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Abstract
The validation and deployment of novel research ideas in

the field of Deep Learning is often limited by the availability
of efficient compute kernels for certain basic primitives. In
particular, operations that cannot leverage existing vendor
libraries (e.g., cuBLAS, cuDNN) are at risk of facing poor
device utilization unless custom implementations are written
by experts – usually at the expense of portability. For this
reason, the development of new programming abstractions
for specifying custom Deep Learning workloads at a minimal
performance cost has become crucial.

We present Triton, a language and compiler centered around
the concept of tile, i.e., statically shaped multi-dimensional
sub-arrays. Our approach revolves around (1) a C-based lan-
guage and an LLVM-based intermediate representation (IR)
for expressing tensor programs in terms of operations on
parametric tile variables and (2) a set of novel tile-level opti-
mization passes for compiling these programs into efficient
GPU code. We demonstrate how Triton can be used to build
portable implementations of matrix multiplication and con-
volution kernels on par with hand-tuned vendor libraries
(cuBLAS / cuDNN), or for efficiently implementing recent
research ideas such as shift convolutions.

CCS Concepts • Computing methodologies → Paral-
lel computing methodologies.
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1 Introduction
The recent resurgence of Deep Neural Networks (DNNs)

was largely enabled [24] by the widespread availability of
programmable, parallel computing devices. In particular, con-
tinuous improvements in the performance of many-core
architectures (e.g., GPUs) have played a fundamental role,
by enabling researchers and engineers to explore an ever-
growing variety of increasingly large models, using more
and more data. This effort was supported by a collection
of vendor libraries (cuBLAS, cuDNN) aimed at bringing the
latest hardware innovations to practitioners as quickly as
possible. Unfortunately, these libraries only support a re-
stricted set of tensor operations, leaving the implementation
of novel primitives to experts [13, 17, 25].
This observation has led to the development of various

Domain-Specific Languages (DSLs) for DNNs, based on poly-
hedral machinery (e.g., Tensor Comprehensions [43]) and/or
loop synthesis techniques (e.g., Halide [37], TVM [10] and
PlaidML[22]). But while these systems generally perform
well for certain classes of problems such as depthwise-separable
convolutions (e.g., MobileNet [20]), they are often much
slower than vendor libraries in practice (see, e.g., Figure 1),
and lack the expressivity necessary to implement structured
sparsity patterns [28, 31, 47] that cannot be directly specified
using affine array indices in nested loops.
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modulates arithmetic intensity.
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These issues have often been addressed by the use of
micro-kernels [11, 21] – i.e., hand-written tile-level intrin-
sics – but this solution requires a lot of manual labor and
lacks portability. And while several high-level programming
abstractions for tiling have recently been proposed [23, 41],
underlying compiler backends still lack support for tile-level
operations and optimizations. To this end we present Tri-
ton (Figure 2), an open-source1 intermediate language and
compiler for specifying and compiling tile programs into
efficient GPU code.
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Machine-Code
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Interface to existing 
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Figure 2. Overview of Triton

The main contributions of this paper are summarized as
follows:

• Triton-C (Section 3): A C-like language for expressing
tensor programs in terms of parametric tile variables.
The purpose of this language is to provide a stable in-
terface for existing DNN transcompilers (e.g., PlaidML,
Tensor Comprehensions) and programmers familiar
with CUDA. Listing 1 shows the Triton-C source code
associated with a simple matrix multiplication task.

• Triton-IR (Section 4): An LLVM-based Intermediate
Representation (IR) that provides an environment suit-
able for tile-level program analysis, transformation and
optimization. Listing 5 shows the Triton-IR code for a
Rectified Linear Unit (ReLU) function. Here Triton-IR
programs are constructed directly from Triton-C dur-
ing parsing, but automatic generation from embedded
DSLs or higher-level DNN compilers (e.g., TVM) could
also be explored in the future.

• Triton-JIT (Section 5): A Just-In-Time (JIT) compiler
and code generation backend for compiling Triton-IR
programs into efficient LLVM bitcode. This includes (1)
a set of tile-level, machine-independent passes aimed
at simplifying input compute kernels independently of

1http://triton-lang.org

Listing 1. C = A × BT in Triton-C. Keywords specific to
Triton are shown in purple.
/ / T i l e shapes a r e p a r ame t r i c and can be op t im i z ed
/ / by c omp i l a t i o n backends
con s t t un ab l e i n t TM = { 1 6 , 32 , 6 4 , 1 2 8 }
c on s t t un ab l e i n t TN = { 1 6 , 3 2 , 6 4 , 1 2 8 }
c on s t t un ab l e i n t TK = { 8 , 1 6 }
/ / C = A ∗ B . T
k e r n e l vo id matmul_nt ( f l o a t ∗ a , f l o a t ∗ b , f l o a t ∗ c ,

i n t M, in N , i n t K )
{
/ / 1D t i l e o f i n d i c e s
i n t rm[TM] = g e t _ g l o b a l _ r a n g e ( 0 ) ;
i n t rn [TN] = g e t _ g l o b a l _ r a n g e ( 1 ) ;
i n t rk [TK] = 0 . . . TK ;
/ / 2D t i l e o f a c cumu l a t o r s
f l o a t C[TM, TN] = 0 ;
/ / 2D t i l e o f p o i n t e r s
f l o a t ∗ pa [TM, TK] = a + rm [ : , newaxis ] + rk ∗ M;
f l o a t ∗ pb [TN , TK] = b + rn [ : , newaxis ] + rk ∗ K ;
f o r ( i n t k = K ; k >= 0 ; k −= TK ) {

boo l check_k [TK] = rk < k ;
boo l check_a [TM, TK] = ( rm < M) [ : , newaxis ] && check_k ;
boo l check_b [TN , TK] = ( rn < N) [ : , newaxis ] && check_k ;
/ / l o ad t i l e operands
f l o a t A[TM, TK] = check_a ? ∗ pa : 0 ;
f l o a t B [TN , TK] = check_b ? ∗ pb : 0 ;
/ / a ccumula te
C += dot (A , t r a n s ( B ) ) ;
/ / update p o i n t e r s
pa = pa + TK ∗M;
pb = pb + TK ∗N;

}
/ / wr i t e −back ac cumu l a t o r s
f l o a t ∗ pc [TM, TN] = c + rm [ : , newaxis ] + rn ∗ M;
boo l check_c [TM, TN] = ( rm < M) [ : , newaxis ] && ( rn < N) ;
@check_c ∗ pc = C ;

}

any compilation target; (2) a set of tile-level machine-
dependent passes for generating efficient GPU-ready
LLVM-IR; and (3) an auto-tuner that optimize any
meta-parameter associated with the above passes.

• Numerical Experiments (Section 6): A numerical
evaluation of Triton that demonstrates its ability to
(1) generate matrix multiplication implementations
on par with cuBLAS and up to 3× faster than alterna-
tives DSLs on recurrent and transformer neural net-
works; (2) re-implement cuDNN’s IMPLICIT_GEMM algo-
rithm for dense convolution without performance loss;
and (3) create efficient implementations of novel re-
search ideas such as shift-conv [47] modules.

This paper will be prefaced by a brief analysis of the exist-
ing related literature (Section 2) and concluded by a summary
and directions of future work (Section 7).

2 Related Work
The existence of frameworks [1, 9, 36] and libraries for

Deep Learning has been critical to the emergence of novel
neural network architectures and algorithms. But despite
advances in analytical [5, 48] and empirical [6, 30] heuris-
tics for linear algebra compilers, these software still invari-
ably rely on hand-optimized sub-routines (e.g., cuBLAS and
cuDNN). This has led to development of various DSLs and

http://triton-lang.org
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compilers for DNNs, generally based on one of three distinct
approaches:

• Tensor-level IRs have been used by XLA [16] and
Glow [38] to transform tensor programs into prede-
fined LLVM-IR and CUDA-C operation templates (e.g.,
tensor contractions, element-wise operations, etc.) us-
ing pattern-matching.

• The polyhedral model [18] has been used by Tensor
Comprehensions (TC) [43] and Diesel [14] to parame-
terize and automate the compilation of one or many
DNN layers into LLVM-IR and CUDA-C programs.

• Loop synthesizers have been used by Halide [37]
and TVM [10] to transform tensor computations into
loop nests that can be manually optimized using user-
defined (though possibly parametric [11]) schedules.

By contrast, Triton relies on the addition of tile-level opera-
tions and optimizations into traditional compilation pipelines.
This approach provides (1) more flexibility than XLA and
Glow; (2) support for non-affine tensor indices contrary to
TC and Diesel; and (3) automatic inference of possible exe-
cution schedule that would otherwise have to be specified
manually to Halide or TVM. The benefits of Triton come at
the cost of increased programming efforts – see Listing 2 for
implementations of matrix multiplication in these DSLs.

Listing 2. C = A × BT in TF, PlaidML, TC and TVM
C = tf.matmul(A, tf.transpose(B)) // TF
C[i, j: I, J] = +(A[i, k] * B[j, k]); // PlaidML
C(i, j) +=! A(i, k) * B(j, k) // TC
tvm.sum(A[i, k] * B[j, k], axis=k) // TVM

3 The Triton-C Language
The purpose of Triton-C is to provide a stable frontend

for existing (and future) DNN transcompilers, as well as
programmers familiar with low-level GPU programming. In
this section we describe the CUDA-like syntax of Triton-C
(Section 3.1), its Numpy[35]-like semantics (Section 3.2) and
its "Single-Program, Multiple-Data" (SPMD) programming
model (Section 3.3).

3.1 Syntax
The syntax of Triton-C is based on that of ANSI C (and

more specifically CUDA-C), but was modified and extended
(see Listing 3) to accomodate the semantics and program-
ming model described in the two next subsections. These
changes fall into the following categories:

Tile declarations: We added special syntax for declar-
ing multi-dimensional arrays (e.g., int tile[16, 16]) so as to
emphasize their semantical difference with nested arrays
found in ANSI C (e.g., int tile[16][16]). Tile shapes must be
constant but can also be made parametric with the tunable

keyword. One-dimensional integer tiles may be initialized
using ellipses (e.g., int range[8] = 0 ... 8).

Listing 3. Grammar extensions for Triton-C. We assume the
existence of certain C constructs shown in blue.
// Broadcasting semantics
slice : ':' | 'newaxis '
slice_list : slice | slice_list ',' slice
slice_expr : postfix_expr | expr '[' slice_list ']'
// Range initialization
constant_range : expr '...' expr
// Intrinsics
global_range : 'get_global_range ' '(' constant ')'
dot : 'dot' '(' expr ',' expr ')'
trans : 'trans ' '(' expr ',' expr ')'
intrinsic_expr : global_range | dot | trans
// Predication
predicate_expr : '@' expr
// Tile extensions for abstract declarators
abstract_decl : abstract_decl | '[' constant_list ']'
// Extensions of C expressions
expr : expr | constant_range | slice_expr

| intrinsic_expr
// Extensions of C specifiers
storage_spec : storage_spec | 'kernel '
type_spec : type_spec | 'tunable '
// Extensions of C statements
statement : statement | predicate_expr statement

Built-in function: While common C syntax was retained
for element-wise array operations (+, -, &&, *, etc.), various
built-in functions (dot, trans, get_global_range) were added to
support tile semantics (Section 3.2.1) and the SPMD pro-
gramming model.

Broadcasting: N-dimensional tiles can be broadcast along
any particular axis using the newaxis keyword and usual slic-
ing syntax (e.g., int broadcast [8, 8] = range[:, newaxis] for stack-
ing columns). Note that slicing tiles to retrieve scalars or
sub-arrays is otherwise forbidden.

Predication: Basic control-flow within tile operations
(Section 4.3) is achieved through the use of predicated state-
ments via the ’@’ prefix.

3.2 Semantics
3.2.1 Tile semantics

The existence of built-in tile types and operations (i.e., tile
semantics) in Triton-C offers two main benefits. First, it sim-
plifies the structure of tensor programs by hiding important
performance details pertaining to intra-tile memory coalesc-
ing [12], cache management [32] and specialized hardware
utilization [27]. Second, it opens the door for compilers to
perform these optimizations automatically, as discussed in
Section 5.

3.2.2 Broadcasting Semantics

Tiles in Triton-C are strongly typed in the sense that cer-
tain instructions statically require their operands to obey
strict shape constraints. For example, a scalar may not be
added to an array unless it is first appropriately broadcast.
Broadcasting semantics [35] provide a set of rules to perform
these conversions implicitly (see Listing 4 for an example):

1. Padding: the shape of the shortest operand is left-
padded with ones until both operands have the same
dimensionality.



MAPL ’19, June 22, 2019, Phoenix, AZ, USA Philippe Tillet, H. T. Kung, and David Cox

2. Broadcasting: the content of both operands is repli-
cated as many times as needed until their shape is
identical; an error is emitted if this cannot be done.

Listing 4. Broadcasting semantics in practice
int a[16], b[32, 16], c[16, 1];
// a is first reshaped to [1, 16]
// and then broadcast to [32, 16]
int x_1[32, 16] = a[newaxis , :] + b;
// Same as above but implicitly
int x_2[32, 16] = a + b;
// a is first reshaped to [1, 16]
// a is broadcast to [16, 16]
// c is broadcast to [16, 16]
int y[16, 16] = a + c;

3.3 Programming Model
The execution of CUDA [33] code on GPUs is supported

by an SPMD [4] programming model in which each kernel
is associated with an identifiable thread-block in a so-called
launch grid. The Triton programming model is similar, but
each kernel is single-threaded – though automatically par-
allelized – and associated with a set of global ranges that
varies from instance to instance (see Figure 3). This approach
leads to simpler kernels in which CUDA-like concurrency
primitives (shared memory synchronization, inter-thread
communication, etc.) are inexistent.

The global ranges associated with a kernel can be queried
using the get_global_range(axis) built-in function in order to
create e.g., tiles of pointers as shown in Listing 1.

Figure 3. Difference between the CUDA and the Triton pro-
gramming model

4 The Triton IR
Triton-IR is an LLVM-based Intermediate Representation

(IR) whose purpose is to provide an environment suitable for
tile-level program analysis, transformation and optimization.
In this work, Triton-IR programs are constructed directly

Listing 5. A = max(A, 0) in Triton-IR. Note that tile shapes
are non-parametric here. In this paper their values are in-
stantiated by the Triton-JIT.
define kernel void @relu(float* %A, i32 %M, i32 %N) {
prologue:

%rm = call i32 <8> get_global_range (0);
%rn = call i32 <8> get_global_range (1);
; broadcast shapes
%1 = reshape i32 <8, 8> %M;
%M0 = broadcast i32 <8, 8> %1;
%2 = reshape i32 <8, 8> %N;
%N0 = broadcast i32 <8, 8> %2;
; broadcast global ranges
%3 = reshape i32 <8, 1> %rm;
%rm_bc = broadcast i32 <8, 8> %3;
%4 = reshape i32 <1, 8> %rn;
%rn_bc = broadcast i32 <8, 8> %4;
; compute mask
%pm = icmp slt %rm_bc , %M0;
%pn = icmp slt %rn_bc , %N0;
%msk = and %pm, %pn;
; compute pointer
%A0 = splat float*<8, 8> %A;
%5 = getelementptr %A0, %rm_bc;
%6 = mul %rn_bc , %M0;
%pa = getelementptr %5, %6;
; compute result
%a = load %pa;
%_0 = splat float <8, 8> 0;
%result = max %float %a, %_0;
; write back
store fp32 <8, 8> %pa, %result

}

from Triton-C during parsing, although they could also be
generated directly from higher level DSLs in the future.
Triton-IR and LLVM-IR programs share the same high-

level structure (recalled in Section 4.1), but the former also
includes a number of extensions necessary for tile-level data-
flow (Section 4.2) and control-flow (Section 4.3) analysis.
These novel extensions are crucial for carrying out the op-
timizations outlined in Section 5, and for safely accessing
tensors of arbitrary shapes as shown in Section 6.

4.1 Structure
4.1.1 Modules

At the highest level, Triton-IR programs consist of one
or multiple basic units of compilation known as modules.
These modules are compiled independently from one an-
other, and eventually aggregated by a linker whose role is to
resolve forward declarations and adequately merge global
definitions.
Each module itself is composed of functions, global vari-

ables, constants and other miscellaneous symbols (e.g., meta-
data, function attributes).

4.1.2 Functions

Triton-IR function definitions consist of a return type, a
name and a potentially empty arguments list. Additional
visibility, alignment and linkage specifiers can be added if
desired. Function attributes (such as inlining hints) and pa-
rameter attributes (such as read-only, aliasing hints) can also
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be specified, allowing compiler backends to perform more
aggressive optimizations by, for instance, making better use
of read-only memory caches.
This header is followed by a body composed of a list of

basic blocks whose interdependencies form the Control Flow
Graph (CFG) of the function.

4.1.3 Basic Blocks

Basic blocks are, by definition, straight-line code sequences
that may only contain so-called terminator instructions (i.e.,
branching, return) at their end.
Triton-IR uses the Static Single Assignment (SSA) form,

meaning that each variable in each basic block must be (1)
assigned to only once and (2) defined before being used. In so
doing, each basic block implicitly defines a Data-Flow Graph
(DFG) whose different paths correspond to use-def chains in
the program’s SSA representation. This form can be created
directly from Abstract Syntax Trees (ASTs) as shown in [7].

4.2 Support for Tile-Level Data-Flow Analysis
4.2.1 Types

Multi-dimensional tiles are at the center of data-flow anal-
ysis in Triton-IR and can be declared using syntax similar
to vector declarations in LLVM-IR. For example, i32<8, 8> is
the type corresponding to 8 × 8 32-bit integer tiles. Note
that there is no tunable keyword in Triton-IR, hence para-
metric shape values must be resolved before programs are
generated. In our case, this is done by Triton-JIT’s auto-tuner
(Section 5.3).

4.2.2 Instructions

Triton-IR introduces a set of retiling instructions whose
purpose is to support broadcasting semantics as described
in Section 3.2.2:

• The reshape instruction creates a tile of the specified
shapes using data from its input argument. This is
particularly useful to re-interpret variables as higher-
dimensional arrays by padding their input shapes with
ones in preparation of implicit or explicit broadcasting.

• The broadcast instruction creates a tile of the specified
shapes by replicating its input argument as many times
as necessary along dimensions of size 1 – as shown in
Figure 4.

a
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c
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b
c

a
b
c

a
b
c

(a) [3 × 1] input

a b c
a
a
a

b
b
b

c
c
c

(b) [1 × 3] input

Figure 4. The broadcast <3,3> instruction

Usual scalar instructions (cmp, getelementptr, add, load...) were
preserved and extended to signify element-wise operations
on tile operands. Finally, Triton-IR also exposes specialized

arithmetic instructions for transpositions (trans) and matrix
multiplications (dot).

4.3 Support for Tile-Level Control-Flow Analysis
One problem that arises from the existence of tile-level

operations in Triton-IR is the inexpressibility of divergent
control flow within tiles. For example, a program may need
to partially guard tile-level loads against memory access
violations, but this cannot be achieved using branching since
tile elements cannot be accessed individually.

Listing 6. Tile-Level Predication in Triton-IR
;pt[i,j], pf[i,j] = (true , false) if x[i,j] < 5
;pt[i,j], pf[i,j] = (false , true) if x[i,j] >= 5
%pt, %pf = icmpp slt %x, 5
@%pt %x1 = add %y, 1
@%pf %x2 = sub %y, 1
; merge values from different predicates
%x = psi i32 <8,8> [%pt, %x1], [%pf, %x2]
%z = mul i32 <8,8> %x, 2

We propose to solve this issue through the use of the
Predicated SSA (PSSA) form [8] andψ -functions [39]. This
requires the addition of two instruction classes (see Listing 6)
to Triton-IR:

• The cmpp instructions [8] are similar to usual compar-
ison (cmp) instructions, except for the fact that they
return two opposite predicates instead of one.

• The psi instruction merges instructions from different
streams of predicated instructions.

5 The Triton-JIT compiler
The goal of Triton-JIT is to simplify and compile Triton-IR

programs into efficient machine code, via a set of machine-
independent (Section 5.1) andmachine-dependent (Section 5.2)
passes backed by an auto-tuning engine (Section 5.3).

5.1 Machine-Independent Passes
5.1.1 Pre-Fetching

Tile-level memory operation inside loops can be prob-
lematic, as they may induce severe latency that cannot be
hidden in the absence of enough independent instructions.
It is however possible to mitigate this problem in Triton-IR
directly by detecting loops and adding adequate prefetching
code where necessary (See Listing 7).

Listing 7. Automatic pre-fetching

B0:
%p0 = getelementptr %1, %2

B1:
%p = phi [%p0,B0], [%p1,B1]
%x = load %p
; increment pointer
%p1 = getelementptr %p, %3

B0:
%p0 = getelementptr %1, %2
%x0 = load %p0

B1:
%p = phi [%p0,B0], [%p1,B1]
%x = phi [%x0,B0], [%x1,B1]
; increment pointer
%p1 = getelementptr %p, %3
; prefetching
%x1 = load %p
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5.1.2 Tile-Level Peephole Optimization

The presence of tile-level operations in Triton-IR offers
new opportunities for peephole [29] optimizers. For instance,
chains of transpositions can be simplified using the identity
X = (XT )T for any tile X. We believe that other algebraic
properties related to e.g., diagonal tiles could also be ex-
ploited in the future.

5.2 Machine-Dependent Passes
We now present a set of optimization passes for machines

that follow the high-level model shown in Figure 5. Specif-
ically, the optimizations performed by Triton-JIT consist
of (1) hierarchical tiling, (2) memory coalescing, (3) shared
memory allocation and (4) shared memory synchronization.

5.2.1 Hierarchical Tiling

Nested tiling strategies (see Figure 5) aim at decomposing
tiles into micro-tiles and eventually nano-tiles in order to fit
a machine’s compute capabilities and memory hierarchy as
tightly as possible. While this technique is routinely used in
auto-tuning frameworks [34, 40], the structure of Triton-IR
makes it possible to automatically enumerate and optimize
valid nested tiling configurations for any expressible pro-
gram (and without the need for polyhedral machinery).

Micro
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-TileMicro

-Tile
Micro
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Figure 5.Hierarchical Tiling in the Triton-IRMachineModel

5.2.2 Memory Coalescing

Memory accesses are said to be coalesced when adjacent
threads simultaneously access nearby memory locations.
This is important because memory is usually retrieved in
large blocks from DRAM.

Because Triton-IR programs are single-threaded and auto-
matically parallelized, our compiler backend is able to order
threads internally within each micro-tile so as to avoid un-
coalesced memory accesses when possible. This strategy
reduces the number of memory transactions necessary to
load a tile column (see Figure 6).

I/O granularity

DRAM

Micro-
Tilet=0

t=1

I/O granularity
Micro-
Tile

DRAM
Loaded but 
not used

(a) (b)

Figure 6. Uncoalesced (a) and coalesced (b) DRAM accesses.
Different threads are shown in different colors.

5.2.3 Shared Memory Allocation

Tile-level operations that have high arithmetic intensity
(e.g., dot) can benefit from temporarily storing their operands
in fast shared memory. The purpose of the Shared Memory
Allocation pass is to determine when and where a tile should
be stashed to this space. This can be done, as illustrated in
Figure 7, by first calculating the live range of each variable
of interest, and then using the linear-time storage allocation
algorithm proposed in [15].
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Figure 7. Shared Memory Allocation

5.2.4 Shared Memory Synchronization

Reads from and write to shared memory are asynchro-
nous in our machine model. The goal of the Shared Memory
Synchronization pass automatically inserts barriers in the
generated GPU source code so as to preserve program cor-
rectness. This is done by detecting read-after-writes (RAW)
and write-after-read(WAR) hazards using forward data-flow
analysis with the following data-flow equations:

in(RAW )
s =

⋃
p∈pred(s)

out (RAW )
p

in(WAR)
s =

⋃
p∈pred(s)

out (WAR)
p

out (RAW )
s =

{
∅ if in(RAW )

s ∩ read(s) , ∅ (barrier)
in(RAW )

s ∪write(s) otherwise

out (WAR)
s =

{
∅ if in(WAR)

s ∩write(s) , ∅ (barrier)
in(WAR)

s ∪ read(s) otherwise
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5.3 Auto-tuner
Traditional auto-tuners [42, 45] typically rely on hand-

written parameterized code templates to achieve good per-
formance on pre-defined workloads. By contrast, Triton-JIT
can extract optimization spaces directly from Triton-IR pro-
grams by simply concatenating meta-parameters associated
with each of the above optimization passes.

In this work, only the Hierarchical Tiling pass is consid-
ered, leading to no more than 3 tiling parameters per dimen-
sion per tile. These parameters are then optimized using an
exhaustive search over powers of two between (a) 32 and
128 for tile sizes; (b) 8 and 32 for micro-tile sizes; and (c) 1
and 4 for nano-tile sizes. Better auto-tuning methods could
be used in the future.

6 Numerical Experiments
In this section we evaluate the performance Triton on

various workloads from the Deep Learning literature. We
used an NVIDIA GeForce GTX1070 and compared our sys-
tem against the most recent vendor libraries (cuBLAS 10.0,
cuDNN 7.0) as well as related compiler technology (Auto-
TVM, TC, PlaidML). When applicable, we auto-tuned these
DSLs for each individual problem size following official doc-
umentation guidelines.

6.1 Matrix Multiplication
Matrix multiplication tasks of the form: A = D ×W T

(D ∈ RM×K ,W ∈ RN×K ) are at the heart of neural network
computations. Here we consider a variety of tasks from re-
current (DeepSpeech2 [3]) and transformer [44] neural net-
works; we report their performance in Figure 8.
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Figure 8. Performance of matrix multiplication

Triton and cuBLAS are generally on par with each other,
and achieve more than 90% of the device’s peak performance

on certain tasks. CuBLAS, however, remains faster than Tri-
ton on shallow transformer neural networks thanks to the
use of a 3D algorithm [2] which splits deep reductions into in-
dependent chunks to provide more parallelism whenM and
N are too small. Otherwise, existing DSLs are 2-3x slower
than our solution – except for TVM (< 2x slower) when input
shapes are multiples of 32.

6.2 Convolutions
Convolutional Neural Networks (CNNs) are an important

class of machine learning models which should be well sup-
ported by DSLs and compilers. They are based around convo-
lutional layers (Figure 9a) whose implementation as matrix
multiplication (Figure 9b) is necessary to make use of special-
ized tensor-processing hardware – yet unsupported by exist-
ing DSLs. Here we benchmark a Triton re-implementation of
cuDNN’s "IMPLICIT_GEMM" algorithm (Section 6.2.1) and
provide the first fused kernel available for shifted convolu-
tions (Section 6.2.2). We implemented these routines using
look-up tables of pointer increments, as shown in Listing 8.
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Figure 9. Dense and shifted convolutional layers (a) viewed
as matrix multiplication (b)

6.2.1 Dense Convolutions

The convolutional layers considered in this subsection are
from the Deep Learning literature and shown in Table 1.
As shown in Figure 10, Triton outperforms cuDNN’s im-

plementation of IMPLICIT_GEMM for ResNet. This may be
due to the fact that cuDNN also maintains better algorithms
for 3 × 3 convolutions (i.e., Winograd [25]), thereby leaving
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H W C B K R S Application
Task 1 112 112 64 4 128 3 3 ResNet [19]
Task 2 56 56 128 4 256 3 3 ResNet
Task 3 28 28 256 4 512 3 3 ResNet
Task 4 14 14 512 4 512 3 3 ResNet
Task 5 7 7 512 4 512 3 3 ResNet
Task 6 161 700 1 8 64 5 5 DeepSpeech2
Task 7 79 341 32 8 32 5 10 DeepSpeech2

Table 1. Convolution tasks considered in this paper

little engineering resources for optimizing kernels of lesser
importance. When fast algorithms are not available (e.g.,
DeepSpeech2), cuDNN and Triton are on par.
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Figure 10. Performance of implicit matrix multiplication

6.2.2 Shift Convolutions

We finally consider an implementation of Task1-5 from
Table 1 as shifted convolutions – a novel approach to CNNs
(see Figure 9a). We compare our implementation of a fused
shift-conv module in Triton (Listing 8) against that of a naive
implementation relying on a hand-written shift kernel and
a separate call to cuBLAS. We also report the maximum
attainable performance when shift is not done (i.e., 1 × 1
convolution). As we can see in Figure 11, our Triton imple-
mentation is able to almost entirely hide the cost of shifting.

7 Conclusions
In this paper we presented Triton, an open-source lan-

guage and compiler for expressing and compiling tiled neu-
ral network computations into efficient machine code. We
showed that the addition of just a few data- and control-flow
extensions to LLVM-IR could enable various tile-level opti-
mization passes which jointly lead to performance on-par
with vendor libraries. We also proposed Triton-C, a higher-
level language in which we were able to concisely implement
efficient kernels for novel neural network architectures for
CNNs.

Listing 8. shift-convolutions in Triton-C
const tunable int TM = {16, 32, 64, 128};
const tunable int TN = {16, 32, 64, 128};
const tunable int TK = {8};

__constant__ int* delta = alloc_const int [512];

for(int c = 0; c < C; c++)
delta[c] = c*H*W + shift_h[c]*W + shift_w[c]

void shift_conv(restrict read_only float *a,
restrict read_only float *b, float *c,
int M, int N, int K){

int rxa[TM] = get_global_range[TM](0);
int ryb[TN] = get_global_range[TN](1);
int rka[TK] = 0 ... TK;
int rkb[TK] = 0 ... TK;
float C[TM, TN] = 0;
float* pxa[TM, TK] = a + rxa[:, newaxis ];
float* pb[TN, TK] = b + ryb[:, newaxis] + rkb*N;
__constant__ int* pd[TK] = delta + rka;
for(int k = K; k > 0; k = k - TK){

int delta[TK] = *pd;
float *pa[TM, TK] = pxa + delta[newaxis , :];
float a[TM, TK] = *pa;
float b[TN, TK] = *pb;
C = dot(a, trans(b), C);
pb = pb + TK*N;
pd = pd + TK;

}
int rxc[TM] = get_global_range[TM](0);
int ryc[TN] = get_global_range[TN](1);
float* pc[TM, TN] = c + rxc[:, newaxis] + ryc*M;
bool checkc0[TM] = rxc < M;
bool checkc1[TN] = ryc < N;
bool checkc[TM, TN] = checkc0[:, newaxis] && checkc1;
@checkc *pc = C;

}
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Figure 11. Performance of shifted convolutions in Triton

Directions of future work includes support for tensor
cores, implementation of quantized kernels [26] and integra-
tion into higher level DSLs.
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