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Abstract—We present a building block architecture for systolic
array 3D-IC implementations of convolutional neural network
(CNN) inference. The building block can be part of a library
offered by a chip design service provider to support efficient CNN
implementations. We describe how the building block can form
systolic arrays for implementing low-latency, energy-efficient
CNN inference for models of any size, while incorporating
advanced packaging features such as “logic-on-logic” 3D-IC
(micro-bump/TSV, monolithic 3D or other 3D technology). We
present delay and power analysis for 2D and 3D implementations,
and argue that as systolic arrays scale in size, 3D implementations
based on, e.g., micro-bump/TSV, lead to significant performance
improvements over 2D implementations.

I. INTRODUCTION

Convolutional Neural Network (CNN) inference can be
viewed as a series of matrix multiplications between input
data to each layer and the learned convolution filters of the
layer. Systolic arrays can perform this matrix multiplication
with high efficiency due to the high degree of parallelism,
regular inter-processor communication, and minimal I/O costs
associated with data-flow architectures [8], [5]. For these
reasons, many recent processor implementations for deep
learning (e.g., [4], [1], [3], [13], [15], [14], and Google’s
Tensor Processing Unit (TPU) [7]) implement systolic arrays.

However, systolic arrays only achieve high efficiency if
the underlying matrices to be multiplied can be effectively
mapped onto systolic arrays. For instance, early layers in a
CNN generally have smaller filter matrices, which may under-
utilize the systolic arrays. Therefore, a fundamental challenge
in using systolic arrays is to design an architecture which can
achieve high performance for all layers, of varying sizes, in a
CNN.

In this paper, we propose a versatile systolic building block
architecture for CNN implementations. We show how multiple
instances of this building block can be aggregated to efficiently
implement the inference computation across CNN layers of
different input data and filter matrix sizes. The building block
must support the mapping of CNNs layers with a variable
number of input channels and filters onto an array of building
blocks, each containing fixed-size systolic arrays.

Additionally, it is desirable for the building block to support
advanced implementation features, including:

• 3D-IC implementations of systolic arrays for their com-
pact physical embodiment, formed by the building block
implemented with micro-bump/TSV stacking, monolithic
3D-IC or other 3D-IC technologies.

• Cross-layer pipelining where the inference computation
of several CNN layers are pipelined over a series of
systolic building blocks in order to minimize the I/O cost
in accessing external memory systems.

• Reduced data skews for systolic array data synchroniza-
tion in order to lower end-to-end CNN inference latency.

• High-precision accumulation in the multiplier-
accumulators (MACs) of each systolic cell of a
systolic array. In this work, we assume throughout
bit-serial implementations of 32-bit accumulations for
8-bit weights and 8-bit input data. Our approach extends
naturally to other precisions (see, e.g., [11]).

In this paper we present a systolic building block which
supports the mentioned features and analyze its resource re-
quirements and performance gains of 3D-IC implementations
when compared to 2D implementations. The main contribu-
tions of this paper are (1) the design of a versatile systolic array
building block architecture for CNNs of any size and for their
3D-IC implementations, and (2) latency and power analysis
demonstrating the benefits of using logic-on-logic 3D-IC in
implementing systolic arrays at scale. To our knowledge, these
results and the underlying design and analysis methodology
presented are novel and are among the first ideas in this
emerging field.

II. BACKGROUND

In this section, we provide background on utilizing systolic
arrays for CNN inference and how one or more CNN layers
can be partitioned across multiple systolic arrays.

A. Systolic Matrix Multiplication for CNN Layer

In this work, we focus on pointwise convolution, where the
kernel size is 1×1. While simplified, networks trained with
pointwise convolution (e.g., MobileNet [6]) have been shown
to achieve similar performance to standard 3×3 convolutional
networks for datasets such as ImageNet [2]. Additionally,
pointwise convolution can be implemented efficiently in sys-
tolic arrays [9], [11]. For illustration, Figure 1 (a) shows a 3×3
systolic array matrix multiply unit that implements a pointwise
convolution layer. The systolic array is made of systolic cells,
nine cells in this example, each performing a multiplier-
accumulator (MAC) computation. The weights (e.g., W2,1) of
the pointwise layer are stored in systolic cells, one weight per
cell. The input data corresponding to an input channel (i.e., d1
for channel 1) enters into the bottom of the systolic array in a
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Fig. 1: (a) A 3×3 systolic array implementing a pointwise con-
volutional layer with 3 filters and 3 channels. (b) Partitioning
a CNN layer across channels in (1), across filters in (2), and
across both channels and filters in (3).

skewed fashion to permit data synchronization. At each cycle,
the input data multiplied by the weight in a cell is added to the
partial result computed by the previous cell from the left and
forwarded to the next cell on the right. The complete results
exit from the right side of the systolic array. In this paper,
we assume the weight-stationary systolic array multiplication
scheme depicted in Figure 1 (a), while noting that our methods
can be extended to other schemes.

For CNN layers that are larger than a given fixed-size
systolic array, a partitioning approach is used to break the
layer into smaller tiles, where each tile can fit into a single
copy of the systolic array. Figure 1 (b) shows how a layer can
be partitioned into smaller tiles. As we discuss in Section III,
by using this tiling approach, the flexible building block can
be used to accommodate any number of filters and channels.

B. Cross-layer Pipelining

The run time of CNN inference can be dramatically reduced
when multiple CNN layers are able to work in parallel on
the same input sample, which we call cross-layer pipelining.
Each layer in a CNN is partitioned into one or more tiles each
implemented on a systolic array of the given size (as described
in Section II-A). Figure 2 shows how a sample is pipelined
across a three-layer CNN. The input data (in yellow) enters
layer 1 (in red) and generates output which is immediately
consumed by layer 2 (in blue). Layer 2 similarly generates
output which is used as input to layer 3. In this manner,
a single access to the external memory is sufficient for the
operation of the systolic arrays of multiple layers. A barrier
is in place at the output of layer 3 (in green), as the entire
output from the final CNN layer is required to perform the
CNN prediction.

III. SYSTOLIC BUILDING BLOCK FOR 3D-IC
IMPLEMENTATIONS

In this section, we provide an overview of the proposed
3D systolic building block which can be deployed in 3D-IC
implementations.

Layer 1

Cross-layer Pipelining of CNN Inference

Wait for output and 
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Input
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Fig. 2: Cross-layer pipelining for a CNN with three layers.
Each layer is implemented using one or more systolic arrays
of a given size. All three layers work on the same input sample
in parallel. Data for the input (in yellow) and output (in green)
are skewed for systolic array synchronization.
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Fig. 3: Three approaches for partitioning a wide convolutional
layer into multiple fixed-size systolic building blocks.

A. Partitioning Convolutional Layers onto 3D-IC Structures

In order to implement a large convolutional layer using a
collection of fixed-size systolic arrays, we partition the layer as
depicted in (1) of Figure 1 (b). Figure 3 illustrates an approach
for applying channel partitioning to a wide convolutional
layer that spans sixteen square systolic arrays (i.e., it has
sixteen times more channels than filters). In (a), this wide
layer is implemented using sixteen square systolic building
blocks, leading to a long data skew in order to maintain
synchronization with the input data. In (b), the sixteen blocks
are partitioned into four groups each with four blocks. Partial
results from these groups are aggregated on the left-hand side,
using slice-level accumulation (SLA) denoted by the red line,
which reduces the data skew by a factor of 4. In (c), the
reduced skew scheme presented in (b) is implemented in 3D-
IC and aggregation of physical slices is performed using SLA.
Each physical slice in (c) implements two building blocks
with different roles, Expansion and Folding, as discussed in
Section III-B.

B. Systolic Building Block Roles

For the 3D implementation of Figure 3 (c), each physical
slice involves building blocks which have one of two different
roles depending on the location of the block on the slice.
Figure 4 depicts both roles for our systolic building block:
an expansion block in (a) and a folding block in (b). Both
roles implement fixed-size systolic arrays (called systolic
subarrays) which are used to perform matrix multiplication
between the stored filter weights and the input to a CNN layer.
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Fig. 4: The structure for the two roles supported by the systolic
block: (a) an expansion block and (b) a folding block. Each
systolic subarray stores CNN weights in the systolic cells
which are loaded from on-chip RAM.

Each subarray takes input data from on-chip RAM which is
placed adjacent to the subarray. For the leftmost block in a
physical slice, SLA is performed using the Adders circuit.
The Activation (Act.) circuit implements the ReLU activation
function and is active only for the leftmost block in the final
physical slice for a convolution layer. Batch normalization is
folded into the weights after training and therefore does not
require any additional computation at inference.

The systolic building block implements either the expansion
or folding role reflecting the function deployed on its right
end. For a folding building block, the right end implements
folding connections that connect the two halves of the folded
array. For an expansion building block, the right end provides
same-slice I/O for the folded systolic array. It inputs from and
outputs to a neighbor building block on the same slice. The
left end of the systolic building block (folding or expansion)
has a different implementation depending on the position of
the block. Blocks on the leftmost edge of a physical layer
add partial dot products computed by the systolic subarray to
the values received from input TSVs using SLA and send the
updated accumulation values to output TSVs. All other blocks
on a layer take partial results from a neighboring building
block and output results to another building block. In this
way, multiple expansion building blocks can be placed next to
each other on a physical slice, followed by a folding building
block on the right-hand side of the slice as discussed further
in Section III-D.

C. Folding Systolic Array

In order to change the direction of the partial accumulation
data flow, the folding building block employs a folded systolic
array. Figure 5 shows how an unfolded systolic array in (a) can
be converted into a folded systolic array in (b). We assume that
the unfolded systolic array inputs partial dot products arriving
at the left and outputs updated partial dot products departing
from the right. We fold the systolic array in the middle so
that the left and right halves of the array will be on top of
each other. This folded array now takes inputs from the left
and sends outputs to the left. We then press the folded systolic
array onto the 2D space so that the placements of left and right
halves of the array are uniformly interleaved. With this folding
scheme, we have achieved the goal that all wires connecting
neighboring cells can be of a constant wire length independent
of the systolic array size.
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Fig. 5: An unfolded systolic array (a) is converted into a folded
systolic array (b). Each square represents a systolic cell.
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Fig. 6: Four physical slices, each implementing two expansion
blocks and one folding block, are connected by TSVs which
support SLA.

D. Multiple Expansion Blocks per Slice

The proposed systolic block design allows for slices to
easily implement more systolic blocks, as the physical size
of the slice increases, by simply increasing the number of
expansion blocks on the slice. Figure 6 shows four physical
slices that each implement two expansion blocks and one
folding block. Each of the physical slices are connected by
TSVs on the left-hand side, which facilitate SLA between each
pair of slices. The partial results from the previous slice below
are input from the TSV into the adder circuit on the current
slice, which performs element-wise addition with the partial
results output from the systolic array on the current slice.

IV. PERFORMANCE COMPARISON BETWEEN 2D AND 3D
IMPLEMENTATIONS

In this section, we analyze the size, delay, and power of the
systolic building block based on 28nm technology design rules
and a 3D-IC technology using TSVs and micro-bumps [12].
The estimated chip area is 0.9mm2 = 1.0mm (H) x 0.9mm
(W) for a systolic array containing 50 rows by 50 columns.
The height of the array depends on the number of rows, and
varies from 0.46mm (0.36 mm for systolic array, 0.1mm for
memory buffer) in a 20 rows by 125 columns array to 2.3mm
(2.2 mm for systolic array, 0.1mm for memory buffer) in a
125 rows by 20 columns array.

For high-performance operation of the systolic array, we are
interested in decreasing system latency and power consump-
tion. We compare 3D-IC (micro-bumps) and 2D designs by
analyzing wire delay (latency) and wire power consumption.
Note that, as depicted in Figure 7, in a 2D layout, the worst
wire delay occurs with the interconnect wires that span the
entire height of the systolic array.

To obtain propagation delays and RC delays, we consider
a 1mm 2D global line with 0.4µm line width and 0.4µm
spacing between lines. 3D-IC interconnects using TSVs of
50µm depth and micro-bumps of 30µm height are used. The



TABLE I: Comparing block-to-block wire delay and power
consumption for 2D global wire and 3D TSV with micro-
bumps for 50 filter by 50 channel systolic building blocks.

Interconnect Delay (ps) Power Consumption1

Propagation RC Wire 1GHz
2D 5.6 11.6 17.2 0.13
3D 0.82 0.8 1.6 0.08

2D/3D 7x 15x 11x 1.6x

extracted full EM models of the interconnects are imported
into the Advanced Design System (ADS) and the wire delay is
obtained by analyzing the response of a step signal in the time
domain. The simulation results are summarized in Table I. The
propagation delay with 3D interconnects is 7× smaller than
with 2D interconnects due to the shorter wires. Similarly, the
RC delay with 3D interconnects is 15x smaller compared to 2D
interconnects due to the smaller resistance. Finally, the wire
delay using 3D interconnects shows a similar improvement of
11x over 2D interconnects.

For wire power consumption, dynamic power P = CV2f,
where C, V, and f represent capacitance, voltage and frequency,
respectively, is calculated for systolic arrays using 2D and 3D
interconnects. The power consumption of the 3D-IC design is
about 60% of that of the 2D design at 1GHz. We note that
additional area from TSVs is relatively insignificant due to our
design which only require a relatively small number of TSV
connections on the building block edge (see Figure 6). With
a TSV diameter of 6µm and a keep out zone of 3µm each
side, each TSV takes up area of 113µm2 and 50 TSVs for the
50×50 array uses about 0.6% of the systolic building block
area.

We also study the systolic system scaling effect on delay and
power consumption. In Figure 7, the 2D and 3D-IC structures
for systolic systems with 50×50, 100×100 and 150×150
arrays are shown. Simulation results for wire delay and power
consumption of a single interconnect in the systolic array
are shown in Figure 8. For 2D, the interconnect length is
increased linearly with the height of systolic array. Therefore,
the corresponding wire delay is increased as the square of the
array height. But for 3D-IC, the delay is the same for the three
sizes of the systolic systems. The delay ratio for 2D and 3D-IC
is 11, 32 and 166, respectively, for the three sizes, as shown in
Figure 8 (a). The dynamic power consumption is proportional
to the interconnect length. At current systolic system designs,
the dynamic power for 2D is 1.6, 3.2 and 5.0 times larger than
that for 3D-IC, as shown in Figure 8 (b). The results indicate
3D-IC brings more benefits when the systolic system is scaled
up in size.

Note that we did not design the 50 × 50 systolic ar-
ray building block in 28nm technology yet, but we have a
validated Verilog design for the block. The chip area for
the block is estimated based on the Verilog design and 28
nm technology parameters. The parameter values used in the
simulation for Table I are extracted from measurement data

1Power Consumption = f×C×V2, where V = 0.9 volts.
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Fig. 7: Three systolic array sizes (50x50, 100x100, and
150x150) using 2D and 3D interconnects. In the 2D case,
the wire length connecting arrays is proportional to the array
height. In the 3D case, the wire length is a constant length
regardless of array size.
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Fig. 8: (a) Wire delay and (b) power consumption of systolic
arrays using 2D and 3D interconnects as a function of the size
of the systolic array. The black dotted circles and correspond-
ing black arrows for each line denotes the y-axis used.

based on production microbump/TSV technology. Thus, the
interconnect simulation results (propagation delay and RC
delay) are backed up by the experiment result, even though
they are not directly measured from real 3D-IC system.

V. CONCLUSIONS

In this work, we present a versatile systolic building block,
which can be used to implement CNN layers of any size.
The building block is suited for logic-on-logic 3D-IC (micro-
bump/TSV stacking, monolithic 3D or other 3D-stackings)
implementations in that it allows for consistent wire length be-
tween blocks and mitigates corner turning issues [10] present
in 2D implementations. Additionally, we present usage exam-
ples for a 3D-IC (micro-bump/TSV) implementation of this
systolic block design which connects blocks on different slices
of a 3D-IC stack using TSVs. These usage cases illustrate the
benefits of the compact representation of logic-on-logic 3D-IC
stacks as they can be extended across multiple physical circuit
planes to scale to meet the energy efficiency and computational
performance demands of CNN inference. The benefits are
especially pronounced as systolic arrays scale up in size.
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