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Abstract—We apply machine learning techniques to predict
the cell quality for the aerial drones connecting with a standard
cellular network on the ground. Stationary and strong spatial
correlation of the aerial channels allow for exploiting predictive
techniques for optimal cell selection based on few available
neighboring observations. Yet, drastic cell quality changes due to
the side lobes of base-station antenna patterns require advanced
solutions for accurate prediction. In this paper, we propose a
conditional random field based framework to predict a drone’s
best (or top few) candidates for the serving cell. Our results,
assuming realistic antenna patterns as well as errors in the
location estimates, show a high prediction accuracy, thereby
illustrating the feasibility of exploiting learning approaches to
predict the aerial channel environment.

I. INTRODUCTION

Drones, a.k.a. unmanned aerial vehicles (UAVs), are under
dramatic growth in the last few years. Many new usages
require enhanced support for robust and high throughput
wireless communication, as well as relaxation of the restrictive
regulation as exemplified by FAA’s 2016 rule [1] mainly due to
safety concern. Towards future large-scale, high density drone
deployments, coexisting with manned airplanes (e.g., [2]),
multiple-layer redundancy with good infrastructure support is
needed. This is in addition to autonomous solutions such as
auto-piloting consisting of only on-board technologies.

To address these needs, renovation based on today’s cellular
networks is being considered as a candidate solution. Cellular
networks allow wide coverage, provide fast air and backhaul
links, and have dedicated spectrum and infrastructure. To
leverage these advantages, recently 3GPP initiated a study item
on ”Enhanced support for aerial vehicles” [3].

However, there are several challenges towards enabling and
optimizing drone support in cellular networks, mainly due to
the nature of their operation. These networks are primarily
optimized for serving ground user equipments (UEs), with the
base-station (BS) antennas tilted towards the ground direction.
Therefore, with high probability the drone in the air are served
by the side lobes of the BS’s antennas. Even though, due to less
blockage and diffraction in the air, the drone links enjoy good
signal-to-noise ratio (SNR), they see many more BS’s than
the ground UEs and observe rapidly fluctuating gain pattern
with nulls (see Figure 1). Recent study based on the tests
and simulations has shown that the drones experience drastic
interference and signal fluctuation in the air [12], [13], [10]. At

the same time, drones cause significant interference to ground
UEs in the uplink (UE to BS). These factors make interference
mitigation and handover robustness two of the key issues in
the 3GPP study (e.g., [4], [8], [9]).

Although complicated, the signal situations in the air are
more predictable in nature due to the dominant Line-of-sight
(LoS) channel, as well as less blockage and diffraction. Aerial
channel properties are expected to be more correlated to spatial
locations of observation points and their position relationship
to the base station (BS) antennas, etc. This predictability can
potentially be exploited in powerful ways to aid in system
optimization and planning of drone deployments.

In this paper, we focus on a simple application of exploiting
the predictability of the aerial environment. In particular we
use machine learning methods to predict a drone’s serving cell
based on the known signal observations in the nearby region.
Specifically, we adapt the conditional random field position
(CRF) for predicting a drone’s best serving cells at a given
location. CRF [11] is a classical inference model widely used
in computer vision [5] and natural language processing [6],
and has been considered for the wireless system study [7].
For the cell selection problem considered in this paper, we
construct a localized correlation region, consisting of a finite
grid of locations, and build a random field to describe the best
serving cells for each location in the grid. A parameterized
joint distribution is trained by the ‘ground truth’ - the sampled
locations. The performance of our approach is verified with the
simulations under practical BS antenna patterns with typical
3GPP deployment setup. With a modest number of sampled
locations, our CRF-based method can achieve 90% accuracy
in selecting the best cells. Compared with the other two
benchmark algorithms, KNN-CSA and CM, our CRF-based
method shows a 4.7% and 4.5% improvements in absolute
percentages, respectively (see Section IV). Moreover, we show
that our CRF-based method is robust against localization errors
resulting from limited accuracy in the Global Positioning
System (GPS) positioning.

The results of this paper are illustrative of the promise
of using the CRF model in predicting the aerial signal en-
vironment. That is, by processing and utilizing the known
observations (e.g. from data gathered on best cells by past
drone runs), a full picture of the aerial environment can be
built for system optimization such as planning, traffic control



Fig. 1. Drones on a cellular
network Fig. 2. BS antenna pattern

and so on. Compared with the constant scanning based on
reference signals, prediction may also speed up initial access
and lower power consumption by starting from top candidate
cells. Moreover, such design may provide more freedom in
introducing new method to address the excessive interference
problem for drones. For example, methods based on directional
antennas or beams are currently being considered [8], [9]. By
pointing the beam towards a wanted cell, the desired signal
is enhanced while those unwanted are suppressed. Without
careful design, a traditional method would select the best
cell based on signal measurement. This is impacted by the
directional antenna beam in place, thus creating a chicken-
egg problem. In contrast, our method would select the wanted
(best) cell with accuracy without being impacted by the
directional antenna pattern.

II. PROBLEM STATEMENT

In this section we formulate the problem of CRF to predict
best cell for association or handover based on the drone’s
location. As noted, compared to the channels on the ground,
aerial channels are more stationary due to less obstacles and
scattering. However, there are a few factors complicating
the predictive task: 1) Each BS’s antenna height, tilting and
antenna pattern may be different; 2) the signal propagation
is subject to the properties of nearby terrestrial objects such
as trees, hills, ground reflection, leading to shadowing effects.
These properties introduce complex spatial correlations be-
tween nearby positions, supporting a proposition of describing
their relationship with an appropriate joint distribution between
random variables associated with these positions. Since in
practice part of the air space can be sampled by specialized
drone runs or by past observations, we formulate a cell
quality prediction problem by exploiting such measurements
as follows: Given that a fraction of the air space has been
measured such that their best serving cells are known, we
infer the best serving cell for the rest of the space.

Since the space is continuous, we represent it as a 3D
grid, where the physical distance between the neighboring
nodes is d meters. Each grid node v is associated with a
random variable xv , denoting the optimal cell for that position.
We assume some nodes’ best serving cells and signal-to-
interference-plus-noise ratio (SINR) are known (see Figure
3), the problem then is to determine the true values of xv
for all the nodes. Towards this goal, we will introduce a joint
distribution trained to describe the correlations between the

random variables. The distribution needs to be adaptive and
efficient for various wireless environments, then cell prediction
is done by determining the marginal distribution. We will
elaborate this more in the next section.

III. A CRF-BASED FRAMEWORK AND ALGORITHM FOR
PREDICTING SERVING CELLS

A. Introduction of CRF

We use a graphical model G(V,E), where each node v ∈ V
is associated with a random variable (the label) xv ∈ X , X
being the possible labels. Each node is also associated with
a node potential and each edge an edge potential. The node
potential reflects the prior knowledge on the label assignment
of each node, while the edge potential captures the relationship
between nearby nodes, typically emphasizing the closer nodes.
One can use φ(xv) and ψ(xv, xv′) to denote the node potential
for v ∈ V and edge potential for (v, v′) ∈ E, respectively. Let
xV = {xv∈V } represent the label selections for all the nodes
in G. Table I gives a quick glossary of definitions. The joint
probability PV (xV ) is defined as the product of all the node
potentials and edge potentials in the following fashion:

PV (xV ) =
1

Z

∏
v∈V

φ(xv)
∏

(v,v′)∈E

ψ(xv, xv′) (1)

where Z is the normalization constant. Now we construct a

TABLE I
DEFINITIONS OF PARAMETERS

Name Description Name Description
G0 grid that covers the whole

area of interest
Gi grid that centers at i with

span of a× b× c meters
E0 set of edges in G0 V0 set of nodes in G0

Vi set of nodes in Gi Ei set of edges in Gi
xv cell selection of node v xV cell selections of all v ∈

V
S0 set of sample nodes in G0 Si set of sample nodes in Gi
x∗s optimal cell at sample s x∗v optimal cell at v
wkh parameter of node poten-

tial
mvv′ parameter of edge poten-

tial
K range where two nodes are

correlated
H number of levels of dis-

cretized SINR
PV (.) joint probability of cell se-

lections of V
Pv(.) marginal probability of

cell selection of v
T threshold on cell inference D set of training data
R number of training

datasets
µ∗s SINR from optimal cell at

s
N(v) set of neighbors of v X set of all possible cells

specialized CRF framework for our problem of predicting
cells. As described in Section II, a grid, G0, is set up to
cover the whole area of interest in the 3D space, with physical
distance between two neighboring nodes equal to d meters in
all the 3D space. For an arbitrary location in the space, its
cell prediction is that of its closest grid node’s, allowing our
design and analysis to be based only on the discrete grid. To
apply CRF as in (1), we consider a graph Gi(Vi, Ei) formed
by nodes and edges within a rectangular cuboid of dimension
a × b × c meters that centers at node i. Let X denote the
set of possible cell IDs, and xv , v ∈ Vi denote v’s serving
cell. There is a subset of nodes Si in Vi such that each node
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Fig. 3. (a) grid G0, (b) sub-grid Gi centered at node i.

s ∈ Si’s best serving cell, x∗s , and the corresponding SINR,
SINR∗s , are known. Figure 3 shows G0 and Gi whose sample
nodes are shown in yellow and rest of nodes are shown in
red. Assume further that the measured SINR’s in Si are within
range [SINRmin, SINRmax]. Divide this range into H equal
intervals and index each SINR with the corresponding interval,
call this SINR index and denote the SINR index at s as u∗s . We
measure the distance between the nodes in terms of physical
hops (p-hops), and it is defined as follows: for the node v
in the grid, rank the rest of the nodes based on their line-of-
sight distance to v. The rank of that node is defined as the
its distance to v in p-hops. Now define the node and edge
potential functions as follows:

φv(xv) = exp(

K∑
k=0

H∑
h=1

wkh

∑
{s∈S|d(s,v)=k}

1(u∗s = h, x∗s = xv)) (2)

ψvv′(xv, xv′) = exp(mvv′1(xv 6= xv′)) (3)
where 1(.) is the indicator function, and d(s, v) is the number
of p-hops between s and v on the graph. wkh is a measure of
correlation on the cell selection between a node and the nodes
k p-hops away with SINR index h, allowing emphases based
on both distance and SINR. K is the largest range where two
nodes are correlated. mvv′ measures the degree of penalty if
we allocate different cells to the neighboring nodes v and v′.
The smaller mvv′ is, the higher consistency one requires on
cell selection between neighboring nodes. Substituting (2) and
(3) into (1), the joint probability equals:

PVi(xVi) =
1

Z

∏
v∈Vi

exp(

K∑
k=0

H∑
h=1

wkh1kh)
∏

(v,v′)∈Ei

exp(mvv′1vv′) (4)

where 1kh =
∑
{s∈Si|d(s,v)=k} 1(x

∗
s = xv, u

∗
s = h) and

1vv′ = 1(xv 6= xv′).

B. CRF Inference

When the parameters θ = {wkh,mvv′} are determined,
node v’s serving cell, x∗v , is then predicted as the cell with
the largest marginal probability Pv(.). This could be done
by directly calculating the marginal distribution. However
this incurs high computational complexity as there are many
terms in the joint distribution PVi

(xVi
). We now propose to

approximate PVi
(xVi

) with another probability distribution
QVi(xVi) such that QVi(xVi) =

∏
v∈Vi

Qv(xv). Because of
Q’s special format, xv’s marginal distribution is approximated

‘independently’ from other nodes. Formally, the approximation
is based on the following optimization:

min
QVi

(xv)

∑
xVi

QVi
(xVi

) log(
QVi

(xVi
)

PVi(xVi)
) (5)

s.t. QVi(xVi) =
∏
v∈Vi

Qv(xv) (6)

∑
xv∈X

Qv(xv) = 1 ∀v ∈ Vi (7)

Note (5) is the KL-divergence between QVi(xVi) and
PVi

(xVi
).

We propose the following iterative update to determine Q:
Qt+1
v (xv) =

1

Z
exp(

K∑
k=0

H∑
h=1

wkh1kh +
∑

v′∈N(v)

∑
xv′∈X

Qtv′(xv′)mvv′1vv′) (8)

Z =
∑
xv∈X

exp(

K∑
k=0

H∑
h=1

wkh1kh +
∑

v′∈N(v)

∑
xv′∈X

Qtv′(xv′)mvv′1vv′)

is the normalization constant to ensure Qt+1 is a valid
probability distribution, and N(v) is v’s neighbors in Gi.
The algorithm is shown in Algorithm 1. Remark: Iteration

Algorithm 1: Iterative Algorithm for Q
1 Input: x∗s , µ∗s , s ∈ Si
2 Output: Qv(xv), v ∈ Vi
3 Initialize Qt=0

v (xv), v ∈ Vi
4 while converge criteria not satisfied do
5 for v ∈ Vi do
6 for xv ∈ X do
7 Calculate Qt+1

v (xv) based on equation (8)
8 end
9 end

10 t = t+ 1
11 end
12 Return Qtv(xv) for xv ∈ X, v ∈ Vi

Algorithm 2: Cell Selection Protocol (CRF-CSP)
1 Input: G0, S0, x∗s , u

∗
s , s ∈ S0

2 Offline:
3 for each node i ∈ V0\S0 do
4 Calculate Qi(xi), the marginal probability of cell selection at i by

running Algorithm 1 on Gi.
5 end
6 Online:
7 while SINR received from the current cell is lower than SINRTH do
8 Given the drones location, find the closest grid point i′
9 Predict the drone’s top T cells based on Qi′ (xi′ )

10 Try to connect in order.
11 If one is found successful, then stop trying.
12 Else, fall back to scanning method as in traditional design.
13 end

(8) is determined by solving the optimization based on (5)’s
Lagrangian and letting the partial derivative equal zero. The
details are in the appendix. Note that (5) is optimized relative
to a single variable Qv(xv) in each iteration. Hence (5) is
monotonically nonincreasing. We observe from our simulation
experiments that Q converges with good accuracy within 7
iterations and approximates P very well in practice.



C. A protocol for cell selection based on CRF

Given the CRF framework, we propose a cell selection
protocol (CRF-CSP in Algorithm 2) for a drone to determine
its serving cell. Note that the offline portion (Lines 3-5) can
be computed in a data center and updated dynamically as the
new information comes from additional drone runs. The cell
prediction result for each grid node in the air can be stored on
board of a drone’s memory, or transmitted from a BS when
needed.

D. CRF Learning

Now we discuss the training procedure to determine the
parameters for the CRF. Suppose a training set is given as
D = {Di1 , Di2 , ..., DiR}, 1 ≤ r ≤ R where the r-th training
data Dir = {x∗v∈Vir

, u∗v∈Vir
} contains the optimal cell ids

and SINRs for each node in Gir . Our objective is to find the
parameters θ = {wkh,mvv′}, 1 ≤ k ≤ K, 1 ≤ h ≤ H and
(v, v′) ∈ Eir that maximize the posterior distribution P (θ|D).
By Bayes’ rule, we have:

R∏
r=1

P (Dir |θ)P (θ) = P (D|θ)P (θ) ∝ P (θ|D) (9)

where P (θ) is the prior distribution. We take the prior distri-
butions of wkh and mvv′ as Gaussian with means µwkh

, µm

and standard deviations σwkh
, σm, respectively:

P (θ) =

K∏
k=1

H∏
h=1

N (wkh;µwkh
, σwkh

)
∏

(v,v′)∈E

N (mvv′ ;µm, σm)

From (9), we have 1
R logP (θ|D) = 1

R

∑R
r=1 logP (Dir |θ) +

1
R logP (θ)+C1, where C1 is a constant not related to θ. After
substituting the expressions for P (D|θ) and P (θ), we have:

logP (θ|D)

R
= −logZ(θ) + 1

R

R∑
r=1

( ∑
v∈Vir

K∑
k=0

H∑
h=1

wkh

∑
{s∈Sir |d(s,v)=k}

1(x∗s = x∗v, u
∗
s = h) +

∑
(v,v′)∈Eir

mvv′1(x
∗
v 6= x∗v′)

)
−

K∑
k=1

H∑
h=1

(wkh − µwkh)
2

2Rσ2
wkh

−
∑

(v,v′)∈E

(mvv′ − µm)2

2Rσ2
m

+ C2 (10)

where Z(θ) is the normalization constant for P (Dir |θ) and
C2 represents the terms not related to θ. To find wkh,mvv′

that maximize (10), the gradients can be derived as:
∂ 1

R logP (θ|D)

∂wkh
= ED(

∑
v∈V

∑
{s∈S|d(s,v)=k}

1kh)−

EP (
∑
v∈V

∑
{s∈S|d(s,v)=k}

1kh) +
µwkh

− wkh

Rσ2
wkh

(11)

∂ 1
R logP (θ|D)

∂mvv′
= ED(1vv′)−EP (1vv′)+

µm −mvv′

Rσ2
m

(12)

Here ED(.) is the empirical expectation over training set D
and EP (.) is the expectation over P (.|θ). The details are
omitted due to page limit; see [7] for a similar derivation.

We then apply gradient ascent to find a set of optimal
parameters.

TABLE II
SIMULATION SETTINGS

Cell layout 57-cell, UMa, ISD=500m
Frequency 2.1 GHz carrier
Drone height [50, 250] meter, uniform
BS TX Power = 46dBm, tilting=10 deg
Shadowing 5dB with correlation distance 50m
path loss free space
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Fig. 4. Prediction accuracy of the algorithms

IV. SIMULATION-BASED ANALYSIS

We use a 57-cell system model based on 3GPP LTE
cellular modeling assumptions to evaluate the design. The
basic parameters are summarized in Table II. To capture the
drone channels in the air, each BS is modeled with a realistic
antenna pattern shown in Figure 2. We investigate the situation
between 50-250 meters in the air, and the path-loss model
is assumed to be free-space. A lognormal shadowing of 5dB
with spatial correlation distance 50m is modeled. The physical
distance d between the neighboring grid nodes is 2 meters in
our graphical model, covering from 50m to 250m in the air.

As expected, one can show that the correlation between
neighboring nodes’ best cells gets higher as the distance gets
closer. Since the cell selection for drone is a new research
topic, it is hard to find the benchmark algorithm from the
literature, therefore we devise two benchmark algorithms to
compare with our design:

KNN-CSA: Given a node v, consider all the sample nodes
within K p-hops whose best serving cell is known. The majority
vote among the sample nodes is the prediction.

Cone Method (CM): Build a cone and with apex v and
a small apex angle α. Use the cone to scan the space in all
possible directions. For each sample point s inside the cone, if
its best serving cell m also falls inside the cone, with received
power level (RSRP) at s, Pm

s , we then can approximate node
v’s RSRP from cell m by considering the distance difference
between v and s to cell m, assuming the path loss formula is
known (e.g. free-space). Then v will choose the serving cell
with the highest RSRP. The intuition here is that the node s
between v and a ’good’ cell can serve as a reference point.

To train the CRF model, 100 random subgrids were selected,
assuming the best cell of each node within the subgrid is
known. Each subgrid has a span of a = b = c = 40m.
For prior distribution, we set µwkh

= µm = 0.1, and
σwkh

= σm = 1 for all k, h. As the size of training data
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gets larger, the prior distribution will have little effect on the
posterior distribution. We also fix K = 10 and H = 5 for
3. For inference, we randomly select 1000 locations and run
CRF-CSP to infer their best cells.

Figure 4 shows the prediction accuracies of CRF-CSP,
KNN-CSA and CM with different distances (in meters) be-
tween the neighboring sampling points. Here the parameters
for CM and KNN-CSA are selected for each sampling density
so that their prediction accuracies are highest. In addition
to just predicting one single best cell, we also consider
the probability of finding the best cell within the top two
predictions. We notice that the prediction accuracy decreases
for all the three algorithms as the sampling distance increases.
The prediction accuracy of CRF is 4.7% and 4.9% higher on
average than KNN-CSA and CM for the best inference result
and 2.7% and 2.6% higher on average than KNN-CSA and
CM for the top two best inference results.

Since CRF-CSP relies on the localization information to
search the closest grid point, next we investigate the effect
of GPS positioning error. In practice, the GPS localization
error is usually smaller than 7.8m [14]. Figure 5 shows the
changes on prediction accuracy with difference localization
errors when the sampling distances are 18m and 22m. In this
figure, the localization accuracy is interpreted in terms of the
maximum localization error. Given the ground truth position
of drone to be (x, y, z) and the maximum localization error
equals δ, the position reported by GPS is a uniform random
variable distributed in a ball centered at (x, y, z) with radius
δ. We can see that prediction accuracy decreases very slowly
with localization error. When the maximum localization error
is 8m, the CRF prediction accuracies are still above 85%.

V. CONCLUDING REMARKS

In this paper we introduce a novel CRF based method
for predicting a node’s best serving cell, allowing the CRF
framework to be used for wireless communications related
applications. Our initial results demonstrate high accuracy and
better performance compared to two simple heuristic methods.
This suggests that the correlation inherent in the stationary
aerial wireless environment can be exploited, but points to the
need to use carefully designed tools. Our analysis is based
on SINR without explicit modeling the interference; further
analyses are needed for more complex deployment scenarios,
and on integration with existing methods.

VI. APPENDIX

A. Derivation for the equation (8)
Proof. We solve this optimization problem by calculating its Lagrangian
multiplier. Denote φ̃v(xv) =

∑K
k=0

∑H
h=1 wkh1kh and ψ̃vv′ (xv , xv′ ) =

mvv′1vv′ . We have:

logPVi(xVi) = −logZ +
∑
v∈Vi

φ̃v(xv) +
∑

(v,v′)∈Ei

ψ̃vv′(xv, xv′)

(13)
Substitute the above expression into the objective function, we have:∑

xVi

QVi(xVi) log(
QVi(xVi)

PVi(xVi)
) =

∑
xVi

QVi(xVi)log(QVi(xVi))+∑
xVi

QVi(xVi)(logZ −
∑
v∈Vi

φ̃v(xv)−
∑

(v,v′)∈Ei

ψ̃vv′(xv, xv′))

(14)
Since QVi

(xVi
) =

∏
v∈Vi

Qv(xv), the Lagrangian L(xVi
, λv), equals:∑

v∈Vi

∑
xv

Qv(xv)log(Qv(xv))−
∑
v∈Vi

∑
xv

Qv(xv)φ̃v(xv)−
∑

(v,v′)∈Ei∑
xv

∑
xv′

Qv(xv)Qv′(xv′)ψ̃vv′(xv, xv′)+logZ+λv(1−
∑
xv

Qv(xv))

Take the derivative of L(xVi
, λv) w.r.t Qv(xv), we get:

∂L(xVi , λv)

∂Qv(xv)
= −φ̃v(xv)−

∑
v′∈N(v)

∑
xv′

Qv′(xv′)ψ̃vv′(xv, xv′)

+ logQv(xv) + 1− λv (15)

In (15), we have ∂ logZ
∂Qv(xv)

= 0 since logZ is not related to Qv(xv). By

making
∂L(xVi

,λv)

∂Qv(xv)
= 0 and

∂L(xVi
,λv)

∂λv
= 0, we have:

Qv(xv) ∝ exp(φ̃v(xv)+
∑

v′∈N(v)

∑
xv′

Qv′(xv′)ψ̃vv′(xv, xv′)) (16)

for all xv ∈ X and
∑
xv∈X Qv(xv) = 1. Substitute the expression of node

potential and edge potential to (17) and normalize the result, we get (8).
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