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ABSTRACT

Recent approaches in generative adversarial networks (GANs)
can automatically synthesize realistic images from descrip-
tive text. Despite the overall fair quality, the generated images
often expose visible flaws that lack structural definition for
an object of interest. In this paper, we aim to extend state of
the art for GAN-based text-to-image synthesis by improving
perceptual quality of generated images. Differentiated from
previous work, our synthetic image generator optimizes on
perceptual loss functions that measure pixel, feature acti-
vation, and texture differences against a natural image. We
present visually more compelling synthetic images of birds
and flowers generated from text descriptions in comparison
to some of the most prominent existing work.

Index Terms— Generative adversarial nets, conditional
generative adversarial nets, text-to-image synthesis

1. INTRODUCTION

The recently introduced generative adversarial net (GAN) [1]
is designed to benefit from the competition between a pair of
simultaneously trained learning models with opposite goals.
In the training of a generative model, GAN employs a dis-
criminative model to provide a feedback (i.e., the discrim-
inator’s prediction output) crucial in computing the genera-
tor’s loss function. Desirably, when the training reaches to a
steady-state equilibrium where the discriminator confusion is
at maximum on synthetic data from the generator, one can
conclude the overall GAN objective accomplished.

In this paper, we aim to extend the GAN framework
for automatic text-to-image synthesis. We are interested in
generating a perceptually high-quality image that matches a
descriptive text input. In particular, we address two impor-
tant problems related to cross-modal translation and realistic
image production. Good cross-modal translation results in a
generated image closely matching the given text description
whereas a realistic image can hardly be distinguished from
natural images.

To ensure good cross-modal translation, we adopt a con-
textual loss term in the generator following the conditional
GAN framework [2]. To generate realistic images, we in ad-
dition introduce perceptual loss terms for the generator, corre-
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Fig. 1. Four synthetic bird images generated for the given
text, displaying different levels of contextual and perceptual
relevance. The upper right image is most desirable, as it has
higher relevance on both accounts.

sponding to pixel, feature activation, and texture reconstruc-
tion losses. Thus our approach is to regularize the original
minimax optimization for GAN with both contextual and per-
ceptual loss terms.

We illustrate the effect of contextual and perceptual losses
in Figure 1. Here, the task is to generate an image for text,
“There is a bright blue bird.” The two axes in the figure indi-
cate the degree of contextual and perceptual relevances. The
red birds on the left are contextual mismatches because the
input text mentions only ‘blue’ bird. Hinted by higher per-
ceptual relevance, the bird images on the top have more nat-
ural and better overall perceptual quality than the bottom. We
are interested in synthesizing images in the upper right corner
which have higher relevance in both context and perception.

The use of GAN to generate realistic images has been at-
tempted by others. Radford et al. [3] propose deep convo-
lutional generative adversarial net (DCGAN) that takes in a
random noise vector to generate synthetic images. We base
our approach on conditional GAN by Mirza & Osindero [2].
By conditioning both generator and discriminator networks
on the text input, conditional DCGAN can model the phe-
nomenon that many different natural images can be mapped
to the same text description.
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Several encouraging results follow in recent literature.
Gauthier [4] applies conditional GAN to generating MNIST
and facial images by using class labels as side information.
Denton et al. [5] introduce a Laplacian pyramid extension
to conditional GAN that can generate an image at different
resolutions. The notion of perceptual loss in image process-
ing is originated by Gatys et al. [6]. They have proposed to
use the Gram matrix of convolutional neural net activations
(i.e., high-level image feature vectors) between two images
to make artistic style transfer possible. In Johnson et al. [7],
the same perceptual loss function is used for image super-
resolution. Ledig et al. [8] propose super-resolution GAN
(SRGAN) that combines per-pixel, VGG, and adversarial
losses as the perceptual loss function. For VGG loss, they
take the ReLU activation layers of the pre-trained 19-layer
convolutional neural net by Oxford’s Visual Geometry Group
(VGG) [9].

Reed et al. [10] present an architecture based on con-
ditional DCGAN. They have trained bird and flower image
generators conditioned on text features computed from a
character-level recurrent neural net. Our work builds on Reed
et al. [10]. We tackle the same bimodal text-to-image task and
use the same datasets. However, our generator minimizes on
a perceptual loss term given by the Gram, per-pixel, or VGG
loss function alongside the contextual loss obtained from the
discriminator in conditional GAN. Ledig et al. have explored
the per-pixel, VGG, and adversarial loss functions on the
image super-resolution task, not text-to-image synthesis.

The rest of this paper is organized as follows. In Section 2,
we provide a background on generative adversarial net, cov-
ering its variants and mathematical formulations. In Section
3, we describe our conditional GAN approach incorporating
the perceptual loss in addition to the contextual loss. Section
4 presents an experimental evaluation of our approach trained
on the Caltech-UCSD Bird and Oxford-102 flower datasets.
Section 5 concludes the paper.

2. BACKGROUND

In this section, we review adversarial training techniques for a
generative model with an emphasis on its conditional variant,
which can be thought as a multimodal extension.

2.1. Generative adversarial nets (GAN)

Goodfellow et al. [1] introduce GAN as a new means to learn
probability distributions for data. GAN constitutes a genera-
tive model G and a discriminative model D that are simulta-
neously trained in the competition described by a two-player
minimax game:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] (1)

Here, the objective of G is to produce a data estimate x̂ to the
real x, using a latent input variable z (e.g., noise) with a prior

distribution pz. On the other hand, D(x) represents the prob-
ability that x originates from the real data distribution pdata.
Hence, D(G(z)) can be used to evaluate the quality of gener-
ated data x̂ = G(z) with respect to the real x. In practice, G
and D are typically implemented as neural nets. We can train
G and D by backpropagation.

2.2. Conditional generative adversarial nets (CGAN)

Mirza & Osindero [2] extend GAN by conditioning G and D
on side information. For CGAN, Eq. (1) is rewritten as

min
G

max
D

Ex∼pdata [logD(x|y)]+Ez∼pz [log(1−D(G(z|y)))] (2)

where the extra information y can be a class label or data from
another modality. For the latter case, since certain modali-
ties are often observed together (e.g., audio-video and image-
text), it is convenient to use CGAN. In neural net implementa-
tion, G takes in z|y as a joint representation that concatenates
z and y into a single input vector. Similarly, another joint rep-
resentation is used to train D.

2.3. Deep convolutional neural networks for GAN

Convolutional neural nets (CNNs) remain to be state-of-the-
art for visual recognition tasks. Radford et al. [3] present
convincing evidence in favor of deep CNN as a strong can-
didate architecture for adversarial learning. Their DCGAN
has shown to learn a hierarchy of representations from ob-
ject parts to scenes for image generation tasks. According to
Radford et al., the success of DCGAN is attributed to their
three architectural modifications to CNN. First, strided con-
volutions replace deterministic spatial pooling (e.g., max and
average pooling) to learn spatial down- and upsampling. Sec-
ondly, fully connected layers following convolutional layers
are removed to allow deeper representations. Lastly, batch
normalization, which conditions the input to have zero mean
and unit variance, induces to learn more useful features. In
this work, we adopt the DCGAN.torch framework1 to im-
plement convolutional generator and discriminator.

3. APPROACH

Our task is to generate realistic images that match text input.
At a high-level, we build a DCGAN as in Reed et al. [10]
and train it with contextual and perceptual loss terms by con-
ditioning on the input text. The main contribution of our ap-
proach is the inclusion of additional perceptual loss in train-
ing the generator. In particular, we compare the use of three
different perceptual loss functions based on pixel, activation,
and texture reconstruction. This section first presents our net-
work architecture and then describes the formulation of loss
functions used to train our DCGAN.

1https://github.com/soumith/dcgan.torch
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Fig. 2. Architecture of the generator and discriminator networks of our conditional GAN synthesis model.

3.1. Architecture

Figure 2 depicts our network architecture. We use input text
encoding ϕ(t) at both generator and discriminator networks.
In the generator network G, ϕ(t) (in reduced dimensionality)
is concatenated with a noise sample z and propagated through
stages of fractional-strided convolution processing. In the dis-
criminator network D, an input image is processed through
layers of strided convolution before concatenated to ϕ(t) (in
reduced dimensionality) for computing the final discrimina-
tor score. BothG andD are optimized by gradient descent on
their loss functions LG and LD, respectively.

We denote x for image data, t for text data, h = ϕ(t) for
text encoding, and z for noise input. A superscript (i) is used
to designate ith example. For our task, a training example is
an image-text pair. When applying m training examples (e.g.,
mini-batches) {(x(1),h(1)), ..., (x(m),h(m))} with noise in-
put {z(1), ..., z(m)} sampled from the prior pz , G generates
corresponding synthetic images {x̂(1), ..., x̂(m)}.

The discriminator loss function is given by

LD =− 1

m

∑
i

log(D(x(i)|h(i)))

− 1

2
[log(1−D(x(i)|ĥ(i))) + log(1−D(x̂(i)|h(i)))] (3)

where {x(i)|h(i)} corresponds a real image with its corre-
sponding right text, {x(i)|ĥ(i)} real image with arbitrary
text (randomly chosen from a different image category), and
{x̂(i)|h(i)} synthetic image with right text.

The generator loss function is a weighted sum of two parts

LG = `cont + λ`perc (4)

where `cont is contextual loss, `perc perceptual loss, and a
weight parameter λ.

3.2. Contextual loss

The contextual loss used in our implementation is:

`cont = −
1

m

∑
i

log(D(G(z(i)|h(i)))) (5)

where D(G(z|h)) is the probability that the generated image
and the conditioned text form a real contextual pair. For bet-
ter gradient behavior, we minimize − log(D(G(z|h))) rather
than minimizing the original log(1−D(G(z|h))) [1].

3.3. Perceptual loss

The contextual (adversarial) loss for the generator, as pre-
sented in Reed et al. [10], only considers the semantic relat-
edness between images and text descriptions without an ex-
plicit regularization term that penalizes large visual changes
between the synthetic and real images. In contrast, in addition
to the contextual loss term, we adopt a perceptual loss `perc as
a part of the loss in training the generator. We propose three
perceptual loss functions each aiming to enforce perceptual
similarity between the real and the generated images. That is,
by minimizing the perceptual loss the visual difference be-
tween the synthetic and the real images can be lowered. This
helps preserve the perceptual realism.
Pixel reconstruction loss. Making image adjustment to min-
imize pixel-wise losses is a simple approach to encourage vi-
sual similarity between images. The pixel reconstruction loss
calculates the mean squared error between a real image x(i)

and a corresponding synthetic image x̂(i) as

`perc Pix =
1

m

∑
i

‖x(i) − x̂(i)‖22 (6)

where ‖·‖2 is the `2 norm. The pixel reconstruction loss func-
tion encourages the pixels of the two images to match. Unlike
image super-resolution, text-to-image synthesis involves one-
to-many mapping between two different data kinds. Thus, we
find usage of high-level image features more appropriate.
Activation reconstruction loss. Instead of promoting pixel-
wise match between synthetic and real images, we can en-
courage high-level feature representations of the images to be
similar. Let Aj

x(i) or Aj
x̂(i) be the rectified linear unit (ReLU)

activation outputs of the jth convolutional layer within a clas-
sification network such as VGG when x(i) or x̂(i) is used as
an input, respectively. The feature reconstruction loss is de-



fined as

`perc VGG =
1

m

∑
i

‖Aj
x(i) −Aj

x̂(i)‖2F (7)

where ‖ · ‖F is the Frobenius norm. Here, we use a 19-layer
VGG network pretrained on the ImageNet dataset [11]. Acti-
vation outputs derived from high levels capture image content
and overall structures such as object shapes that may be use-
ful for classifying objects. By minimizing the differences in
the activation outputs, we encourage the generated image to
be classified similarly as the real image, thereby containing
objects of the same class as those in the real image.
Texture reconstruction loss. Although image content and
overall structures are well captured in the activation outputs,
style-related features such as texture and recurring patterns
may not. In order to capture whether the generated image
and the real image use combinations of nearly identical set
of supporting filters, we compare Gram matrices of the acti-
vation outputs, as previously being proposed for image super-
resolution [7] and style transfer [6, 12]:

`perc Gram =
1

m

∑
i

‖S(Aj
x(i))− S(Aj

x̂(i))‖2F (8)

where S(Aj
x(i)) and S(Aj

x̂(i)) are the Gram matrix of acti-
vation vectors resulting from filters at jth convolutional layer
for input x(i) and x̂(i), respectively. Note that since the Gram
matrix captures the correlations between these filters, it effec-
tively describes an object-level style of an image.

4. EXPERIMENTS

We evaluate the proposed models with perceptual losses on
Caltech-UCSD Bird (CUB) [13] and Oxford-102 flower [14]
datasets. CUB consists of 11,788 images of 200 bird species.
The Oxford-102 has 8,189 images of flowers from 102 differ-
ent types. A recent extension of these datasets has collected
10 visual description sentences for each image [15]. We fol-
low train/test split by Reed et al. [15]. That is, the images in
CUB are split into 150 training/validation and 50 test classes.
The flower dataset is split into 82 training/validation and 20
test categories. Thus during testing, an input text is from a
category not present in the training set.

All images are resized to 64×64×3. For word representa-
tion, we adopt the state-of-the-art pre-trained character-based
embedding on the visual descriptions, namely character-level
ConvNet with a recurrent neural network (char-CNN-RNN),
which outputs text embedding vectors of dimensionality
1,024. As shown in Fig. 2, both the generator and discrimi-
nator are deep convolutional neural networks. The text em-
bedding is projected to a 128-dimensional vector by linear
transformation. In the generator, the input is formed by con-
catenating this text embedding vector with a 100-dimensional

noise sampled from unit normal distribution. In the discrimi-
nator, the projected text-embedding vector is depth concate-
nated with the final convolutional feature map.

All models are trained with mini-batch stochastic gradient
descent with a mini-batch size of 64. We adopt the ADAM op-
timizer [16] with momentum 0.5 and learning rate 0.0002 as
used in Radford et al. [3]. We use for Eq. (4) the hyperparam-
eter λ = 10−6 to balance contextual and perceptual losses.

In the experiments, we evaluate our models based on hu-
man and machine judgments. For human judgment, we qual-
itatively evaluate the generated synthetic images given query
text descriptions by visual inspection. For machine judgment,
we input the generated image to an object classifier to assess
quantitatively the realism of the synthetic images.

4.1. Qualitative evaluation

Fig. 3 shows qualitative examples comparing our results
with the results of baseline method (GAN-INT-CLS) by
Reed et al. [10] for the CUB dataset. The generated bird
images are conditioned on text from unseen test categories.
Our three methods are the baseline combined with pixel
(GAN-INT-CLS-Pixel), activation (GAN-INT-CLS-VGG),
and texture (GAN-INT-CLS-Gram) reconstruction losses. In
these results, it is clear that GAN-INT-CLS is aware of the
semantic relatedness between images and text. However, the
bird images by GAN-INT-CLS generally lack structural def-
inition. The baseline method with pixel reconstruction loss
(GAN-INT-CLS-Pixel) yields slightly better bird structures.
We find that GAN-INT-CLS-VGG and GAN-INT-CLS-Gram
yield the perceptually and contextually most compelling re-
sults. We speculate that the improvements stem from the fea-
ture maps that focus on the object-specific structures while
leaving the contextual loss focusing on semantic relatedness.

In Fig. 4, we present results on the Oxford-102 flower
dataset using the baseline and our methods. As shown, all
four methods have generated plausible looking flower images
according to the query text. The generated flowers look like
flowers from different classes. This may be due to one-to-
many problem where the same text can be used to describe
many different classes. In addition, the descriptions provided
by human may not have been descriptive enough to distin-
guish between different types of flowers.

4.2. Quantitative evaluation

For quantitative evaluation, we utilize GoogLeNet [17] to
evaluate how well the generated images are correctly clas-
sified as birds or flowers. We use the pretrained GoogLeNet
model from inception-v3.torch.2 For the evaluation,
we input three query texts: “the bright blue bird has a white
colored belly,” “this bird is yellowish orange with black
wings,” and “this vibrant red bird has a pointed black beak.”

2https://github.com/Moodstocks/inception-v3.torch



Ground-truth GAN-INT-CLS GAN-INT-CLS-Gram GAN-INT-CLS-Pixel GAN-INT-CLS-VGG 

this bird has a white breast 
and belly and a vibrant blue  
crown, nape and back,  
as well as blueish gray  
primaries and secondaries. 

a small bird which is black 
all over with a long tail and 
a very fat black bill. 

this small bird has grey 
wings, a white belly, and 
a small, pointy beak. 

Fig. 3. Generated bird images by conditioning on text from unseen test categories using the baseline GAN-INT-CLS [10] and
the baseline with three different perceptual loss functions: pixel (GAN-INT-CLS-Pixel), activation (GAN-INT-CLS-VGG), and
texture (GAN-INT-CLS-Gram) reconstruction losses.

For each text query, we generate 500 synthetic bird images
and input the total 1,500 such images to GoogLeNet to do
bird classification. Since there are many different types of
birds from 1,000 object classes of the GoogLeNet output,
we use a world list of birds3 to make a conglomerate bird
classifier, such that all types of birds are classified as a bird.

We perform similar tasks for the flower dataset and eval-
uate the performance of flower classification. We use query
texts, “this flower has white petals and a yellow stamen,” “the
center is yellow surrounded by wavy dark purple petals,” and
“this flower has lots of small round pink petals.” A compre-
hensive list of flowers is obtained from Lyons [18].

Table 1 presents the GoogLeNet bird and flower classifi-
cation results on images generated by GAN-INT-CLS, GAN-
INT-CLS-Pixel, GAN-INT-CLS-VGG, and GAN-INT-CLS-
Gram. We observe the trend that more images are correctly
classified as birds and flowers when perceptual loss functions
are used. The quantitative evaluation confirms the qualitative
improvements observed in Fig. 3 and Fig. 4, showing a combi-
nation of contextual and perceptual loss terms generates better
images for both human perception and machine classification.
We notice that for the flower case our results using GAN-INT-
CLS-Gram are significantly better than other methods. This
can be explained by observing that there are non-flower ob-
jects such as hen-of-the-woods and earthstar, which have sub-
tle differences in styles as compared to flowers that humans
can pick up. However, without incorporating a proper percep-

3http://ces.iisc.ernet.in/hpg/envis/sibleydoc63.html

Table 1. GoogLeNet bird and flower classification accuracies
Bird Flower

GAN-INT-CLS 0.76 0.66
GAN-INT-CLS-Pixel 0.83 0.66
GAN-INT-CLS-VGG 0.80 0.76

GAN-INT-CLS-Gram 0.85 0.89

tual loss in the generator, GAN will not be able to synthesize
flowers with distinctive features.

5. CONCLUSION

In this paper, we have described GAN-based text-to-image
synthesis methods that use both contextual and perceptual
losses. The contextual loss in existing GAN literature focuses
on semantic relatedness between text and image, whereas the
proposed perceptual loss focuses on the object-specific struc-
ture. Our results on CUB and Oxford-102 datasets suggest
that adopting perceptual loss functions is helpful for improv-
ing visual realism in text to image synthesis. In future work,
we hope to explore different conditional GAN frameworks
and investigate additional perceptual loss functions.
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Ground-truth GAN-INT-CLS GAN-INT-CLS-Gram GAN-INT-CLS-Pixel GAN-INT-CLS-VGG 

this flower is purple in 
color, with petals that are 
wavy and drooping. 

the petals of this flower 
are pink with a large 
stigma. 

this flower is yellow in 
color, with petals that are 
striped near the center. 

Fig. 4. Generated flower images by conditioning on text from unseen test categories using the baseline GAN-INT-CLS [10] and
the baseline with three different perceptual loss functions: pixel (GAN-INT-CLS-Pixel), activation (GAN-INT-CLS-VGG), and
texture (GAN-INT-CLS-Gram) reconstruction losses.
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