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Abstract—We present the Maestro memory-on-logic 3D-IC
architecture for coordinated parallel use of a plurality of systolic
arrays (SAs) in performing deep neural network (DNN) inference.
Maestro reduces under-utilization common for a single large SA
by allowing parallel use of many smaller SAs on DNN weight ma-
trices of varying shapes and sizes. In order to buffer immediate
results in memory blocks (MBs) and provide coordinated high-
bandwidth communication between SAs and MBs in transferring
weights and results Maestro employs three innovations. (1) An SA
on the logic die can access its corresponding MB on the memory
die in short distance using 3D-IC interconnects, (2) through an
efficient switch based on H-trees, an SA can access any MB with
low latency, and (3) the switch can combine partial results from
SAs in an elementwise fashion before writing back to a desti-
nation MB. We describe the Maestro architecture, including a
circuit and layout design, detail scheduling of the switch, analyze
system performance for real-time inference applications using
input with batch size equal to one, and showcase applications for
deep learning inference, with ShiftNet for computer vision and
recent Transformer models for natural language processing. For
the same total number of systolic cells, Maestro, with multiple
smaller SAs, leads to 16x and 12x latency improvements over
a single large SA on ShiftNet and Transformer, respectively.
Compared to a floating-point GPU implementation of ShiftNet
and Transform, a baseline Maestro system with 4,096 SAs (each
with 8x8 systolic cells) provides significant latency improvements
of 30x and 47x, respectively.

Index Terms—systolic arrays, memory-on-logic 3D-IC, com-
puter architecture, combining switch, deep neural network,
convolutional neural network, Transformer

I. INTRODUCTION

In recent years, the success of deep learning has spanned
many fields, including manufacturing, finance, and medicine.
Due to this success, a new focus has been placed on
application-specific deep learning processor arrays for efficient
DNN inference on cloud, edge, and end devices. It is known
that systolic arrays (SAs) can be effective for this purpose, as
demonstrated by systolic array matrix multiplier units in the
Google TPU [6].

Real-world DNN workloads consist of matrix multiplica-
tions with learned weight matrices of various shapes and sizes.
However, a single large SA is underutilized when processing
a smaller weight matrix, as it has more systolic cells than
weights in the matrix, meaning some cells will be turned off.
In this case, instead of a single large SA, a collection of
many smaller SAs could be used; these small SAs can work
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Fig. 1: Using memory-on-logic 3D-IC package technology,
Maestro connects memory blocks (MBs) to logic blocks (LBs)
each holding a systolic array (SA) through a switch.

independently to process small matrices with high utilization
and also work in a coordinated fashion to process large
matrices. Yet, using multiple smaller SAs leads to additional
communication requirements, as the system must operate on
intermediate or partial results computed by SAs. This requires
the SAs to have high-bandwidth and flexible parallel access
to multiple memory blocks (MBs).

To address this SA-MB communication requirement, we
present Maestro, a novel memory-on-logic 3D-IC architecture,
which can scale up along the horizontal plane with shortened
wires in connecting SAs to MBs by utilizing vertical 3D-
IC interconnects. In the post-Moore’s Law era, where higher
computing bandwidth can only be achieved by increasing chip
area rather than reducing device size, this horizontal scaling
ability is critically important.

Figure 1 provides an overview of the Maestro architecture,
which connects logic blocks (LBs), each containing an SA,
on a logic die to MBs, each being a memory bank, on
a memory die through a switch using Through-silicon vias
(TSVs). During read operations, the switch is configured to
transfer DNN weights, input data, or intermediate results from
MBs into LBs. During write operations, the partial results
computed by each LB can be aggregated in the switch using
combine blocks (Figure 9) before being stored in MBs. As we
will show later in the paper, this on-switch combining capabil-
ity greatly reduces MB access requirements. Additionally, in



Section IV-B, we show how the programmable nature of the
switch allows for great flexibility in the types of computation
(e.g., DNN layer types) that can be implemented. In Section V,
we compare using many small SAs in Maestro against a single
large SA for two real-time inference application scenarios
where the input batch size is 1.

The main contributions of this paper are:
• Formulating the LB-MB communication requirement in

using many SAs for heterogeneous workloads (Sec-
tion III).

• The Maestro memory-on-logic 3D-IC architecture to ad-
dress this LB-MB communication requirement based on
three innovations: switched memory-on-logic architecture
(Section III-A), using H-trees to implement the switch
(Section III-B), and on-switch elementwise combining
(Section III-D).

• Implementation of a logically 3D H-tree switch using a
regular 2D layout (Figure 6).

• A logic and layout design of a baseline Maestro system
for performance assessment (Section V-D) and energy
efficiency analysis (Section V-G).

• The “tile and pipe” computation paradigm (Figure 2) in
scheduling SAs for tiled matrix computations and the
associated scheduling algorithm (Section IV-A).

• Use examples for ShiftNet and Transformer models (Sec-
tion IV-B) and results in substantially reduced latency
(16× and 12×, respectively) when compared against a
single large SA (Section V).

II. BACKGROUND AND RELATED WORK

In this section, we first describe a tile and pipe computation
paradigm which Maestro aims to support. Then, we discuss
related work on 3D-IC architectures for DNNs. Finally, we
provide background on ShiftNet [17] for computer vision tasks
in Section II-C and the Transformer [16] for natural language
processing (NLP) tasks in Section II-D.

A. Title and Pipe Paradigm

We consider matrix multiplication, which represents the
bulk of DNN inference computation (see, e.g., TPU [6]).
To perform matrix multiplication on large weight and data
matrices using smaller fixed-size systolic arrays, the matrices
must be tiled as shown in Figure 2. Matrix multiplication
can then be performed in three steps. First, tiles of the
weight matrix (e.g., 1, 2, 3, and 4) are loaded into the SAs.
Then, tiles of the input/intermediate data matrix (e.g., a and
b) are piped into the SAs to perform matrix multiplication
with the preloaded weight tiles. Each SA generates partial
results which are added together in an elementwise fashion
(e.g., 1a + 2b) before the combined result is written to the MB.
Elementwise combining is a distinguishing feature of our tile
and pipe paradigm. This approach can be extended to support
matrices of any size, as denoted by the dots in the figure. In
Section IV-A, we describe how this tile and pipe paradigm is
used to schedule the computation across all layers of a DNN
on Maestro.
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Fig. 2: The “tile and pipe” computation paradigm including
an on-switch combining function.

B. 3D-IC Memory-on-Logic Architectures for DNN Inference

There are several prior projects which propose 3D-IC archi-
tectures for DNN inference. Like Maestro, these approaches
use a memory-on-logic architecture for high bandwidth com-
munication between one or more memory dies and the pro-
cessing elements (PEs), which correspond to systolic cells
in a systolic array, on a single logic die. Neurocube [7]
uses multiple DRAM dies which are partitioned into a two-
dimensional grid of memory vaults. Each memory vault can
communicate locally with an associated group of PEs on the
logic die which are arranged as an one-dimensional SA.

Tetris [4] uses the Neurocube architecture for DRAM
memory dies, but arranges the PEs on the logic die as
a two-dimensional grid for higher computational efficiency.
Additionally, it introduces logic on the memory die to allow for
summation between previous partial results stored in memory
and new partial results from the logic die. In Maestro, we use a
combine block (Figure 9) to sum partial results across multiple
SAs before writing to memory. Unlike Tetris, which restricts
the summation between a local pair of memory and logic,
Maestro can perform summation across all SAs on the logic
die, which is facilitated by on-switch elementwise combining
(Section III-D), before writing the result to any MB.

C. ShiftNet for Computer Vision

ShiftNet [17] is a highly efficient Convolutional Neural
Network (CNN), which is used in this paper as an evaluation
case for Maestro. Figure 3a shows a single convolution layer
trained with shift convolution. At the beginning of the layer,
each channel in the data matrix is shifted a small amount
based on a fixed offset. Matrix multiplication is then performed
between the shifted data matrix and a 1×1 convolutional filter
matrix. After convolution, batch normalization, and ReLU
activation are applied. In Section V, we use ShiftNet to
evaluate the performance gain of Maestro.

Due to the relatively large input size of samples in Im-
ageNet [3] (3×224×224), the first convolution layer repre-
sents a significant portion (10-15%) of the total multiplier-
accumulator (MAC) operations in a CNN such as ShiftNet.
However, this layer is hard to implement efficiently on a single
large SA, as there are only 3 input channels, meaning that most
of the columns in an SA will be unoccupied. Recently, Xilinx
proposed the use of two SAs for CNN inference to solve this
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Fig. 3: ShiftNet convolution layers (a) and Transformer en-
coder layers (b) are evaluated in this work.

problem, with one SA specially designed for the first layer
and the other SA used for the remaining layers [18]. Instead
of using a specialized SA to handle this type of CNN layer,
Maestro uses a collection of smaller SAs of the same size that
can efficiently handle all layers in the CNN, while also being
able to support other DNNs such as the Transformer discussed
in Section II-D.

D. Transformer for Natural Language Processing

Our second evaluation case for Maestro in this paper is
the Transformer [16]. Recent Transformer-based models have
led to substantial accuracy improvements for NLP tasks over
previous Recurrent Neural Network (RNN) models [14]. How-
ever, these Transformer models have significantly higher mem-
ory and computational cost than RNN models. For instance,
GPT-2 [15] has 1.5 billion weights which is 16.1× larger
than previous state-of-the-art RNN model (ELMo [14]). The
Transformer for language translation tasks has an encoder-
decoder structure. An encoder layer, shown in Figure 3b, is
composed of a self-attention step, which weights relationships
between word pairs in a sentence input, followed by Layer
Normalization and two Fully-Connected layers. The self-
attention step requires the same input to be multiplied by three
relatively small learned matrices (WQ, WK, WV). In Maestro,
through the use of multiple smaller SAs, all three matrices
in an encoder layer can be performed efficiently in parallel,
which is not possible for a single large SA. In Section V, we
show that Maestro can support low-latency inference for these
large Transformers models by achieving high SA utilization
on the small matrix multiplications.

III. MAESTRO 3D-IC ARCHITECTURE

In this section, we describe the Maestro architecture and its
subsystems in support of efficient and flexible LB-MB commu-
nication. In addition, we describe a baseline Maestro system
which we conduct performance analysis on in Section V.

A. Maestro System Overview

The baseline Maestro system, shown in Figure 4, consists
of a memory die with 64×64 SRAM Memory Blocks (MBs)
stacked on top of a logic die with 64×64 Logic Blocks (LBs),
which are interconnected through a switch using high-speed
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Fig. 4: The baseline Maestro system connects memory blocks
(MBs) on the memory die to logic blocks (LBs) through a
switch layer implemented with TSVs.

bit-serial Through-silicon vias (TSVs). For a given MB, its
corresponding MB is the MB directly above the LB. This
baseline is targeted for a 28 nm process node implementation
running at 1 GHz and is used for sizing and performance
assessment reported in this paper. Each LB contains one
systolic array (SA). The systolic cells in each SA implement
8-bit fixed-point MAC using a bit-serial design [8], [11].
Throughout the paper we use TSVs to illustrate the use of
3D packaging. Other packaging technologies such as TSMC
Integrated Fan-Out (InFO) may also be considered. Note that
SRAM may be replaced with some other memory system such
as MRAM (reduced cost and power, non-volatile, etc.).

A basic advantage of using 3D packaging technology is that
LBs, MBs, and the switch do not have to all be on the same
die. This avoids longer wiring in connected these elements;
see arguments in [9].

For illustration simplicity, only 3 of the 4,096 full-duplex
TSVs are shown in Figure 4 (their number are doubled for
simplex TSVs). Each LB contains an 8×8 bit-serial SA [8] and
uses a separate bit-serial TSV to connect to the switch. A TSV
and MB can sustain memory access bandwidth requirements
of 2 GB/s for an 8×8 SA with 8 bit-serial inputs and 8 bit-
serial outputs running at 1 GHz. The remaining MB bandwidth
(6 GB/s) is used for double buffering with external DRAM.
That is, while performing the current computation, the Maestro
system can output the result of the previous computation
and input weights/data/programs for the next computation.
Additionally, the remaining TSV bandwidth (1.52 GB/s) is
used for loading weights as well as control for the next
computation.

Figure 5 shows the Maestro switch in greater detail. The
switch layer is shown as a 3D stack of H-trees (H-shaped
trees). The memory blocks are interconnected by these H-trees
placed on the memory die, which allows for coordinated high-
speed communication between SAs and MBs (only two H-
trees are shown). A switch point is placed at each joint of
an H-tree, which can connect/disconnect its associated joint
to control the data flow of the tree in support of local mode
operations (Figure 8).
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We use H-trees, a popular layout structure previously used
in distributing clock signal, because of their regular and
scalable design. For example, we can embed multiple H-
trees in a 2D space (Figure 6) and implement selection and
combining functions (Figure 9) with a regular layout and
efficiently implement the local mode (Figure 8). Other switch-
efficient networks, such as Beneš networks [2], which have
fewer switching points, are generally harder to lay out due to
irregular wiring. Meshes and tori also support regular layouts,
but do not provide connections for tree topologies to support
low-hop routing.

B. 2D Implementation of Switch

For clarity of presentation, the two H-trees in Figure 5 are
shown in a 3D perspective, with a dark blue H-tree on top of
a light blue H-tree. However, it may be impractical to provide
each H-tree with a physical die in a 3D-IC embodiment.
Therefore, in practice, it could be desirable to lay out a number
of these H-trees in 2D on a single die.

Figure 6 shows the layout process which enables multiple
H-trees to achieve a regular 2D layout. Figure 6a depicts two
H-trees in a 3D perspective as shown in Figure 5. In Figure 6b,
these H-trees are placed on a 2D layout, by shifting the red
H-tree down and right by a constant amount. This process can
be repeated to support more H-trees as in Figure 6c with four
H-trees. Finally, Figure 6d shows how multiple H-trees can
be implemented in a regular fashion on a 2D space with two
metal layers.

Figure 7a shows a read operation for Maestro, where data is
read from SRAM into a systolic array. The memory controller
fetches 8-bit data from SRAM into a bit-serial converter, which
delivers the data to a demultiplexer in a bit-serial fashion. The
data is then forwarded to the selected H-tree. During read
operations, the combine block acts as a multiplexer, which
selects one of the H-trees and forwards it to the systolic array
through a TSV. The systolic array can then begin processing
after receiving the input from the combine block.

Figure 7b shows a write operation for Maestro, where the
result of a matrix multiplication performed on the systolic
array is written back to the SRAM. The bit-serial outputs of
the systolic array are forwarded to the H-tree chosen by the
demultiplexer. The combine block is used to add partial results
from the H-trees (discussed in Section III-D). The results from
the combine block are then written into SRAM on the MB.

(a) Two H-trees on top of each 
other in a 3D perspective

(b) 2D layout of two shifted 
H-trees

(c) 2D layout of four
shifted H-trees

(d) Use of two metal layers to 
implement wire crossing on 2D

Red H-tree is 
shifted right and 
shifted down

Fig. 6: Two H-trees shown in a 3D perspective in (a) are
implemented in a 2D layout as shown in (b). (c) illustrates
a case for four H-trees, where wire crossing is implemented
with two metal layers as illustrated in (d).
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detailed drawing of the combine block is shown in Figure 9.

C. Configuring Switch for Local Mode

Maestro can be configured to run in local mode by turning
off middle connections on each H-tree. In Figure 8, a single H-
tree on the memory die is shown overlaid on the logic die. The
red squares denote connection points internal to the tree. In
global mode (left), all leaves on the H-tree are connected. By
turning off some of the connection points (the white squares
in the middle of the figure), Maestro is able to run in a local
mode (right). Under local mode, multiple groups of LBs and
MBs may operate in parallel, each using their own sub H-
trees. Computation within a group may have a reduced system
latency, as data is required to traverse only its sub-trees rather
than the entire H-trees.

D. On-switch Elementwise Combining

During a write operation (as shown in Figure 7b), the partial
results from each LB, carried on multiple H-trees, can be
combined in an elementwise fashion before being saved to
the MBs. Figure 9 shows the design of the selection and
combining circuitry on a 2D layout. The output from an LB
(green line) is sent over a TSV to the red selection points
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circles) are implemented in a combine block to add partial
results in an elementwise fashion.

(one per H-tree). Based on a predetermined routing schedule
(discussed in Section IV-A), one of the H-trees is selected to
transmit the partial results computed by the LB. This selection
process is performed in parallel for the partial results computed
by each LB.

The combine block takes input from the selected H-trees and
performs an elementwise summation using the adder trees. The
output can optionally be normalized with row-wise mean µ and
row-wise standard deviation β stored in the combine block
before being passed through a General-purpose Bit parallel
Unit (GBU) for non-linear operations (e.g., ReLU, softmax).
We could use Coarse Grain Reconfigurable Array (CGRA) for
the GBU to allow fast reconfiguration. Finally, the output from
the combine block is saved to the MB.

E. Multi-stage Combining

Note that a large number of H-trees will introduce a great
amount of fan-ins to each combine block. For example, when
there are 4,096 H-trees, the combine block will need 4,096
corresponding inputs, leading to a circuit design with excessive
power and area. To mitigate this problem, we design a multi-
stage combining operation shown in Figure 10 (two-stage
combining is shown). The MBs are divided into multiple
groups. For each group, one of the MBs is selected as the
group leader (shown in red in Figure 10), which connects
each of the other MBs in the same group via a set of H-

Stage 1 Stage 2

group 1

Multi-stage Combine

group 2

group 3 group 4

group 1 group 2

group 3 group 4

Fig. 10: Maestro supports multi-stage combining (a two-stage
combining process is shown here).

trees. Each group leader can also access every MB on the
memory die by using a separated set of H-trees. During the
combining operation at a destination MB (shown in green in
Figure 10), each group leader first accumulates the partial sum
over its local MBs (stage 1), and then the partial sums from the
group leaders are combined and delivered to the destination
MB (stage 2).

Through two-stage combining, the number of fan-ins of a
combine block are greatly reduced, since each MB only needs
to connect with the MBs within the same group and all the
group leaders, rather than all the MBs on the memory die. For
a memory die with 64 × 64 MBs and 64 groups, two-stage
combining decreases the number of fan-ins at each combine
block from 4, 096 to 64 + 64 = 128.

IV. SCHEDULING DNN COMPUTATION ON MAESTRO

In this section, we discuss how DNN computation schedules
are generated on Maestro and provide examples of computa-
tion being performed using multiple LBs and MBs.

A. Using Tile Dependencies for Schedule Generation

As shown in Figure 2, computation in Maestro operates at
a tile level. Since the size of each weight matrix in a DNN
and the size of input to the DNN is known ahead of time, a
schedule can be precomputed which determines the LB on the
Maestro system for each tile computation. This also requires
knowledge of the Maestro configuration (e.g., 4,096 8×8 SAs
shown in Figure 4) in order to set the size and number of
concurrent tiles being processed. Figure 11a shows how two
weight and data matrices are tiled for computation on Maestro.
In this example, each SA is 64×64. Therefore, the layer 1
weight matrix W1 of size 128×128 is required to be partitioned
into four tiles (1, 2, 3, and 4). At runtime, each tile will be
loaded into an SA before being multiplied with a data tile.
Correspondingly, the input data to the network (I) is tiled into
two tiles (a and b). Layer 2 is tiled in a similar fashion to
layer 1.

Figure 11b shows the tile dependency graph for these two
weight and data matrices after the tiling procedure. Each vertex
in the graph represents a tile and the directed edges show the
dependencies between tiles. Each partial result tile (yellow) is
generated by one data tile (grey) and one weight tile (blue). For
instance, weight tile 1 and data tile a generate partial tile 1a.
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Multiple partial tiles that are input edges into a data tile must
be summed in an elementwise fashion in order to produce the
tile. In the figure, 1a and 2b are added together to produce data
tile c. This elementwise addition is scheduled to be performed
on a specific combine block, as shown in Figure 9, before
being written to the MB. Once data tile c is complete, the
corresponding partial tile 5c, which depends on c, can be
scheduled. Since execution of all tiles is deterministic, cycle
accurate scheduling for the entire DNN can be performed in
this manner. The scheduler may pipeline these elementwise
combining operations over multiple graph nodes.

B. Computation Patterns for DNN Inference

Now that we have described the tiling procedure for Mae-
stro, we will show how matrix multiplication can be tiled in
this manner and computed on the LBs. For simplicity, the
examples in this section use a Maestro configuration with only
4 MBs and 4 LBs. In illustrations, the width and height of each
SA is omitted.

Figure 12 demonstrates how Maestro is configured to per-
form tiled matrix multiplication for 2×2 tiles of the weight ma-
trix in a fully connected layer, such as those in the Transformer
network. In this example, the weight matrix is partitioned into
four tiles (one vertical partition and one horizontal partition)
denoted as 1, 2, 3, 4. The data matrix is partitioned in a similar
fashion into tiles a, b, c, d. The weight matrix tiles are first
preloaded into the LBs. Then, data tiles a, and c are loaded
from MB 1 and MB 3, respectively, into the switch. LB 1 and
LB 3 are configured to read data tile a, while LB 2 an LB
4 read data tile c. Matrix multiplication is then performed on
these tiles, producing partial result tiles 1a, 2c, 3a, 4c. During
the write, these four partial tiles are summed elementwise in
the switch to produce two result tiles (1a+2c and 3a+4c) which
are written to MB 1 and MB 3. This step is the repeated for
the other two result tiles (1b+2d and 3b+4d).

Figure 13 shows how Figure 12 can be extended to support
matrices of arbitrary sizes. In this figure, each element in the
block filter and block data matrices represents a tile. Using this
notation, the number of block matrix multiplications is MNL.
With M LBs, Maestro performs all block computations in the
minimum number of steps, i.e., NL, in two nested loops, where
L is the height of the block data matrix and N is the width of
the block filter matrix. In each of the L outer loops, there are
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N inner loops. In each inner loop, each LB loads input from
an MB, computes a block matrix multiplication, and outputs
the result to be combined for a destination MB, as shown on
the right of the figure. As a convolution layer is represented
as matrix multiplication when being processing with systolic
arrays (see, e.g., [6], [8], [11]), the tiling approach shown in
Figure 12 and 13 naturally supports CNNs.

V. EVALUATION

In this section, we first describe the experimental setup
for the networks (ShiftNet and Transformer) used to evaluate
Maestro. Then, we show the impact of quantization on the
Transformer in terms of accuracy and provide a layerwise
runtime breakdown for a GPU implementation. Next, we give
an area and power breakdown for the baseline Maestro system
described in Section III. Finally, simulation results for Maestro
on quantized (8-bit fixed-point) ShiftNet and Transformer
are compared to a single large SA in terms of latency, SA
utilization, inference efficiency (GOPS/second/W), and energy
efficiency (GOPS/W). For all evaluation results, we use a batch
size of 1 to simulate an online scenario where the real-time
nature of the application requires immediate feedback and
samples cannot be buffered to form larger batches.
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Fig. 14: (left) BLEU scores for different quantization bits
(for both weights and activation) on the base Transformer
model [16] for the English-to-German translation task (new-
stest2014). (right) Runtime breakdown for operation type in
the Transformer running on one NVIDIA GTX 1080 Ti GPU.

A. ShiftNet and Transformer Experimental Setup

For ShiftNet [17] and Transformer [16], we use the
baseline network settings presented in these two cited pa-
pers. For ShiftNet, this is a 24 layer network with 4.1
million learnable parameters (Table 6 in [17]). As dis-
cussed in Section II-C, ShiftNet replaces standard convo-
lution with a shift operation followed by 1×1 convolution
layers. We use our own PyTorch [13] implementation of
ShiftNet (pytorch v1.0), which is available at https://github.
com/BradMcDanel/column-combine. The input image size to
ShiftNet is 3×224×224.

For Transformer, we use the official TensorFlow [1] (v1.8)
implementation.1 The baseline Transformer has 6 encoder and
6 decoder layers with 65 million learnable parameters (Table
4 in [16]). For the English-to-German translation task, we use
a 55 word input sentence and 100 word output sentence for
Transformer.

B. Impact of Quantization on Transformer

Recently, it has been shown that CNN weights and acti-
vation quantization achieves large storage and computational
savings over floating-point representations [5]. However, to
the best of our knowledge, there was no quantized version of
the Transformer. In this paper, we quantize both weights and
activation values via uniform quantization. Given a tensor of
weights W, quantized Ŵ is computed by:

scale = (max (W)−min (W))/(28 − 1)

Ŵ = b
W −min (W)

scale
e × scale +min (W)

where b·e rounds to the nearest integer. For activations, we use
the same quantization scheme but fix min (W) and max (W)
to −2 and +2. We evaluate our quantization scheme on the
base Transformer [16], using the popular performance metric
BLEU (bilingual evaluation understudy) [12]. As depicted in
Table 14a, our results show that 8-bit fixed-point weight and
data quantization introduces a negligible performance loss
for the Transformer of only ∼0.1. The same quantization
scheme is used for ShiftNet, which follows linear quantization
proposed in [10]. Using 8-bit fixed-point quantization leads to
minimal degradation in classification accuracy (less than 0.5%)
for ShiftNet.

1https://github.com/tensorflow/models/tree/master/official/transformer

Components Location Area (um2) Power (in percentage)
SRAM (8KB) MB 10575 11.7%

SRAM controller MB 2410 18.0%
Combine Block MB 4037 30.2%

Switch Units MB 1212 1.83%
TSV MB, LB 44 N/A
SA LB 14641 38.2%

TABLE I: Area and power breakdown for baseline Maestro
system shown in Figure 4. For TSV, we do not provide a
power estimates because design software and library do not
currently report them.

C. Profiling Transformer GPU Implementation

Figure 14b shows runtime profiling results for an English-
to-German translation task using an official TensorFlow im-
plementation of the Transformer. On the GPU, the average
translation time for a sentence is 0.945 seconds. The CUDA
execution times for each type of operation is summed over
the entire inference process in order to calculate the per-
centage contribution of each operation. For all GPU profiling
results, a floating-point implementation is used. Additionally,
this runtime profile does not include CPU operations, as
they represent an insignificant portion of inference runtime.
Figure 14b illustrates the importance of speeding up matrix
multiplication (matmul) as it represents 84% of the total
runtime. As described earlier, Maestro performs matrix com-
putations of each attenion layer efficiently by using many
smaller SAs. Additional targets for speedup include layer nor-
malization (layer normal), element-wise multiplication (mul),
and element-wise addition (add). Maestro can also implement
these computations efficiently using its combine blocks as
described in Section III-D.

D. Area and Power Analysis

We have designed the logic and layout for Maestro using
the Synopsys Design Compiler with TSMC 28nm Library
and CACTI-P. We use CACTI-P to simulate the SRAM and
Synopsys Design Compiler to synthesize the other components
including the systolic array and combine block. Table I sum-
marizes the area and power breakdown for major components
of each MB and LB. A significant fraction of MB area is
consumed by the SRAM, which takes 54%, followed by
combine block (20.6%), SRAM controller (12.3%) and TSV
group (0.22%). The logic block area is mostly consumed by
the systolic array. In terms of power, the SA and combine
block contribute to most of the power consumption (38.2% and
30.2%), followed by the SRAM controller (18.0%), SRAM
(11.7%), and switch units (1.83%).

E. Impact of Data Tile Size for ShiftNet

For large image datasets, such as ImageNet with a com-
monly used image resolution of 3×224×224, the data matrix
has significantly more rows (224×224) than columns (9 in
the case of 3×3 convolution). Due to this, the utilization of a
large SA will be poor for this layer, as most of the columns
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Fig. 15: (a) Smaller data tiles through vertical data tiling
substantially improves the runtime ShiftNet. (b) Most of the
runtime is spent processing the first layer. See Table VI in [17]
for ShiftNet architecture details. 2 (5×) means that this layer
group 2 is a layer repeated 5 times.

in the SA will not be used. However, for multiple smaller
SAs, the tall data matrix can be partitioned into smaller tiles,
which decreases the runtime processing the layer. For instance,
using 16 SAs, the data matrix could be partitioned into 16 tiles
(each 3×56×56), which reduces the runtime of that layer by a
factor of 16. Figure 15a shows the importance of vertical data
tiling on reducing the runtime of ShiftNet inference when used
in Maestro. The blue line shows a setting for a single SA of
size 512×512. The purple and red lines represent two Maestro
configurations, with 16 (128×128) SAs and 4096 (8×8) SAs,
respectively. All three settings have the same total number of
systolic cells (262,144).

For the two Maestro settings, as the size of the data tile
decreases on the x-axis, the total number of cycles required
to perform inference for one sample decreases. However, the
single SA setting actually has an increased runtime as the data
tile size is reduced. Since the single SA can only process one
tile at a time (regardless of its size), data tiling provides no
benefit. Instead, the single SA must pay additional runtime due
to data skew inherent when processing with systolic arrays,
increasing the runtime. This illustrates one of the main benefits
of Maestro: by using multiple small SAs, the system can adjust
to better fit the matrix computation through fine-grained tile
operations.

Figure 15b shows a layerwise runtime breakdown for the
same three settings in Figure 15a. In this experiment, a data
tile size of 215 is used for the single SA setting and a data
tile size of 28 is used for the 16 (128×128) and 4096 (8×8)
settings. The majority of inference runtime is spent in the first
several layers. Since the weight matrices in these layers are
smaller, a single large SA cannot by fully utilized, leading to a
longer runtime. Through data tiling, Maestro is able to reduce
the runtime of these layers, by processing portions of the input
to these layers with multiple small SAs in parallel.

F. Maestro Latency Reduction

We compare the latency achieved by the many smaller SAs
in Maestro to a single large SA on both ShiftNet (Figure 16a)
and Transformer (Figure 16b). For a fair comparison, on
any given point on the x-axis, all settings use the same
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(b) Transformer Latency

Fig. 16: Latency in milliseconds for processing one sample
with a single SA and Maestro configurations at the same
number of systolic cells for ShiftNet (a) and Transformer (b).

number of systolic cells. The majority of the latency reduction
in Figure 16a is explained by data tiling as discussed in
Section V-E. As the number of SAs is increased (e.g., from
128×128 to 8×8) additional reduction in latency is achieved
through more fine-grained tiling.

For the transformer latency results in Figure 16b, the smaller
SAs are better utilized for many of the smaller matrices in the
Transformer, such as the WQ, WK, and WV matrices (each
of size 64×512) in the self-attention step. Additionally, the
computation for these matrices in a single encoder layer can
be performed in parallel, which is not possible for the single
large SA. Finally, for these smaller matrices, the single large
systolic array is often underutilized.

Figure 17 shows the average utilization over all SAs for the
same configurations in Figure 16. We can see that the reduction
in latency achieved by the Maestro settings in Figure 16 is
due to maintaining higher SA utilization as the number of
cells is increased (Figure 17). We note from Figure 16 at the
number of systolic cells equal to 218, the baseline Maestro con-
figuration achieves impressive latency reduction for ShiftNet
and Transformer at 16× and 12×, respectively. The latency
for Transformer inference is ∼20 ms, as opposed to 0.945
seconds noted earlier for a floating-point GPU implementation
(a 47× improvement). Similarly, the ShiftNet latency for the
baseline Maestro configuration is 0.09 ms versus 2.7 ms for
the floating-point GPU implementation (a 30× improvement).
Note that since we consider an real-time scenario (batch size
of 1), throughput is simply 1 / latency.

G. Energy Efficiency of Maestro

We compare the energy efficiency of the baseline Maestro
system (4,096 8×8 SAs) in Figure 4 against a single large SA
of size 512×512, as we did for latency in Section V-F. We note
that in a parallel processing system when the number of fixed-
size SAs scales up, unlike a 3D implementation where SAs can
connect to their corresponding MBs in constant distance along
the third dimension, a 2D implementation will suffer from long
wires [9]. Thus, as the number of SAs increases, power and
delay of a 2D implementation, due to increased wire lengths,
will eventually dominate those of a 3D implementation. We
argue below that even under a 2D implementation Maestro
will be competitive in energy efficiency.
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Fig. 17: SA utilization for ShiftNet (a) and Transformer (b).
The dotted red curve is the TSV utilization for the 8×8 SAs
shown on the solid red curve.

Assume a layout scheme resembling to that depicted in Fig-
ure 1 where LBs, MBs, and the switch are all on the same 2D
plane and a die of twice the size is used to accommodate LBs
as well as wiring and MBs. We simulate power consumption
with Synopsys Design Compiler and CACTI-P.

The power for the baseline Maestro system is 1.36× higher
than a single large SA with the same number of systolic
cells (4,096×8×8). The power savings for the single large
SA over Maestro are due to omitting the H-trees and the
combine blocks. However, the decreased runtime per sample
for Maestro (16× for ShiftNet and 12× for Transformer)
translates to an 11.76× and 8.83× improvement in inference
efficiency (samples/second/W) for ShiftNet and Transformer,
respectively, over the single large SA. While Maestro con-
sumes more power, the improved computational efficiency due
to high-utilization use of many small SAs as well as on-
switch elementwise combining leads to higher throughput and
therefore higher inference efficiency.

Additionally, in terms of energy efficiency, the baseline
Maestro system achieves 664.60 GOPS/W. This performance
is due to the regular structure of H-tree and systolic arrays,
which significantly reduces the propagation delay of critical
paths and raises the throughput. In general, it is important
to evaluate both energy and inference efficiency to measure
the performance of a system. For deep learning applications,
it is possible to do a large amount of work per sample in a
way that achieves high GOPS/W (energy efficiency) but low
samples/second/W (inference efficiency).

VI. CONCLUSION

Use of many small systolic arrays in parallel, as opposed to
a single large one, can achieve high processor array utilization
for heterogeneous workloads of varying shapes and sizes, such
as those present in the ShiftNet and Transformer models. By
leveraging short-distance vertical 3D-IC interconnects in the
third dimension, the Maestro architecture proposed in this
paper allows these systolic arrays to have high bandwidth,
yet flexible, parallel access to multiple memory banks.

For Transformer, we have demonstrated that the baseline
Maestro architecture can lead to an order of magnitude im-
provement (i.e., 12×) in inference latency for natural language

processing. For ShiftNet, Maestro achieves similar perfor-
mance gains, i.e., 16× latency reduction. Our analysis shows
that most of these gains are due to high processor array
utilization resulting from the use of small systolic arrays
enabled by the Maestro memory-on-logic 3D-IC architecture.

Maestro is novel in its switched memory-on-logic organiza-
tion, H-tree based switch and on-switch elementwise combin-
ing functionality. Resulting from these features, the system can
scale up the computation throughput for matrix computations
by extending memory and logic dies along the horizontal
dimension. This scalability is important in the post-Moores
Law era, where we can only increase computation bandwidth
by using increased chip area rather than reduced device size.
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