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ABSTRACT

In recent years, convolutional neural networks (CNNs) have
been successfully applied for automatic target recognition
(ATR) in synthetic aperture radar (SAR) data. However, it
is challenging to train a CNN with high classification accu-
racy when labeled data is limited. This is often the case with
SAR ATR in practice, because collecting large amounts of
labeled SAR data is both difficult and expensive. Using a
simulator to generate SAR images offers a possible solution.
Unfortunately, CNNs trained on simulated data may not be
directly transferable to real data. In this paper, we introduce a
method to refine simulated SAR data based on deep residual
networks. We learn a refinement function from simulated to
real SAR data through a residual learning framework, and use
the function to refine simulated images. Using the MSTAR
dataset, we demonstrate that a CNN-based SAR ATR system
trained on simulated data under residual network refinements
can yield much higher classification accuracy as compared
to a system trained on simulated images, and so can train-
ing on real data augmented with these simulated data under
refinements compared to training with real data alone.

Index Terms— Synthetic Aperture Radar (SAR), auto-
matic target recognition, residual networks (ResNet)

1. INTRODUCTION

Synthetic aperture radar (SAR) automatic target recognition
(ATR) systems aim to classify objects present in areas of in-
terest within SAR data. Compared with classical image classi-
fication in optical imagery, a SAR ATR system needs to han-
dle distinguishing characteristics of the SAR modality, such
as a high dynamic range and spatial frequency. Recently, con-
volutional neural networks (CNNs) have achieved state-of-
the-art performance in SAR ATR [1, 2, 3] while requiring
substantial amounts of labeled training data. Unfortunately,
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Fig. 1: Real (right) and simulated (left) SAR images of a vehicle
(BTR70) at 17◦ depression and 300◦ aspect angles

the process of collecting SAR images with ground truth la-
bels is usually expensive and time-consuming. In order to fill
in the data gap, developing SAR simulators aiming at generat-
ing realistic SAR data has been a focus of SAR ATR research.

Malmgren-Hansen et al.[4] propose pre-training a CNN-
based ATR system on unlabeled simulated images of arbitrary
vehicle types to improve network convergence. Odegaard and
Cochin [5] augment training data by combining real and sim-
ulated SAR images to improve ship classification. However,
training a system exclusively on simulated SAR data may lead
the network to learn features only present in the simulated im-
ages and fail to generalize to the real data environment.

One solution for closing the gap between simulated and
real SAR data is to improve the simulator. However, faith-
fully modeling the underlying physics of SAR is computa-
tionally expensive. This limits the amount of data that can be
generated for training purposes. High fidelity simulation also
requires accurate target models. This increases the cost of cre-
ating a large number of these models. Furthermore, increas-
ing the realism in simulated SAR images using human visual
inspection is quite challenging, because contrast sensitivity
in human visual system is poor when spatial correlation is
low and significantly degrades at high frequency [6]. Figure 1
shows a real SAR image of a BTR70 vehicle in the MSTAR
dataset on the right and the corresponding simulated image on
the left at 17◦ depression and 300◦ aspect angles. The visual
difference between the simulated and the real images is not
obvious. However, when only simulated images are used in
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training of a CNN classifier, SAR ATR performance on real
images is very poor due to the gap between simulated and real
image distributions (see Section 5.3).

In this paper, we introduce a method for refining simu-
lated SAR images so that the refined images can be used
in the training of a classifier to improve SAR ATR system.
Specifically, we develop a deep residual learning framework
[7] that takes in a simulated image provided by a SAR simula-
tor based on a point scatterer model and outputs a refined im-
age that estimates the real image distribution. We investigate
the use of `1- and `2-norm losses. We present experiments
on MSTAR dataset [8] to show that models trained with the
refined images can perform better than the model trained on
simulated images. In addition, we demonstrate that the refined
images can be combined with real images to further improve
classification performance when the labeled data is limited.

The rest of this paper is organized as follows. In Section 2,
we provide background on SAR statistics and residual learn-
ing. In Section 3, we describe SAR simulator model used in
our experiment. Section 4 details our model to refine simu-
lated SAR images. Section 5 provides experimental evalua-
tion of our model trained on the MSTAR dataset, and Section
6 concludes the paper.

2. BACKGROUND

2.1. Synthetic aperture radar (SAR)

Synthetic aperture radar (SAR) is an important modality in
the remote sensing community due to its ability to form high
resolution images in all-weather conditions. According to the
literature [9, 10], we can assume that the statistical model
for the signal received by the SAR sensor corresponding to
a pixel in the SAR image has a zero-mean circularly com-
plex Gaussian distribution. Thus, the magnitude x follows a
Rayleigh distribution [11]:

p(x) = 2λx exp(−λx2), x ≥ 0 (1)

where λ is the scale parameter.

2.2. Deep residual networks (ResNets) for SAR

Given training pairs of real and simulated SAR images, our
refiner is aimed to learn a mapping R from a simulated image
z to an image x̂ approximating the corresponding real image
x such that

x̂ = R(z), z ∼ pz (2)

where pz is the prior distribution for simulated images, which
reflects the Rayleigh distribution of real images.

Residual networks (ResNet) have been shown to be an ef-
fective model for learning image-to-image transformations. A
residual block, introduced by He et al. [7], consists of a resid-
ual function F and an identity skip-connection. Traditionally,
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Fig. 2: Our overall architecture of refining simulated SAR images

the residual function F contains convolution and rectified lin-
ear unit (ReLU) layers. A residual block can be expressed as

y′ = y + F(y) (3)

where y and y′ are the input and output of the block, respec-
tively. A deep residual network contains many stacks of resid-
ual blocks and can be written as

yj = yj−1 + Fj(yj−1) (4)

where yj−1 is the input to the jth residual block and Fj con-
tains the weight layers.

Similar to our task, super-resolution requires generating
improved images conditioned on noisy or incomplete data.
Ledig et al. [12] present convincing evidence in favor of deep
ResNet as a strong candidate architecture to learn mapping
between low-resolution and high-resolution images. Accord-
ing to Ledig et al., the use of deep residual networks can
achieve state-of-the-art peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) index on standard image
super-resolution benchmark. Johnson et al.[13] learn an im-
age transformation network based on a deep ResNets with
perceptual loss functions for image super-resolution and style
transfer. In this work, we adopt the deep ResNet architecture
to learn simulated-to-real image transformation.

3. SAR SIMULATION

Our SAR simulator for generating synthetic SAR images is
based on a point-scattering model [14]. The far-field radar re-
turn for an ideal point scatterer at location vector w is given
by the equation:

s(f) = γe
4πif
c r·w (5)

where f is the RF frequency, r is the unit vector pointing to-
wards the radar, and γ is a complex radar cross section value
determining the strength of the return and a relative phase.
The full radar range profile can be generated by sweeping f
across the radars bandwidth followed by an inverse Fourier
transform. In practice, this is done in the time domain directly
with interpolation for performance reasons.

Our point-scattering model works by loading in a three-
dimensional target model, then coating it with a dense grid of
point scatterers. For each pulse, the software then computes
the return from each point scatterer and integrates the returns
up to form the full target return. Once the range profiles are
computed, they are fed into a backprojection algorithm that
forms a two-dimensional SAR image.
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Fig. 3: Deep residual architecture of the refiner network

4. SIMULATED SAR IMAGE REFINEMENT VIA
DEEP RESIDUAL LEARNING

Figure 2 depicts our overall refinement network architecture.
We denote simulated input image z and its real counterpart
x. For a given class of objects (e.g., a vehicle type), a simu-
lated image z is obtained by the SAR simulator described in
Section 3. This simulated image is paired with a real train-
ing image in the same class. A training example is such a
simulated-real SAR image pair. A refined image x̂ is gener-
ated via x̂ ← R(z). An ith simulated or real image is des-
ignated as z(i) or x(i), respectively. When applying n train-
ing examples {(z(1),x(1)), ..., (z(n),x(n))}, R outputs corre-
sponding refined images {x̂(1), ..., x̂(n)}.

Figure 3 provides architectural details of the refiner R.
The network aims to refine input simulated images to improve
real SAR ATR accuracy in the sense that the SAR ATR CNN
trained on these simulated images under refinements, or real
images augmented with these simulated images, can achieve
improved accuracy. To achieve this purpose, we adopt a deep
residual network that augments the features of target objects
by introducing more low-level details through residual learn-
ing.

An input simulated image is convolved with 3×3 filters
producing 64 feature maps. The output is processed through
four ResNet blocks each consisting of two convolutional lay-
ers containing 64 feature maps. The output of the last ResNet
block convolved with 1×1 convolutional layer yields the re-
fined image. The refiner network is optimized by gradient de-
scent on a loss function Lr described below.

Algorithm 1 Mini-batch training of refiner network R

1: input: Sets of real SAR images x(i) ∈ X and simulated images z(i) ∈
Z , batch size n, number of refiner step Kr , and Adam hyperparameters
αa, β1, β2.

2: output: Refiner model R(z; θr)
3: for k = 1, ...,Kr
4: Sample n mini-batch pairs of simulated and real SAR images

{(z(1),x(1)), ..., (z(n),x(n))}.
5: Update the refiner by taking gradient steps on mini-batch loss

in Eq. (6):

θr ← Adam

(
∇θr

1

n

n∑
i=1

L
(i)
r , θr, αa, β1, β2

)
6: until for

The loss function computes the pixel-wise error between
a real image and a corresponding refined image as

L(i)
r = ‖Ψ(x(i))−Ψ(R(z(i)))‖p (6)

where ‖ · ‖p is the `1- or `2-norm and Ψ(·) is a feature trans-
formation function. We use the transformation function as
Ψ(x) = log((x−0.5)+ε) where ε is a small positive number.
Such function remedies high spatial frequencies in SAR im-
ages by penalizing pixel differences in the area of the target
more heavily than the background or the radar shadow. Simi-
lar to image super-resolution [12, 13], SAR image refinement
involves one-to-one mapping between simulated and real im-
ages. Minimizing the pixel-wise error encourages visual simi-
larity between images. For mini-batch training, loss terms for
each samples in a mini-batch are combined and normalized
for a single gradient update. We present training algorithm
for our model in Algorithm 1.

5. EXPERIMENTS

5.1. Dataset

We evaluate the proposed SAR image refinement model on
Moving and Stationary Target Acquisition and Recognition
Radar (MSTAR) dataset 1 using simulated SAR images as de-
scribed in Section 3. The MSTAR is a standard dataset used in
the SAR ATR community. The dataset consists of 128×128
SAR imagery of 10 vehicle types. The training set consists
of 3671 images collected at 17◦ depression angle and test set
contains 3203 images at 15◦ depression angle. The training
set is split into 80% training and 20% validation.

5.2. Experimentation Details

For SAR ATR network, we utilize a CNN-based SAR ATR
system with various hyperparameters shown in Table 1. This
architecture is adopted from the network used by Wilmanski
et al.[1]. We train the network using real, simulated, or refined

1https://www.sdms.afrl.af.mil/index.php?
collection=mstar
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Table 1: Network architecture used for SAR ATR

Layer Output size Comment
Input 48x48x1

Convolutional 48x48x9 ReLU
Maxpooling 24x24x9

Convolutional 24x24x18 ReLU
Maxpooling 12x12x18

Convolutional 12x12x36 ReLU
Maxpooling 6x6x36

Convolutional 6x6x60 ReLU
Flatten 2160

Fully Connected 60 ReLU
Dropout 60

Fully Connected 10 Softmax

Table 2: SAR ATR performance results

Train Test Accuracy (%)
Real Real 94.46

Simulated Simulated 81.70
Simulated Real 19.50
Refined Real 79.95

images collected at 17◦ depression angle. Then the trained
networks are tested on real data at 15◦ depression angle.

We preprocess by remapping the SAR images to [-0.5,
0.5] after histogram clipping. Then the images are cropped
into 48×48 size while keeping the target at the center. Our
models are trained with mini-batch stochastic optimization
with a mini-batch size of 64. We use the ADAM optimizer
[15] with the hyperparameters αa = 0.001, β1 = 0.9, and
β2 = 0.999. We use refiner steps Kr = 50, 000. In this
work, we adopt the ResNet-based framework from Shrivas-
tava et al. [16] to implement the refiner.

5.3. ATR Performance Comparison

We first validate the ATR model in Table 1 by training and
testing with real, simulated, or refined data at different depres-
sion angles. Notice in Table 2, the accuracies for the models
trained and tested with data obtained from the same manner
(real or simulated) are high. However, as we have motivated
earlier, when the model is trained with simulated data, it per-
forms poorly on real test data. Suppose now that we refine the
simulated images by our deep residual refiner network, train
the ATR model using the resulting refined images, and test
with the real data. As shown in Table 2, we observe a signifi-
cant 60.45% absolute percentage improvement when training
on the refined images compared to training on simulated im-
ages. We use `2-norm for refinement as it consistently yields
better performance than `1-norm. Note that all reported re-
sults are the averaged accuracies over 8 trials.

Next, we test the effectiveness of our proposed model
with limited real training data. To simplify the presentation,
we consider here only one scenario that uses 10% of real
data (i.e., 367 real images as opposed to 3671 real images) in

Table 3: SAR ATR performance results using 10% of real training
data

Train Test Accuracy (%)
Real Real 71.37

Simulated Real 19.50
Refined `1 Real 44.88
Refined `2 Real 55.05

Refined+Real Real 74.68

training the refiner. We evaluate using both `1- and `2-norm
losses. We then use the refined simulated images to train the
SAR ATR CNN. Table 3 presents a summary that compares
the ATR performance when only 10% of real training data is
used. When 10% of real training data is used and tested on
real test data, the classification accuracy is 71.37%. We refine
simulated training data using our refiner network trained on
10% of real training images. Training with resulting refined
images achieves 25.38% (note 44.88 vs. 19.50) improvement
for `1-norm and 33.55% (note 55.05 vs. 19.50) for `2-norm
compared to training with simulated. But the achieved perfor-
mance 55.05% is still much lower compared to training only
with real data, which achieves 71.37%.

When the 10% of real data is augmented with 3671 refined
simulated images (generated by the refiner trained with 10%
of real data), we observe a 3.31% (note 74.68 vs. 71.37) abso-
lute percentage improvement. This result suggests that simu-
lated images refined by our deep residual refiner are of suffi-
ciently high quality that they can help mitigate the overfitting
problem of the SAR ATR CNN when only a small number of
real images is available for its training.

6. CONCLUSION

In this paper, we improve the utility of simulated SAR im-
ages for training SAR ATR system. We learn a refiner func-
tion from simulated to real SAR images through deep residual
training and use the function to refine simulated SAR images.
Based on MSTAR dataset, we demonstrate that SAR ATR
system trained on refined images can yield 60.45% absolute
percentage improvement compared to the system trained on
simulated images. We also demonstrate that a combination of
refined and real images gives higher accuracy than using only
real images when real training data is limited. It is known in
the literature that generative adversarial nets (GANs) [17] can
be an effective way of generating synthetic images and image
refinements [12, 18]. As a future work, it is of interest to com-
pare between ResNet-based approach of this paper and GAN-
based approaches and their evaluations in larger dataset.
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