA) tends to sacrifice substantial power efficiency in
exchange for producing linear outputs [3]. Since compressive
sensing is most impactful when implemented in the analog
domain, it is desirable to alleviate the effect of nonlinearity

Relatively constrained Relatively powerful 

Fig. 1. Compressive sensing shifts some burden of signal acquisition from
the front end to back end. This tradeoff is favorable when we have power-
constrained sensing devices paired with relatively powerful backend.

in sampling by integrating nonlinearity considerations into the
decoding process of signal recovery, as doing so would allow
for greater power amplifier efficiency by reducing linearity
requirements.

In this paper, we present a nonlinear compressive sensing
(NLCS) formulation that directly models the nonlinear distor-
tion to compressive measurements in the decoding process,
and the accelerated proximal gradient descent method that
can efficiently solve the optimization problem in our new
formulation. By handling the nonlinear distortion with NLCS,
our proposed methodology benefits systems in which front end
devices are power-constrained. Specifically, by lowering the
linearity requirements for analog devices, our approach could
allow amplifiers to operate at higher power efficiency, which is
currently infeasible due to significant distortion. Our approach
still has the benefit of conventional compressive sensing, that
is, the use of simple linear encoding to compress data for
reduced transmission cost.

The proposed NLCS methodology is applicable to nonlin-
ear distortions that are smooth and differentiable. This is a
property that generally holds for many analog devices such
as amplifiers. The optimization process associated with NLCS
can handle unknown distortion functions by estimating said
functions along with signal recovery. To validate the proposed
methodology, we present both simulated results with nonlinear
models that are used in the amplifier industry, as well as
evaluations using measurements from real power amplifiers.

We make the following key contributions in this paper:
1) We provide an analysis that proves signal recoverability

for a practical nonlinear compressive sensing model.
2) We present a signal recovery algorithm for solving the

optimization problem associated with nonlinear compres-
sive sensing, and an extension that estimates the distortion



function during signal recovery.
3) We contribute the first known empirical results showing

the power efficiency gain via nonlinear compressive sens-
ing using data from a real power amplifier.

In Section II, we discuss relevant background. In Section III,
we introduce the NLCS framework with extensions to handle
unknown distortions. In Section IV, we provide analysis to
show that information required for signal recovery is preserved
in the nonlinear sensing setting. In Section V, we present
empirical results from simulation and real hardware.

II. BACKGROUND

A. Compressive Sensing

Compressive sensing is a framework in which signals are
sampled through a linear projection Φ ∈ Rm×n, where m <<
n. We assume that all signals x ∈ X can be sparsely expressed
as x = Ψz, where Ψ ∈ Rn×t is a (overcomplete) basis and z
is a sparse vector. The basis Ψ is designed or trained, and we
assume it is given. The measurement y is defined as follows:

y = Φx+ ε = ΦΨz + ε (1)

where ε denotes the noise in measurements.
Given y, one can recover x indirectly by first finding a

sparse vector z that explains the measurements. There are sev-
eral formulations for computing z with different performance
guarantees, but the general solution is

z∗ = arg min
z

g(z) subject to ‖y − ΦΨz‖2 ≤ ‖ε‖2 (2)

where g is an objective function that promotes sparsity (e.g.,
g(z) = ‖z‖1). Once z∗ is acquired, one can obtain an
estimation of x via x∗ = Ψz∗. The error of such recovery
depends on the properties of ΦΨ, the sparsity of z, and the
choice of the regularization function g1.

Definition 1 (restricted isometry property). A matrix A sat-
isfies the restricted isometry property (RIP) with respect to
parameters δ, k if the following is true for all k sparse vectors
x ∈ Rn:

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (3)

If the real signal z is approximately k sparse and ΦΨ
satisfies RIP(

√
2− 1, 2k) (see Definition 1), then the solution

found by (2) using g(z) = ‖z‖1 would satisfy

‖z∗ − z‖2 ≤ c0
‖z − zk‖1√

k
+ c1ε (4)

where zk is a truncated version of z with only the largest k
coefficients.

1In the case when a nonconvex g is used, the performance would also
depend on the optimization algorithm for solving (2).

B. Related Work on Nonlinear Measurements

There has been a line of research by Jacques et al. that
specifically addresses the quantization effect of analog-digital
converters (ADC) [4]. In their formulation, the measurements
are quantized into discrete numbers (binary in the extreme
case). That is, they assume y′ = f(Φx) where f is a
quantization function (f(x) = sign(x) in the extreme case).
Their work models the quantization effect of ADCs, and
involves a solver specialized to the discrete nature of their
problem. However, this discrete model does not apply to the
continuous distortion that we consider in this paper.

Boufounos proposes a model to handle order-preserving
distortions [5]. This line of work is similar to Jacques’
approach in spirit, in that it makes weak assumptions about
the measurements. Their reconstruction only relies on order
statistics and does not try to recover information about signal
magnitude.

On a different front, Blumensath focuses on the problem
of having y′ = Υ(x), where Υ(·) is a general sensing
function instead of a sensing matrix, and shows that x can be
recovered if Υ satisfies some RIP-like properties. Specifically,
it is assumed that Υ(x) is a function that has a proper
linear approximation. If the Jacobian of Υ(x) satisfies the
restricted isometry property, then the reconstruction error will
be bounded [6]. However, there is currently no easy way
to verify if a given Υ satisfies such assumption. As we
will describe later, a more specific type of nonlinear sensing
process can easily be shown to preserve information necessary
for signal recovery.

Finally, Thrampoulidis and Abbasi recently developed a pre-
cise performance characterization of LASSO with nonlinear
measurements, and showed that LASSO is a good estimator
under the presence of nonlinear distortion [7]. Specifically, the
authors treat y′ = f(Φx) as y′ = Φx + ε, and show that the
solution in (2) would still yield an estimation with bounded
error. However, this approach does not take the knowledge
of f into account. In this paper, we exploit known knowledge
about f (e.g., the Rapp function can model f ) to achieve lower
reconstruction error.

C. Distortion: Amplifier Characteristics

We focus on the power amplifier as an example of analog
device exhibiting nonlinearity in compressive measurements,
noting that it is one of the prominent bottlenecks in wireless
communication. In a RF transmitter operating in millimeter
frequency bands, its power amplifier is the main consumer
of power, and yet it normally only achieves a low efficiency,
which can be as low as 10 percent. This creates significant
problems both from its high power consumption and its
requisite cooling, as the dissipated power is transformed into
heat.

However, there is a tradeoff between the power efficiency of
an amplifier and the linearity of a power amplifier’s output [8].
If the requirement for power amplifier output linearity is
lowered, the amplifier can in fact operate at much higher effi-
ciency. See Figure 2 for an example of amplifier nonlinearity.



Fig. 2. Illustration of amplifier distortion and the predistortion technique.

For an amplifier to operate linearly, the input signal must fall
into the linear region. When there is a large dynamic range of
inputs, as is the case with compressive sensing2, amplifiers
with larger linear regions are needed. However, this larger
linear region comes at a cost of lower efficiency.

One of the techniques used in practice to mitigate this
problem is predistortion, as illustrated in Figure 2. The
principle idea of predistortion methods is to measure the
distortion function beforehand, and apply an inverse of that
distortion function prior to amplifiers so that the effect cancels
out [9]. While both predistortion and NLCS addresses the
same problem of nonlinear distortion, they do so in different
manners. Predistortion addresses the nonlinearity at the ampli-
fier during signal acquisition, while NLCS attempts to mitigate
the nonlinearity after signal acquisition. As such, NLCS can
be applied regardless of if predistortion is also applied, making
our method orthogonal and complementary to predistortion.

III. NONLINEAR COMPRESSIVE SENSING

We now detail nonlinear compressive sensing (NLCS). First,
we describe the signal acquisition process with nonlinear
distortion explicitly modeled in the formulation. We then
present the modified compressive sensing problem and suggest
an optimization algorithm for solving it. Finally, we present
an algorithm for estimating both the distortion function and
the original sparse signal simultaneously.

A. Signal Acquisition

In this paper, we assume that the sensed signal y′ can be
represented as distorted measurements

y′ = f(Φx) + ε (5)
= f(ΦΨz) + ε (6)

through some nonlinear distortion function f . We assume that
the nonlinearity f is of a single variate (i.e., the effect of f on
each number in the vector is independent, and is therefore the
same as applying a univariate f on all the inputs). However,
this could be extended to a multivariate nonlinearity functions.
As in standard compressive sensing, Φ is the sensing matrix,

2Compressive sensing measurements normally have a large dynamic range
because each measurement is a random sum of a large number of variables.

and we assume x = Ψz, for some sparsifying basis Ψ. We
further assume that f is differentiable.

There are many different models in the literature for power
amplifier distortion. We will use the Rapp model in our
experiments, as it is one of the most widely used models [10],
where f is defined as:

f(x) ≡ x

(1 + ( xα )2β))
1
2β

(7)

with parameters α and β controlling the shape of the function.
One common attribute of all the models is that the distortion
is some form of saturation, as illustrated in Figure 2 [11].
Note that while results in this paper are presented on the Rapp
model, we have observed similar results for other models as
well.

B. Signal Recovery

Given the distorted measurement y′, the signal can be
recovered as follows:

z∗ = arg min
z

g(z) subject to ‖y − f(ΦΨz)‖2 ≤ ‖ε‖2 (8)

Alternatively, one can use the following regularized form,
which is equivalent to (8) for some λ. This can be interpreted
as balancing the fitness Q(z) = ‖y − f(ΦΨz)‖22 and sparsity
constraint g(z) of z by tuning the regularization parameter λ:

z∗ = arg min
z

Q(z) + λg(z) (9)

Assuming that f is differentiable, we can find a solution
using accelerated proximal gradient descent (FISTA) [12].
We use a similar treatment to separate the smooth part
‖y− f(ΦΨz)‖22 and potentially non-smooth λg(z) in the cost
function of (9), and define the gradient step as:

zk = proxηλg(z
k−1 + η∂Q(z)) (10)

where η is the stepsize, and proxh(w) denotes the proximal
operator associated with the regularization function:

proxh(w) = arg min
v

1

2
‖v − w‖22 + h(v) (11)

When g is the `0 or `1 norm, the corresponding proximal
operator is the hard-threshold or soft-threshold function, re-
spectively.

The full algorithm with acceleration and restart is shown
in Algorithm 1. When the objective is locally convex, this
algorithm has quadratic convergence rate. That is,

F (zk)− F (z) ≤ c‖z0 − z‖22
(k + 1)2

(12)

for kth iterate zk, where F is the objective as defined
in Algorithm 1, and c is a constant related to stepsize η
and smoothness of Q(z). The algorithm terminates when
‖zk − zk+1‖ becomes sufficiently small3. Note that there are
other optimization techniques that one can adopt if efficiency
is a primary concern (e.g., [13], [14]).

3The threshold is usually selected so that every step makes meaningful
progress, which is application dependent.



Algorithm 1 Nonlinear Compressive Sensing (NLCS) via
Accelerated Proximal Gradient Descent
input y,Φ,Ψ, λ, f, g, η

Initialize z0 = 0, w0 = 0, t0 = 1
Define F (z) ≡ ‖y − f(ΦΨz)‖22 + λg(z).
repeat
J = ∂f(ΦΨwk−1)
zk := proxηλg(wk−1 + ηΨTΦTJ(y − f(ΦΨwk−1)))
zk := zk−1 if F (zk) > F (zk−1)
tk := (1 +

√
1 + (2tk−1)2)/2

wk := zk + tk−1−1
tk

(zk − zk−1)
until convergence

output zk

C. Distortion Estimation

In this section we assume that the distortion function f
is controlled by some parameter α ∈ Rβ , and that the
measurements are y′ = fα(ΦΨz). Note that even in the case
where the parameters of the distortion function are unknown,
it is still possible to estimate these parameters jointly with
the signal. In a fashion similar to the treatment of (9), the
parameters are treated as additional unknown variables, and
the joint recovery is done through the following optimization:

z∗, α∗ = arg min
z,α

‖y − fα(ΦΨz)‖22 + λg(z) (13)

To solve (13), we use block coordinate descent [14] that
alternates between z and α. The details are described in
Algorithm 2.

Algorithm 2 Nonlinear Compressive Sensing (NLCS-est) for
estimating unknown distortion parameters
input y,Φ,Ψ, λ, f, g, α, η1, η2

Initialize z0 = 0, w0 = 0, α0 = v0 = α, t0 = 1
Define F (z, α) ≡ ‖y − f(ΦΨz, α)‖22 + λg(z).
Define Hz(α) ≡ ‖y − f(ΦΨz, α)‖22.
repeat
J = ∂fαk−1(ΦΨwk−1)
zk := proxη1λg(w

k−1 + η1ΨTΦTJ(y −
fαk−1(ΦΨwk−1)))
zk := zk−1 if F (zk, αk−1) > F (zk−1, αk−1)
αk := vk−1 + η2∂Hzk(vk−1)
αk := αk−1 if F (zk, αk) > F (zk, αk−1)
tk := (1 +

√
1 + (2tk−1)2)/2

wk := zk + tk−1−1
tk

(zk − zk−1)

vk := αk + tk−1−1
tk

(αk − αk−1)
until convergence

output zk, αk

IV. ANALYSIS

In this section, we consider distortion functions that do
not alter the signal significantly. In most applications, the
distortion is in the form of saturation or compression, both

of which preserve relative distances rather well. We first
concretely define the properties of these distortion functions.

Definition 2 (limited distortion). A function f : Rm → Rm is
α-isometry if the following holds for any x, y ∈ Rm:

(1− α)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + α)‖x− y‖22
(14)

One of the key ideas of compressive sensing is that infor-
mation in the original signal can be preserved through a low
dimensional projection. We now show that this still holds when
the measurements are distorted by α-isometry functions.

Theorem 1. Let f be an α-isometry function with α < 1. Let
(ΦΨ) be a matrix that satisfies RIP with parameters δ, 2k. Let
z be a vector such that |z|0 ≤ k, and let y = f(ΦΨz) be the
compression of z. Let

z∗ = arg min
z
‖z‖0 subject to y = f(ΦΨz) (15)

be the reconstructed vector. Then, z∗ = z.

Proof. Since f(ΦΨz)−f(ΦΨz∗) = 0, by Definition 2 we can
conclude that ΦΨ(z− z∗) = 0. Let ẑ = z∗ − z, then we have
‖ẑ‖0 ≤ 2k (since ‖z‖0, ‖z∗‖0 ≤ k). Since ΦΨ satisfies RIP
with parameters δ, 2k and ‖ẑ‖0 ≤ 2k, it must be that ẑ = 0
in order to satisfy ΦΨ(ẑ) = 0.

While Theorem 1 guarantees that the signal can be recov-
ered with some reconstruction scheme, the objective is com-
binatorial and could be computationally expensive to solve.
To address this, we leverage one of the other key results in
standard compressive sensing, namely that minimizing the `1
norm can be a surrogate for minimizing the `0 norm, allowing
efficient convex programming algorithms to be used. The same
principle also applies in our nonlinear version.

Theorem 2. Let f be a α-isometry function with α < 1. Let
(ΦΨ) be a matrix that satisfies RIP with parameters δ, 2k. Let
y = f(ΦΨz) be the compression of z. Let

z∗ = arg min
z
‖z‖1 subject to y = f(ΦΨz) (16)

be the reconstructed vector. Then,

‖z∗ − z‖2 ≤ cδ,α
‖z − zk‖1√

k
(17)

where cδ,α is a constant, and zk is a truncated version of z
formed by keeping only the largest k coefficients, i.e.,

zk = arg min
v:‖v‖0≤k

‖z − v‖2 (18)

One caveat is that the constraint in (16) becomes non-convex
in nonlinear compressive sensing. Therefore, the NLCS solver
may not necessarily converge as well as in standard CS. While
the theoretical convergence guarantee is still under study, we
have observed promising reconstruction rates empirically.



Although the NLCS objective is not convex, it will still
converge to the global optimal if the distortion function is
element-wise monotonic. This is reflected in the NLCS loss
function shown in Figure 3(b) based on the Rapp distortion
model, which is convex in the neighborhood around 0 and has
global convergence. As such, the algorithm can still converge
efficiently as soon as it reaches the regions around the solution.

(a) CS loss function
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Fig. 3. The loss function of NLCS (right) becomes nonconvex due to the
nonlinear distortion function, as compared to the convex loss function of
standard CS (left), where each line is the loss function for a different signal
under the Rapp model with a different α value. Each line is drawn by moving
away from the ground truth z with respect to some random direction.

V. EMPIRICAL RESULTS

In this section, we present results validating the proposed
methodology. We first describe the data generation process and
experimental setup. Next, we present results from simulations,
in which we show the signal recovery quality of NLCS under
varying conditions. Following this, we present results from
applying NLCS to measurements obtained from a real world
power amplifier, and demonstrate the efficiency gains realized
by tolerating nonlinear distortions.

A. Data Generation and Experimental Setup

Before presenting results, we first detail the data generation
process used for both the simulation and real power amplifier
results. All signals are generated randomly as follows. First,
a random dictionary Ψ is generated, where each column in
Ψ is made up of random draws from a Gaussian distribution
with mean 0 and variance 1. Next, a sparse vector z of length
equal to the number of columns in Ψ is formed by randomly
choosing k indices, drawing a value for each of the k indices
from a Gaussian distribution with mean 0 and variance 1, and
setting the remaining entries of z to 0. Finally, the following
two quantities are computed: X = Ψz and Y = ΦΨz,
where matrix Φ is created by randomly drawing each entry
from a Gaussian distribution with mean 0 and variance 1. X
and Y are then passed through the noise model (simulation
results) or power amplifier (real PA results) to produce the
distorted signal f(X) and f(Y ) from which the original signal
is recovered.

In recovering the signal using the formulation shown in
equation 9, the value of λ is found via a screening process.
While both α and β can be recovered via NCLS, we focus on
the effects of changing α for presentation simplicity.

For simulation results, reconstruction error is measured in
terms of the `2 norm between the reconstructed signal and
the known ground truth signal. For real PA results, error is

measured in terms of SNR, where SNR is calculated as the
ratio of the power of the reconstructed signal to the power
of the ground-truth original signal, which is known as it is
generated. Finally, when comparing NLCS against CS, the
CS method treats the nonlinearity as noise, and these “noisy”
measurements are used in signal recovery.

B. Simulations

In this section, we consider several different distortion
functions and show the reconstruction quality with and without
nonlinearity in the compressive sensing formulation.

y

y’

Fig. 4. Distortion function with different parameters. Each curve represents
distortion based on the Rapp model with a different parameter α.

We now examine the reconstruction quality under both
traditional CS and NLCS. Specifically, we compare the two
methods for distortion functions under different settings of
α between 10 and 40, with the resulting distortion functions
shown in Figure 4. The simulated results are shown in Fig-
ure 5. We find that the reconstruction quality is significantly
better when nonlinearity is modeled directly, as in NLCS.

Additionally, we present results with an incorrect initial
estimation provided to NLCS (which we denote by NLCS-
est), where NLCS-est is initiated with α̂ = α + ε where ε is
drawn from a zero-mean unit-norm Gaussian distribution. We
find that even in this case, in which the initial estimation is
inaccurate, the signal can again be more successfully recovered
via NLCS-est than it can be via traditional CS. However,
we find that for NLCS-est, the variance of the reconstruction
error increases as the distortion of the signal increases. This
is due to the fact that the added distortion compounds the
deleterious effect of inaccurately setting α that is otherwise
largely insignificant at smaller levels of distortion.

The recovery quality over different compression rates is
shown in Figure 6 for CS, NLCS, and NLCS-est. For these
results, we set the distortion parameter α to 20. Under this
setting, the initial distortion parameter α for NLCS-est is set
to be 10, which deviates from the real curve as shown in
Figure 4. Despite the inaccurate initial setting, NLCS-est is
still able to deliver reconstruction results comparable to NLCS
with a known distortion parameter α, both of which again
largely outperform traditional CS.

We find that these gains hold even as the initial estimate
diverges further from the true value. This is shown in Figure 7,
in which we set the true distortion parameter α at 20, yet use
varying initial estimates for NLCS-est. Note that NLCS-est
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Fig. 5. Reconstruction error in `2 norm of NLCS in comparison to standard
compressive sensing. In this experiment, NLCS-est is initiated with α̂ = α+ε
where ε is drawn from a zero-mean unit-norm Gaussian distribution.

Fig. 6. Reconstruction error in `2 norm at different compression rates. When
the parameter of the distortion function is unknown, nonlinear CS can be used
to estimate the distortion parameter jointly with the signal at the expense of
slightly more measurement samples. (In this case, NLCS-est requires 10%
measurements to achieve near-exact recovery, while NLCS only requires 8%).

is able to overcome both overestimation and underestimation
of the distortion nonlinearity. However, we find that the
variance of the reconstruction error increases as the error in
the estimated value of α increases. While this shows that the
accuracy of the estimation does in fact impact performance, we
note that even with an inaccurate estimate, the reconstruction
error and its variance is still significantly lower than that of
the CS method
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Fig. 7. NLCS-est can estimate the distortion parameter α jointly with the
original signal. It reliably reconstructs the original signal even when the initial
estimation of the distortion parameter α is inaccurate, where reconstruction
error is in terms of `2 error.

C. Real PA Measurements

We additionally present results on real power amplifier (PA)
measurements. For these experiments, we use the MGA-43003

PA for 1.805− 1.88 GHz made by Avago Technologies [15].
This device is designed for small cell wireless communication
in the 1.805 − 1.88 GHz band. The tradeoff between power
efficiency and linearity for this device is shown in Figure 9.

We operate the device at varying efficiency levels in order
to test the signal recovery quality using CS and NLCS. At
low efficiency (i.e., when the amplifiers is operating linearly),
we provide input within the linear region of the device
specification. In order to achieve higher efficiency, we increase
the range of input samples so that some fall outside of the
linear region in which the output would be distorted. We then
try to reconstruct the original signal from the possibly distorted
compressive measurements in order to show that the original
signals can be recovered even when amplifiers do not respond
linearly with respect to the large input range.
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Fig. 8. Signal distortion measured at different PA power efficiency levels.
The Rapp model is used to approximate the distortion nonlinearity. Note that
at higher power efficiency, the thermal noise is also increased.

Figure 8 shows the distortion observed at different efficiency
levels and a corresponding Rapp model. In the context of
power amplifiers, power efficiency (or power-added efficiency,
to be precise) is defined by:

PAE = ([POUT ]− [PIN ])/[PDC ] (19)

As described in Section II-C, the outputs would saturate
when the PA becomes nonlinear. Note that in addition to
nonlinearity, the thermal noise is also higher when the PA
is operated at higher efficiency, which adds to the difficulty
of signal reconstruction. We use NLCS-est to estimate the
α parameter in the Rapp model. Based on the observations
from our simulations, we set the initial value of the distortion
parameter at 40, which roughly corresponds to a linear f .

The reconstruction quality from the PA measurements is
compared in Figure 10 in terms of SNR. NLCS-est achieves
significant better SNR than standard CS. Note that some of
the SNR degradation is due to higher thermal noise at high
efficiency levels, which impacts both CS and NLCS. We note
that the SNR in an uncompressed setting resembles that of the
CS results.

VI. CONCLUSION

In this paper, we present a nonlinear compressive sensing
formulation and associated optimization algorithms. We con-
sider the scenario where compressive sensing measurements
are distorted due to analog characteristics of sensing devices.
We note that these distortion functions are near-isometry, and
prove that information can be well-preserved despite these
distortions. We then present optimization algorithms to solve



Fig. 9. Nonlinearity and power efficiency of the MGA-43003 power am-
plifier [15]. ACLR1 on the left y-axis represents the level of nonlinearity.
Power-added efficiency (PAE) on the right y-axis represents power efficiency.
Note that nonlinearity increases with higher power efficiency. When output
power is below 26 dBm, the systems behaves linearly.
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Fig. 10. Reconstruction error in `2 norm of NLCS in comparison to
standard compressive sensing using measurements from a real power amplifier.
Operating the amplifier at higher efficiency levels causes distortion. As a
reference, the first sample point around 9% efficiency is at the edge of the
linear response region with output power around 23 dBm (see Figure 9).

the NLCS problem, which can estimate the distortion function
while performing signal recovery.

We validate the proposed methodology on both simulated
and real world data. We demonstrate that modeling nonlin-
earity directly enables us to lower the linearity requirements
for power amplifiers, which results in better power efficiency.
Beyond the gains discussed in this paper, we believe the
same principle can be applied to other devices with similar
properties, as shown in the simulated results.
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